From ``Dragon's Egg'', by Robert L. Forward.

Published by Ballantine Books, New York, 1980.

The expedition was still six months away from Dragon's Egg, but it was time to start the activities of the automated probes that had been sent ahead by St. George. There would be a lot of work to do in preparation for their close-up view of the star. Now that they had found and identified the asteroidal bodies around the neutron star that they would need, the work could be done as easily by robot brains as human ones.

The largest of the probes was really an automated factory, but its single output was very unusual -- monopoles. It had some monopoles on board already, both positive and negative types. These were not for output, but the seed material needed to run the monopole factory. The factory probe headed for the first of the large nickel-iron planetoids that the strong magnetic fields of the neutron star had slowed and captured during its travels. It started preparing the site while the other probes proceeded with the job of building the power supply necessary to operate the monopole factory, for the power that would be needed was so great that there was no way the factory probe could have carried the fuel. In fact, the power levels needed would exceed the total power-plant capability of the human race on Earth, Colonies, Luna, Mars, asteroids, and scientific outposts combined.

Although the electrical power required was beyond the capability of those in the Solar System, this was only because they didn't have the right energy source. The Sun had been -- and still was -- very generous with its outpouring of energy; but so far the best available ways to convert that radiant energy into electricity, either with solar cells or by burning some fossilized sun energy and using it to rotate a magnetic field past some wires in a generator were still limited.

Here at Dragon's Egg, there was no need for solar cells or heat engines, for the rapidly spinning, highly magnetized neutron star was at one time the energy source and the rotor of a dynamo. All that was needed were some wires to convert the energy of that rotating magnetic field into electrical current.

The job of the smaller probes was to lay cable. They started at the factory and laid a long thin cable in a big loop that passed completely around the star, but out at a safe distance, where it would be stable for the few months that the power would be needed. Since a billion kilometers of cable was needed to reach from the positions of the asteroidal material down to the star and back out again, it had to be very unusual cable -- and it was. The cables being laid were bundles of superconducting polymer threads. Although it was hot near the neutron star, there was no need of refrigeration to maintain the superconductivity, for the polymers stayed superconducting almost to their melting point -- 900 degrees.

The cables became longer and longer and started to react to the magnetic field lines of the star, which were whipping by them ten times a second -- five sweeps of a positive magnetic field emanating from the east pole of the neutron star, interspersed with five sweeps of the negative magnetic field from the west pole. Each time the field went by, the current would surge through the cable and build up as excess charge on the probes. Before they were through, the probes were pulsating with displays of blue and pink corona discharge -- positive, then negative. The last connection of the cable to complete the circuit was tricky, since it had to be made at a time when the current pulsating back and forth through the wire was passing through zero. But for semi-intelligent probes with fractional-relativistic fusion-rocket drives, one-hundredth of a second is plenty of time.

With the power source hooked up to the factory, production started. Strong alternating magnetic fields whipped the seed monopoles back and forth at high energies through a chunk of dense matter. The collisions of the monopoles with the dense nuclei took place at such high energies that elementary particle pairs were formed in profusion, including magnetic monopole pairs. These were skimmed out of the debris emanating from the target and piped outside the factory by tailored electric and magnetic fields, where they were injected into the nearby asteroid. The monopoles entered the asteroid and in their passage through the atoms interacted with the nuclei, displacing the outer electrons. A monopole didn't orbit the nucleus like an electron. Instead, it whirled in a ring, making an electric field that held the charged nucleus, while the nucleus whirled in a linked ring to make a magnetic field that held onto the magnetically charged monopole.

With the loss of the outer electrons that determined their size, the atoms became smaller, and the rock they made up became denser. As more and more monopoles were poured in the center of the asteroid, the material there changed from normal matter, which is bloated with light electrons, into dense monopolium. The original atomic nuclei were still there; but, now with monopoles in linked orbits around them, then density increased to nearly that of a neutron star. As the total amount of converted matter in the asteroid increased, the gravitational field from the condensed matter became higher and soon began to assist in the process, crushing the electron orbits about the atoms into nuclear dimensions after they had only been converted into monopolium. After the month-long process was complete, the 250-kilometer-diameter asteroid had been converted into a 100-meter-diameter sphere with a core of monopolium, a mantle of degenerate matter of white dwarf density, and a glowing crust of partially collapsed normal matter. After the first asteroid had been transformed, the factory turned to the next, which had been pushed into place by a herder probe that had started its task many months ago. The process was repeated again and again until finally there was a collection of eight dense asteroids circling the neutron star: two large ones and six smaller ones, dancing slowly around each other as they moved along in orbit. They were kept in a stable configuration with thrusts from the probes, which used the magnetic fields from a collection of monopoles in their noses to exert a push or pull from a distance on the hot, magnetically charged, ultra-dense masses.

The probes, herding their creations along, now waited patiently for St. George to arrive. As the humans approached the neutron star, the herder probes became more active. They pushed, pulled, and nudged the two larger asteroids until they approached one another. As the ultra-strong gravitational fields of the two asteroids interacted, they whirled about one another at blinding speed and then took off in opposite directions on highly elliptical orbits that would meet again many months later at a point much closer to the nearby neutron star.

Back to the Eclectic Quotation Index.

00.08.30 / Garth Huber