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ABSTRACT

Photomultiplier tubes (PMTs) are used to detect light that comes from gamma-

ray initiated showers in the earth’s atmosphere. The gain of the PMTs are key

to determining the amount of light detected and subsequently, the energy of the

incoming gamma ray. In this thesis, a new method of measuring the gain of a PMT

is proposed. It relates the PMT gain to the variance of the PMT signal divided by

the average current. The new method is mathematically motivated, tested with a

series of experiments, and verified using simulations. In addition, it is compared with

an existing method of measuring the gain. The new method is shown to be able to

predict the gain to within a constant of multiplication. This constant is intrinsic to

each PMT but varies from one PMT to another.
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ABRÉGÉ

Les tubes photomultiplicateurs (TPM) sont utilisés pour détecter les photons

qui proviennent des cascades électromagnétiques produites par les rayons gamma

dans l‘atmosphère terrestre. Le gain des tubes est un élément clé pour déterminer

la quantité de photons détectés et par consequent, l’énergie provenant du rayon

gamma. Dans cette thèse, une nouvelle méthode de mesure du gain d’un TPM est

proposée. Elle relie le gain du tube à la variance du signal de celui-ci, divisé par le

courant moyen. Cette nouvelle méthode, motivée mathématiquement, a été testée

par une séries d’expériences et vérifiée par des simulations numériques. De plus,

cette méthode a été comparée à une autre déjà existante. La nouvelle méthode s’est

avérée en mesure de prédire le gain à une constante de multiplication près. Cette

constante est intrinsèque à chaque tube et varie d’un à l’autre.
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CHAPTER 1

Introduction

1.1 Cosmic Radiation

In 1912, Victor Hess discovered cosmic rays during a series of balloon flights.

Nearly a hundred years later, the origin of cosmic rays remains a mystery [1]. Cosmic

rays cover a wide range of energies (up to 1020 eV) and are created by powerful accel-

erators. Their energy density is about 1 eVcm−3, which is comparable to the energy

contained in the galactic magnetic field and in the cosmic microwave background

radiation (CMBR). The sources that produce cosmic rays have a total luminosity

greater than 1041 ergs s−1 [8]. Cosmic rays represent the largest source of material

reaching the Earth from outside the Solar System [2]. A reasonably detailed under-

standing of their acceleration, propagation and production mechanisms exists at low

and moderate energies, MeV and GeV [9]. However, for energies beyond 1012 eV, (1

TeV), their production and acceleration mechanisms are unknown [2]. Cosmic rays

are energetic particles, originating in outer space. Some examples of cosmic rays

are protons, helium nuclei and electrons. Charged cosmic rays are deflected by the

galactic magnetic field and cannot be traced back to their origin. Neutral particle

detection (gamma ray and neutrino) is key to identifying cosmic ray sources [2],

assuming gamma rays come from the same sources.
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1.2 Scientific Motivation for Cosmic Ray Astronomy

Our universe is dominated by objects that emit via thermal processes. These

produce the black body spectra of the CMB and stars. Weekes1 , calls this the or-

dinary universe. There also exists a non-thermal, extraordinary, relativistic universe

which is important. Observation of the extraordinary universe at low energies is

difficult since it is dominated by thermal foreground radiation. The hard power-law

spectrum of many non-thermal emissions means that it makes sense to look at the

high-energy radiation emitted to probe the processes [1]. In the high-energy regime,

the energies of the accelerated particles surpass the energies of the largest particle ac-

celerators on earth. The accelerated particles offer a unique laboratory for physics.

High-energy particle acceleration may also occur in situations where conventional

physics operates under extreme conditions, in intense gravitational and/or magnetic

fields. Possibly, instead of conventional physics, new physics may be occurring [2].

The very high-energy radiation produced can be used to probe some of the more

exotic properties of the universe. Dark matter searches are such an example. By

looking at high energy photons, one expects to encounter new phenomena that are

not observed at other wavelengths [10].

1 Weekes is a senior astrophysicist at the Harvard-Smithsonian Center for Astro-
physics and is the author of the book Very High Energy Gamma-Ray Astronomy.
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Gamma rays can be used as probes of interstellar radiation fields, which are

poorly understood. Gamma rays interact with soft photons to produce electron-

positron pairs: TeV gamma rays pair-produce off infrared (IR) light of 1-10 mi-

crometer wavelengths. The flux from a TeV gamma-ray source is attenuated by an

amount that depends on the gamma-ray energy, the distance to the source and the

density of intergalactic IR photons. Multiple observations of similar sources at dif-

ferent redshifts would provide us with the intrinsic source spectra, and allow us to

estimate the IR density [2].

1.3 Cosmic Ray Production

Cosmic ray production by shock acceleration in supernovae was proposed by

Enrico Fermi [11]. It offers a plausible explanation for the production of cosmic rays

with energies below 1014 eV [12, 13, 14]. In his model, the particles are accelerated at

a shock front resulting from material ejected at supersonic speeds from a supernova.

The charged particles scatter off the magnetic field irregularities, and diffuse back

and forth across the shock. The velocity distribution of the scattering centers on

either side of the shock is isotropic such that the particles are travelling in random

directions relative to the shock front in. Each passage through the shock accelerates

them, ultimately leading to a net acceleration in the direction of the shock front.

This process continues as long as the particles are contained in the area surrounding

the shock front. The containment time is inversely proportional to the energy of the

particle, which leads to a power law energy spectrum: dN
dE

∝ E−α [2]. For strong

shocks, the power law spectral index, α, is around 2 [15].
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There is also good evidence supporting particle acceleration by shock waves in

a number of other astrophysical situations (solar flares, planet bow shocks etc.).

The theory is also appealing from the point of view of energetics. A supernova

explosion typically releases 1051 ergs of kinetic energy and occurs every few decades

in the galaxy. Thus, the average power injected into the interstellar medium is

about 1042 ergs s−1. Supernovae could power the cosmic rays if around 10 % of the

gravitational potential energy released in the collapse of a massive star went into

accelerating protons and nuclei. But there is as yet no direct evidence that this

theory is correct [2].

Direct evidence of Fermi shock acceleration could come from observing gamma

rays emitted by these sources. Gamma rays are produced in secondary interactions

involving charged particles. The production mechanism involves the acceleration

of charged particles which can either be leptonic (electrons) or hadronic (protons

and light nuclei). Relativistic electrons interact with ambient radiation fields via

the inverse-Compton effect to produce gamma rays, whereas the collision of hadrons

with matter produces secondary pions which decay to gamma rays (π0 → γγ) and

neutrinos (π± → µ±ν) [2]. Theoretical estimates for the resultant gamma ray fluxes

have been made [15]. No gamma rays have yet been detected coming from supernova

remnants where neutral pion production is a part of the acceleration mechanism [2].

There remains considerable speculation regarding the origin of cosmic rays with

energies exceeding 1017 eV [2]. The maximum particle energy can be inferred from

the lifetime of the shock, which weakens as it expands. A typical estimate for this

maximum particle energy is Z × 1014 eV, where Z is the particle charge [16]. Other
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more exotic scenarios like multiple supernovas or a supernova explosion in a compact

binary star [17] can increase this number by 2 orders of magnitude but no further [2].

Thus this cannot explain the origin of particles with energies that exceed 1017 eV. It

is generally believed that sources of such high-energy particles must be extra-galactic

in nature since objects within our galaxy do not have the combination of size and

magnetic field strength that would be necessary to contain a particle at these high

energies [18]; they would leak out of the acceleration before attaining such energies.

1.4 Gamma Rays Energy Bands

Before describing the history of gamma-ray astronomy, it makes sense to define

the different energy ranges that are important. The term gamma ray applies to

photons with energies ranging from about 100 keV to over 100 EeV (1EeV = 1018 eV),

which represents 15 decades in energy. Consequently, a wide variety of techniques

are used to detect them. Gamma-ray energy bands are defined by the interaction

techniques used in their detection (Table 1-1). They are the Medium Energy (ME)

region which spans from 1 to 30 MeV, the High Energy (HE) band which spans from

30 MeV to 100 GeV, the Very High Energy (VHE) band which spans from 100 GeV to

100 TeV and the Ultra High Energy (UH) region which extends beyond 100 TeV. In

the ME region, the Compton scattering process is the dominant interaction process

for photons and Compton telescopes are used in their detection. Alternatively, HE

and VHE use pair-production to detect photons. HE employs balloon and satellite

detectors, whereas VHE relies on detecting the electromagnetic cascade initiated by

gamma rays entering the Earth’s atmosphere [1].

5



Table 1–1: Table of Energy bands as defined by Trevor Weekes [1].

1.5 History of Gamma-Ray Astronomy

The possibility of detecting MeV energy astrophysical photons was predicted in

1958 in an optimistic paper by Philip Morrison [19]. The predicted fluxes of 100 MeV

photons were above the sensitivity threshold for spark chambers in balloon-borne

detectors, which jump-started the gamma-ray balloon era. However, the gamma-

ray balloon experiments were plagued by experimental difficulties which included

the high rate of the cosmic ray background. Ultimately, HE gamma-ray astronomy

would need satellite detection in order to reduce the background and increase the

exposure time [20].

Not long after Morrison’s seminal paper, Cocconi produced an equally opti-

mistic prediction for gamma-ray astronomy at VHE energies [21]. The first system-

atic VHE gamma-ray observations were made in 1960 by a group from the Lebedev

Institute [20]. In the following two decades, atmospheric Cherenkov telescopes and

air shower arrays were operated around the world, and the first generation of meth-

ods for distinguishing gamma rays from comic rays were developed. There was even

some evidence for gamma rays coming from the Crab Nebula [22], but without strong

statistical significance [2]. In 1968, the first large optical reflector, 10 metres in diam-

eter, was built for the Whipple Observatory located on Mount Hopkins in southern
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Arizona. The experiment yielded no immediate results [1] due to the overwhelming

cosmic ray background and the absence of methods for distinguishing the background

cosmic rays from the gamma ray signal.

In the 1970s, the SAS-2 and COS-B satellite experiments made the first sig-

nificant HE gamma ray detections between 35 MeV and 5 GeV by detecting diffuse

gamma-ray emission coming from the galactic plane as well as isotropic extra galactic

radiation [23]. They also showed evidence for 25 gamma-ray point sources, including

the Crab and Vela pulsars [24, 25].

The construction of additional detectors followed in rapid succession over the

next few years. It was a time of optimism. Despite that, the field went into a time

where the earlier detections could not be reproduced. In 1977, Weekes and Turver

used the atmospheric Cherenkov imaging technique to distinguish gamma rays from

the cosmic ray background [26] for the Whipple experiment. This technique led to

a reproducible detection in 1989: The Whipple 10m telescope, which was originally

designed to search for TeV point sources, detected the Crab Nebula with 9.0 σ,

corresponding to a flux of 1.8 × 10−11 photons cm2 s−1 above 0.7 TeV [27]. In the

1990s, additional solid source detections emerged [2].

1.6 Types of Detectors

The three principal detectors are satellite experiments, atmospheric Cherenkov

telescopes, and air shower arrays. Current satellite experiments operate at MeV and

GeV energies, atmospheric Cherenkov telescopes operate between 250 GeV and 50

TeV, and air shower arrays operate above 10 TeV [2]. I will discuss some recent

experiments beginning with the satellites, but only briefly talk about VERITAS, the
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experiment relevant to this thesis. A detailed description of the project is available

in the next section.

In 1991, 15 years after the SAS-2 and COS-B satellites, the Compton Gamma-

Ray Observatory (CGRO) was launched into orbit. There were four scientific instru-

ments aboard the CGRO. They covered the gamma-ray energy range of 15 keV - 30

GeV [2]. I will list the four experiments, BATSE, OSSE, COMPTEL, and EGRET:

BATSE: The Burst and Transient Source Experiment (BATSE) was designed

for detecting gamma ray bursts in order to locate strong transient sources. It was

sensitive from 25 keV to 2 MeV [2].

OSSE: The Orientated Scintillation Spectrometer Experiment (OSSE) was com-

posed of four NaI scintillation detectors which could be pointed individually. It de-

tected gamma rays with energies between 50 keV and 10 MeV and was sensitive to

diffuse emission from the galactic plane [28].

COMPTEL: The Imaging Compton Telescope (COMPTEL) used the Comp-

ton Effect. It had two layers of gamma-ray detectors, and operated from 1 to 30

MeV. COMPTEL detected gamma rays from active galaxies, radioactive supernova

remnants, and diffuse gamma rays from giant molecular clouds [2].

EGRET: The Energetic Gamma-Ray Experiment Telescope (EGRET) detected

in the highest energy range, from 20 MeV to 30 GeV (Figure 1-1) [2]. EGRET

was composed of a spark chamber tracking system followed by an NaI calorimeter.

Incident high-energy gamma rays entered the chamber and pair produced. The par-

ticle tracks in the spark chambers determined the incoming direction of the gamma

ray, and the calorimeter measured its energy [29]. Cosmic rays were vetoed by an
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Figure 1–1: A schematic of the EGRET instrument on board the CGRO. Gamma
rays interact with spark chambers and produce electron-positron pairs. The tra-
jectories of the electron-positron pairs are tracked through each layer in the spark
chamber. Their final energy is measured by an NaI calorimeter. Cosmic rays are
rejected by the anti-coincidence shield [2].

anti-coincidence dome. EGRET made detailed observations of high-energy processes

associated with diffuse gamma-ray emission, gamma-ray bursts, cosmic rays, pulsars,

and blazars [2]. CGRO was de-orbited in 2000.

GLAST is a future high energy gamma-ray mission, developed internationally,

and scheduled for launch in early 2008. It consists of two instruments, the Large Area

Telescope (LAT) and the GLAST Burst Monitor (GBM). The LAT is composed of a

large-area silicon strip tracker, a segmented CsI calorimeter, and an anti-coincidence

shield. The LAT will have an order of magnitude improvement in sensitivity com-

pared to EGRET. It will also have a relatively constant effective area up to energies

of 300 GeV. Thus many sources detected by GLAST will have a measured energy

spectra that overlaps with spectra from ground-based instruments. The GBM uses

both NaI and BGO crystals to detect and locate bursts, in a method similar to

BATSE on the CGRO. Although its performance will be comparable to BATSE, it
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will cover a wider energy range with a smaller collection area. Another experiment,

the AGILE mission, will study gamma ray and x-ray sources in the 30MeV - 30

GeV and 10-40 keV energy ranges, respectively [30]. It was developed by Italian

institutions and was launched in April 2007 [29].

In the VHE regime, the low gamma-ray flux2 limits the energy reach of satellite

experiments, and ground-based instruments use the Earth’s atmosphere as their

detection medium, thereby achieving large (≈ 105 m2) effective areas [2]. The Earth’s

atmosphere is opaque to all gamma rays, however a shower cascade is created by an

incoming gamma ray. The particles in the shower travel faster than the speed of

light in air, and consequently radiate Cherenkov light which is detected by ground-

based Cherenkov detectors. A typical detector consists of an array of photomultiplier

tubes (PMTs) located in the focal plane of a large optical reflector. The image of the

air shower is used to distinguish gamma rays from the background cosmic rays [4].

The gamma ray signal to cosmic ray background is on the order of 1/1000 at TeV

energies [32].

There are some basic differences between gamma ray and hadron shower im-

ages. These stem from a physical difference in their shower development due to

the smaller transverse momentum of electromagnetic (EM) interactions compared

to hadronic interactions. Thus the Cherenkov radiating particles in a gamma-ray

2 About 6 VHE gamma rays per year would be detected by a 1 m2 area detector
coming from the very bright Crab Nebula, which has an integral flux above 1 TeV
of ≈ 2 × 10−7m2s1 [31].
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shower are on average closer to the direction of the primary. Furthermore, since

there are no penetrating hadrons in EM showers the fluctuations in the shower im-

age are less. As a result, gamma-ray images are better defined, making it easier to

characterize their arrival direction, and ultimately discriminate against the isotropic

background of hadron showers [4]. There are currently four imaging atmospheric

Cherenkov detectors worldwide: MAGIC and VERITAS in the Northern hemisphere

and HESS and CANGAROO III in the South. HESS’ full four-telescope system has

been operational since December 2003 and HESS has since produced a wealth of new

discoveries [33].
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CHAPTER 2

VERITAS Detector

2.1 Basic Design

VERITAS is composed of an array of four identical 12 m diameter imaging

atmospheric Cherenkov telescopes located on Mount Hopkins in Southern Arizona

(Figure 2–1). VERITAS began making observations in 2003 with a single telescope

and continued as successive telescopes were built. The first stereo observations oc-

curred in 2006 and the 2006-2007 season marked the beginning of three telescopes

data. The fourth telescope was completed early in 2007 [34].

VERITAS detects gamma rays with energies between about 100 GeV and 50

TeV [35]. Each VERITAS telescope is composed of a light reflector which reflects

photons resulting from gamma ray showers onto a light-sensitive camera. The signals

from the camera are then digitized by fast electronics, and information from the

shower is extracted from the signal. In this chapter, a description of the telescope is

presented.

The mechanical design of the telescope is based on the Whipple 10 m telescope.

It consists of a welded-steel Optical Support Structure (OSS) placed on a positioner

that moves both azimuthally and in altitude. The camera, supported by a quadra-

pod, is balanced by a counterweight located at the rear of the OSS. The maximum

slew speed of the structure is measured to be 0.3 ◦s−1 and the pointing accuracy is

stable to less than ±0.01◦ [3].
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Figure 2–1: Left: VERITAS telescope 1 (of four telescopes). The buildings in the
foreground are where the electronics and power supplies are located [3]. Right: Close
up of VERITAS camera which is composed of 499 Photomultiplier Tubes (Model:
XP2970/02) [3].

The reflectors follow a Davies-Cotton design [36] with a 12 m diameter and 12 m

focal length. The spherical reflector is composed of 350 hexagonal facets, making up

a total area of 110 m2 [3]. Each mirror facet measures 60 cm across [4] and has a 24

m radius of curvature. The mirrors are made of aluminized and anodized glass with

a reflectivity greater than 90% at 320 nm. They are secured to triangular frames

on the front of the OSS using 3 adjustment screws that allow for their independent

alignment [3].

This Davies-Cotton optical design has several advantages over a large parabolic

dish. Firstly, multiple identical spherical mirror facets are cheap to produce and easy

to align [4]. Secondly, the mirrors have a smaller off-axis aberration compared to a

parabolic reflector. The main disadvantage of this design is that the surface is not

isochronous: The reflector introduces a time-spread of about 4ns into the light pulse,

which is roughly equal to the inherent width of the shower pulse [4].
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The camera is composed of 499 2.86 cm diameter, UV-light sensitive photomul-

tiplier tubes (PMTs). Therefore, the PMTs are sensitive to Cherenkov light, which

is peaked in the UV. The quantum efficiency of the PMTs exceeds 20 % at 300 nm.

As shown in Figure 2-1, the PMTs are hexagonal-close-packed. The angular pixel

spacing is 0.15◦ with a total field of view of about 3.5◦ [3]. Light cones are placed

in front of the PMTs, which increases the photon collection efficiency by 30%, by

redirecting light that would otherwise be lost in between pixels [35]. The gain of the

PMTs is set to 2 x 105 by adjusting the high voltage (HV) supplied to the tubes by

a multichannel modular commercial power supply, which allows each PMT voltage

to be programmed separately [3].

After mirror facet alignment, the point spread function (PSF) is measured to

be 0.06 ◦ at the position of Polaris (elevation 21 ◦) and increases at higher elevations

due to the bending of the OSS. The measured PSF is significantly smaller than the

0.15◦ size of a VERITAS photomultiplier tube. The technique of bias alignment is

used to make sure that the smallest PSF occurs when the telescope is in its observing

position. In order to accomplish this, the mirrors are purposely misaligned when the

telescope in stow position. When the telescope is raised for observing, the structure

distorts under its weight such that the mirrors are properly aligned [3].

2.2 Electronics

An outline of the electronics system is illustrated in Figure 2-2. Each PMT signal

is amplified by a high-bandwidth pre-amplifier at the PMT. The anode currents are

also monitored at the PMTs. The currents typically fall in the range of 0 to 10

microamps, depending on night sky background conditions. The amplified PMT
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Figure 2–2: Schematic of the VERITAS readout electronics. From left to right, the
PMTs (Focal Plane), the telescope base and the central station, which collects data
from all four telescopes [4].

signals are sent via 50 m of 75 Ω stranded RG59 cable to the telescope trigger

located in the control room and the data acquisition electronics in the electronics

trailer [3]. The analog signals are then split, with one of the outputs going to a fast

constant-fraction discriminator (CFD) which forms the level 1 trigger [4]. The CFDs

are used to produce a trigger time that is independent of the input pulse height,

with an output width that is programmable in 12 steps between 4 and 25ns. A

copy of the outgoing CFD signal is sent to a topological trigger [37]. This trigger

system requires CFD pulses from adjacent pixels to have an overlap greater than

6ns, which substantially reduces the rate of triggers due to random fluctuations of

the night sky background. Observations that were made in 2005 with a conservative

CFD threshold of 6-7 photoelectrons in a 3-fold adjacent pixel configuration reduced
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the cosmic ray trigger rate at high elevation to 150 Hz by lowering the background

rate [3].

Figure 2–3: Left: A typical FADC block diagram showing how an FADC digitizes
an analog input. On the far left, a series of resistors act as voltage dividers. They
provide a reference voltage to the comparators, such that the reference voltage to
each successive comparator is at least one significant bit greater than the one below
it. Each comparator produces a “1” when its analog input voltage is higher than
its reference voltage. Otherwise, it outputs a “0” [5]. Right: A typical FADC trace
produced by Cherenkov light from a cosmic ray air shower on a single PMT. There are
measurements every 2ns connected by a line to guide the eye. The dashed horizontal
line is the electronic pedestal level, the dashed vertical line shows the pulse arrival
time, and the shaded area indicates a 10ns integration window. The baseline itself
has some fluctuations which are due to fluctuations of the night sky background [3].

The second output of the analog signal from each PMT is fed to a 500 MHz flash

analog-to-digital converter (FADC) which digitizes the PMT waveform [35]. For a
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description on how FADCs work, see Figure 2-3. Each PMT is digitized by an FADC

with an 8-bit dynamic range and a memory depth of 32 microseconds. The signal

traces follow a high gain path to the FADC, unless the dynamic range is exceeded,

in which case an analog switch connects the FADC to a delayed low gain path. The

low gain path effectively increases the digital counts from 256 to 1500. A digital

count is equivalent to ∼ 0.19 photoelectrons at the nominal PMT gain. Figure 2-3

illustrates a typical FADC trace with 2ns sampling.

The telescope trigger signal is sent to the central trigger location where pro-

grammable delays are applied to correct for the difference in arrival time of the

Cherenkov signal at each telescope [4]. The final signal initiates the readout of the

memory of the FADC, where data are recorded.

FADCs are used instead of charge-integrating ADCs because they provide infor-

mation about the time distribution of the Cherenkov photons, which helps reject the

cosmic ray background and improves the accuracy of gamma-ray shower parameter

reconstruction. In addition, FADCs allow for active processing of the signal, such as

decreasing the charge integration gate, which improves the signal to noise ratio and

lowers the effective energy threshold [38].

2.3 Calibration

This thesis is about using different techniques to measure the gain of a photo-

multiplier tube. In fact, several techniques at VERITAS already exist to measure

the PMT gains. However, they are far from redundant. Knowing the gain of the

PMTs with great accuracy is essential for being able to determine the amount of

Cherenkov light that reaches the camera, and ultimately the energy of the incoming
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gamma ray. This section will highlight three gain measurement techniques that are

either currently being used at VERITAS or are in the process of being implemented.

Once per night, a laser pulses light uniformly across the entire camera and

the response of each PMT is recorded. The relative gain of each PMT is obtained

by comparing the integrated charge of the PMT response to the average of all the

PMTs. The PMT high voltages are then adjusted to make the response of all PMTs

the same, a technique known as flat-fielding (Figure 2–4). The PMT high voltages

are adjusted so that the relative PMT gains are within 10% of each other. During

the laser runs, the relative time offsets are also recorded. About 95% of the signal

channels show a relative time offset of less than ± 3ns, which is compensated for in

the trigger hardware.

The flat-fielding method relies on the assumption that each PMT receives the

same amount of light. Therefore, a sophisticated setup is needed to deliver the pulses

uniformly across the entire camera of 499 PMTs. To accomplish this, the light is

first pulsed by a nitrogen laser, which delivers 4ns wide pulses to a dye module which

fluoresces at 400 nm, effectively simulating a Cherenkov wavefront. The light then

passes through an optical fibre to a diffuser, positioned about 4 m in front of the

camera, which provides uniform illumination [39].

If one could detect a single photoelectron with a PMT, one would be able to

directly measure the gain. It would simply be the integrated charge of the PMT signal

divided by the charge of the electron. This technique of detecting single photons

provides a direct measurement of the PMT gain. However, in order to reduce the

light level such that, on average, one photon is detected per light pulse, a special
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Figure 2–4: The distribution (top) of individual values of the relative gain before flat
fielding. The distribution (bottom) of individual values of the relative gain after flat
fielding. A laser run of 103 events. The information is used to adjust the HV across
the PMT (and consequently the gains) such that the pixels respond to light equally.
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Figure 2–5: Left: Aluminum plate with 3 mm holes in front of each PMT. The
plate serves to reduce incoming laser light, such that single photoelectron detection
is possible [6]. Right: Fit to the first 5 photoelectron distributions. The left-most
peak is the zero photon detection, and the second to left is the single photoelectron
peak.
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setup is used. Instead of pulsing the laser directly at the camera, an aluminum plate,

with 3 mm holes in front of each PMT, is placed in front of the camera (Figure 2–5).

When the integrated charge for each pulse is binned in a histogram, one can see the

gaussian peaks of the first few photoelectrons. A fit is then used to extract the mean

charge of the single photoelectron distribution [6].

Single muon detection offers an alternate method of calibrating the telescope.

Muons are easily identified by the characteristic ring image they produce in the

camera. Generally, such detections constitute unwanted background, however, it is

possible to use their ring image for calibration purposes. Since the distribution of

Cherenkov light is a function of the muon’s distance of impact from the telescope

alone, it is possible to determine the expected amount of Cherenkov light per unit

arc length [40]. Summing the output signals of the PMTs across the camera and

dividing them by the expected light yield, gives the absolute gain of the camera [40].

In addition to measuring the gain it is also important to measure the night

sky background fluctuations and subtract them from the data. Otherwise, one will

overestimate the amount of light detected. In order to obtain a measure of the night

sky background fluctuations, a pulse generator triggers the data acquisition at 3 Hz

in order to generate events without Cherenkov light [39].
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CHAPTER 3

Gain

3.1 Photomultiplier Tube

Figure 3–1: Important components of a photomultiplier tube. An incoming photon
is converted to an electron at the photocathode. Electron multiplication occurs at
every dynode, and the millions of electrons produced are output by the anode [7].

Understanding how a photomultiplier tube (PMT) works is essential to being

able to determine its gain. Simply put, a PMT is a device that converts light into

an electrical signal (Figure 3–1). The photocathode, usually made of a deposited

photoemissive semiconductor, converts the incident light into a stream of electrons
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Figure 3–2: The spectral sensitivity for different photocathodes are plotted against
wavelength. The curved lines of constant quantum efficiency, ρ, are also shown
(ρ =

Sk,λhc

eλ
) [7].

(See Figure 3–2 for the sensitivities of different photocathodes as a function of wave-

length). This occurs via photoemission, where a fraction of the incident photons

impart all of their energy to the bonded electrons of the photocathode material,

allowing the electrons to escape. The ratio of the number of emitted electrons to

the number of incident photons is called the quantum efficiency, and is always less

than 1. The resulting electrons, called photoelectrons, are subsequently focused and

accelerated towards the first dynode in a series of dynodes which are held at differ-

ent voltage potentials. Dynodes are usually made of an insulator or semiconductor

with an oxidized surface and are arranged such that the electric fields between them

cause the electrons emitted by each dynode to strike the next with an energy of a few

hundred electron-volts. At each dynode, secondary emission occurs, multiplying the
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number of incident electrons. The amount of secondary emission that occurs depends

on the potential gradient between the dynodes, which are determined by a voltage

divider set up across the terminal of a high voltage supply. The secondary electrons

produced by the last dynode are collected at the anode, and constitute the output

signal. The overall gain of the PMT is equal to the number of electrons produced

at the anode for every photoelectron generated at the photocathode. As such, it is

equivalent to the ratio of the anode current to the photocathode current [7].

Figure 3–3: Log-log plot of Gain vs High Voltage for a PMT. The equation of the
best fit line is y = 12.36x − 32.82. The slope of the line, 12.36, corresponds to γ. γ
is roughly equal to the number of dynodes in the PMT (XP2212B), which is 12.

The gain of a photomultiplier tube is related to the applied high voltage (HV)

via the following equation:

Gain = k(HV )γ (3.1)
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where k and γ are constants (Figure 3–3). γ is approximately equal to the

number of dynodes in a PMT. The motivation for this equation comes from the

geometry of the dynodes. For the majority of the dynodes in a PMT, the voltage

difference between successive dynodes is roughly equal, such that the potential differ-

ence between successive dynodes is simply the HV supplied to the PMT divided by

the number of dynodes. Electrons are accelerated by the voltage potential between

dynodes and the amount of energy they impart on the subsequent dynode is pro-

portional to the voltage potential. Therefore, via secondary emission, each dynode

multiplies the incoming number of electrons by kHV 1. For a series of γ dynodes, one

expects an overall multiplication, or gain, of roughly kγHV γ . The actual derivation

is more complex, and as a result γ is not an integer. Furthermore, once k and γ are

determined from experiment, equation (3.1) can be used to predict what voltage one

would need to apply to a PMT to achieve a given gain.

This thesis explores a new method of measuring the gain of PMTs. As will be

described next, the response of a PMT to light can be exploited to measure its gain.

3.2 Measuring the Gain

In chapter 2, several methods of measuring the gain were outlined. I will now go

into further detail about one particular method, where a laser is pulsed at the PMTs

and the output of the PMTs are used to calculate the gain. I will call this method A,

for book-keeping reasons, since it is one of two methods being used. A second method,

dubbed method B, will also be explained in detail. Unlike method A, method B is

not currently used at the telescope and up to this point, has been motivated [41],

but has not been fully developed, tested or implemented at the VERITAS telescope.
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Method A provides the gain at different high voltages. Then, the results from method

B can be compared with these calculated gains, and the validity of method B can be

assessed. This chapter contains the derivations of the two methods.

3.2.1 Method A: σ2 vs µ

The Poisson distribution is a discrete distribution which describes the probability

that a random event will occur in a given interval under the condition that the

probability of the event occurring in that interval is small, and the number of trials

is large so that the event does indeed occur a few times. For a number of successes,

x , with a mean of µ, the probability of x occurring is given by:

P (x, µ) =
µxe−µ

x!
(3.2)

For Poisson distributions, the mean is equal to the variance (µ = σ2) [42].

Consider the response of a PMT to a pulsed LED at different light levels. The

number of photons that hit the PMT in a given time interval (τ) will follow Pois-

son statistics. Assuming that each photon striking the photocathode of the PMT

releases either one or zero photoelectrons, the photoelectron distribution will also

be poissonian with mean µpe and standard deviation σpe. For large means, Poisson

distributions look gaussian (Figure 3–4). Thus, for a large number of incident pho-

tons, the initial charge distribution is effectively gaussian with mean µi and standard

deviation σi where µi = eµpe and σi = eσpe, and e is the charge of the electron.

The photoelectrons, initially generated at the photocathode, are multiplied in

several stages by the dynodes in the PMT. The number of exiting electrons is equal

to the number of photoelectrons multiplied by the gain (G) of the PMT. The final
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Figure 3–4: Poisson distribution with different means (λ). Note that a Poisson
distribution with a mean of 10 already looks gaussian.

charge distribution will be gaussian, with mean, µf and standard deviation, σf , such

that µf = Gµi and σf = Gσi. See Figure 3–5 for PMT charge distributions at

various light levels and note that they do look gaussian. It is now possible to derive

an expression of the gain in terms of the final charge distribution:

µi = σi
2, (3.3)

µi = eσpe
2, (3.4)

µi

e
= (

σi

e
)2 =

(σi

e
)4

(σi

e
)2

=
(µi

e
)2

(σi

e
)2

=
(µi)

2

σi
2

, (3.5)
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Figure 3–5: Histograms of charge distributions for a PMT exposed to increasing light
levels. The first distribution is for a PMT with the light turned off (pedestal). The
light level increases from left-right and top-bottom. Every distributions has a mean
charge µ and standard deviation σ. Note that as the light level increases, so does µ
and σ. Also, note that at the distributions look gaussian.
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Substituting equation (3.5) into the definition of the gain, yields:

Gain =
µf

µi

=

µf

e
µi

e

=

µf

e

(µi

σi
)2

, (3.6)
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Figure 3–6: Histograms of ADC charges for a PMT at 1650 volts and with the HV
turned off. The histogram with the HV off represents the electronic noise of the
PMT, and the one with the HV on represents the dark current, an amplified version
of the electronic noise.

Up to this point, we have been dealing with a noiseless PMT, but in reality

the PMT has a certain level of electronic noise. The average current that a PMT

outputs when it is in the dark is called the dark current. A PMT’s dark current has

a variance, σ2

0
(Figure 3–6). The average dark current introduces a current offset,

however, it does not change the proportionality between σ2 and µ which is related

to the gain. It will merely add an offset, µ0. The variance of the dark current (σ2

0
)

and the variance of the light detected signal (σ2) are uncorrelated and independent

at a given HV. Thus, they will add in quadrature (σ2

total = σ2 + σ2

0
), such that σ2

0
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merely introduces an offset as well. This leaves the expression for the gain unchanged.

Figure 3–7 shows a plot of σ2 vs µ and the offsets that are introduced.
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Figure 3–7: σ2 vs µ for the charge distributions. The gain is proportional to the
slope of the line. The y–intercept is due to the upward shift from σ2

0
and the right-

ward shift from µ0. The noise introduces these offsets won’t affect the gain, which is
proportional to the slope of the line.

We will assume that the gain is linear, meaning that the gain is not affected by

the light level. In other words, the PMT multiplies any incoming number of photons

by some value G. One obtains:

Gµi

Gσi

=
µf

σf

, (3.7)

Gain =

µf

e

(
µf

σf
)2

=
σf

2

eµf

, (3.8)

30



In reality, this expression is too simplistic. Electron multiplication occurs in

stages, where the number of electrons gets multiplied by a small number at each

dynode. Thus, the fluctuations in the secondary emission of each dynode must

be taken into account. Such treatment has been statistically done by Lombard and

Martin, using the method of generating functions [43]. I will state their main results.

Assuming that the electron multiplication process at the dynodes are random, follow

Poisson distributions and are independent of each other, one finds:

Gain ≈
σf

2

eµf

1

1 + α2
(3.9)

α =
σ1

µ1 − µ0

(3.10)

where α is the width parameter, were one to inject single photoelectrons into

the dynode chain. This experiment of injecting a single photoelectron would produce

an output with average charge, µ1 and standard deviation, σ1. Meanwhile, µ0 is the

average charge when no light is present (pedestal).

3.2.2 Method A2: σ2 vs I

It makes sense to talk about the charge deposited in a PMT signal when using

charge-integrating ADCs. ADCs output the charge, making it simple to get the

average charge µf and its variance. However, this is not the only way to measure

the charge, another method involves using the current.

At really low light levels, you can imagine individual pulses resulting from each

photon being detected. As you increase the light level, they begin to pile-up on top

of each other and the signal begins to look like noise, with an average voltage offset
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(Figure 3–8). At this point, one can begin to think of it as a continuous process

instead of a discreet one. In this case where the LED is continually on, and the light

level is sufficiently high, it makes sense to put the gain in terms of current.

In the case where the LED is constantly on, the current is simply the average

voltage divided by R, using Ohm’s law. Thus, one can exploit a device that measures

the voltage, like an oscilloscope, to get the current. It is also be possible to use an

ammeter to measure the current directly. Regardless, of the method of measuring

the current, when found, the current relates back to µf , the average charge deposited

during a time τ . Current by definition, is dQ/dt, where Q is charge, thus:

µf = Iτ (3.11)

Figure 3–8: Left: A typical PMT trace with the light turned off with an average
current of ∼ 50 nanoamps, which is referred to as the dark current. Right: A typical
PMT trace at 1650 volts with the light turned on at a constant level with an average
current of ∼ 10 microamps. Note that when the light is turned on, the baseline shifts
lower as more pulses add up and the variance increases as well. At this rate it is
impossible to distinguish individual photons being detected.
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Substituting current for charge, yields yet another expression of the gain:

G =
σf

2

eIτ

1

1 + α2
(3.12)

If an FADC or oscilloscope is used to record the signal from a PMT, the output

will be in volts. Thus, it makes sense to convert the above equation in terms of

voltage variance instead of charge, yielding yet another equation for the gain:

σf
2 =

σv̄
2τ 2

(50Ω)2
, (3.13)

G =
σv̄

2τ

Ī(50Ω)2e
(1 + α2) (3.14)

where the input impedance of the FADC or oscilloscope is 50 Ω, σv̄
2 is the

variance of the average voltages, and was introduced using Ohm’s law.

3.2.3 Method B: σ2

FADC vs I

The standard deviation of the voltages that make up the trace on the FADC can

also be used to calculate the gain. I will show that at low photon rate and low gain,

the gain is proportional to the current, and the standard deviation of the FADC

trace is a factor in that proportionality.

The following derivation expands on a similar derivation by David Hanna [41].

Assume that the current from the PMT is due to a random occurrence of photo-

electrons. Each photoelectron causes a single pulse of average height < v > (volts)

confined in a width w (ns). The average rate of photoelectrons is R (Hz) (Figure 3–

9). The voltage is either < v > or zero depending on whether the pulse is present,
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Figure 3–9: Simplified example using positive square pulses with rate R, width w
and average height < v > volts, during a time interval τ . Note that the average
voltage is simply the fractional time that the pulse is on (Rw) multiplied by the
height of the pulse (< v >).

thus Rw is the fractional time that you have a pulse. Furthermore, the fractional

time of getting a pulse multiplied by < v >, gives the average voltage of the trace

Rw< v >. Using Ohm’s law, the average photocurrent due to the incoming pulses

in an FADC is:

I =
Rw < v >

50Ω
(3.15)

This is exactly the average voltage, Rw< v >, divided by the 50 Ω input

impedance of the FADC. Since the voltage is either < v > or zero depending on

whether the pulse is present. The fractional time of getting a pulse multiplied by its

average voltage, yields the average voltage of the trace Rw< v >.

For sufficiently low rates, where overlap is not significant, the FADC variance is

described by:
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σ2 =
1

N

N∑

i=1

(si − s̄)2 =
1

N

N∑

i=1

s2

i − s̄2 (3.16)

si corresponds to the ith sample on the FADC and is in volts and N is the number

of points in a given FADC trace (Figure 3–10). s̄ is simply the average voltage value

of the samples in a given trace and N is the number of points in the trace.

s̄ =
1

N

N∑

i=1

si = Rw < v > (3.17)

and
N∑

i=1

s2

i is the average of the square of the voltage, < v >,

N∑

i=1

s2

i = NRw < v2 > (3.18)

For a square pulse it is evident that < v2 >=< v >2. But for a more realistic

pulse shape, one finds that < v2 >6=< v >2. Combining the two previous equations

for variance, one gets:

σ2 = R < v2 > w − R2 < v >2 w2 = (50Ω)I(
< v2 >

< v >
+ R < v > w) (3.19)

For low rates, such that Rw << 1, one gets:

σ2 = R < v2 > w − R2 < v >2 w2 = (50Ω)I(
< v2 >

< v >
) (3.20)

The pulse shape of a single photon is described by v(t) = −At3/2e
−t
τ where t is

in nanoseconds and τ was on the order of 7ns for a setup that consisted of a burst of
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Figure 3–10: Left: An example of a trace resulting from a constant LED source. si

represents a single voltage reading, while s̄ is the average voltage for a given trace. τ
represents the duration of the trace. Right: The same voltages put into a histogram.
The variance of this distribution is σ2

FADC . Note that the long tail to low voltages is
due to the pulse shape spending more time close to zero volts than at large negative
values.
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laser photons spread out over 4ns (Figure 3–11) [41]. The gain is simply the total

charge of a pulse divided by e:

G =

∫
∞

0
v(t)dt

(50Ω)e
, (3.21)

G = 22 × 109A (3.22)
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Figure 3–11: A pulse shape of a single photon detected by a PMT, which is described
by v(t) = −At3/2e

−t
7 .

Making the substitution <v2>
<v>

= β, and evaluating the ratio:

β(w) =
< v2 >

< v >
=

∫ w

0
v(t)2dt∫ w

0
v(t)dt

(3.23)

For large values of w the ratio tends to 5.2A (Figure 3–12). Substituting (3.21)

into (3.19) yields the following:

σ2 ≈ N(< v >2)Rw = 261.2 × IA = 1.21 × 10−8GI, (3.24)

G =
1

1.21 × 10−8

σ2

FADC

I
(3.25)
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Figure 3–12: Beta plotted as a function of the pulse width. Since nearly all of the
individual pulse shape is contained within 50ns, Beta stabilized by 50ns, asymptoti-
cally approaching the value 5.2.

Figure 3–13: The variance, σ2

FADC , plotted against the current. The slope of the line
is proportional to the gain, while the variance offset, σ2

0
, is due to PMT noise.
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The significance of this equation is that if measurements of σ2

FADC were plotted

against current, the slope would yield the gain (Figure 3–13). The purpose of this

thesis is to test this technique as a potential method of calculating the gain.

Problems with this method could arise if Rw is not << 1, which should occur

at high rates and high gain. This may introduce non-linearity into a σ2 vs I plot.

The effect will be explored later in this thesis. In addition, unlike method A, method

B is pulse-shape dependent. Should the response of a PMT to an individual photon

have a different pulse shape, the factor relating the gain to the slope will be different.

The next step is to test these two methods experimentally. This is described in the

following chapter.
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CHAPTER 4

Experimental Setup

4.1 Apparatus used in method A: σ2 vs µ

In this chapter we describe the apparatus used for testing two different methods

for calculating the gain. Due to the differences between method A and method B

that were described in the previous chapter, a different setup is needed for each of

them. We will start by describing the setup used for method A.

A simplified schematic of the experimental setup used in method A is shown

in Figure 4-1. The setup had an 8010 pulse generator produce 2 volt, ∼ 10ns wide

pulses, which were attenuated by a Phillips Model 804 attenuator before flashing a

green light emitting diode (LED). The LED was placed roughly 10 cm in front of a

PMT in a light-tight wooden box (See Figure 4–2 for a photograph). The LED was

connected in series with a 15 ± 5 % Ω resistor series. The PMT response to flashes

of different intensity light was recorded.

The PMT high voltage was supplied by a Power Designs 1570 high voltage DC

power source. In order to shield the PMT from the earth’s magnetic field, a µ metal

shield was placed around the PMT [44]. For the most part, the PMTs used in the

experiment were of the type XP2282B, and were taken from the recently dismantled

STACEE gamma-ray experiment. These PMTs have 8 dynode stages, and a spectral

range of 300-650 nm, with a peak sensitivity at 400 nm, which corresponds to violet

light [45]. The single photoelectron detection which is described later, made use of
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Figure 4–1: A simple schematic of the main components of the experiment used to
test method A. The pulse generator supplied ∼ 10ns pulses to the LED, whose flashes
were detected by a PMT. The PMT signal was then integrated by an ADC within
the gate provided by the dual gate generator. The ADC was located in a CAMAC
crate, which was connected to a VME crate via a CC32 and a VC32 module. The
data was then read out to an on board VME Computer (VMIVME 7750).
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Figure 4–2: Left: The PMT and LED were located inside a light sealed box. Right:
The inside of the box is shown. The green LED was located at the tip of the small
black box facing the PMT and was connected in series with a 15 ± 5 % Ω resistor.
The PMT is encased in a µ metal shield. During the experiment, the box was closed.

the XP2212B, because it was not possible to resolve single photoelectrons with the

STACEE PMTs.

A copy of the pulse generator output was sent to a LeCroy 2323A programmable

dual gate generator which lengthened the width of the pulse to approximately 70ns.

This pulse formed the gate of a LeCroy 2249A Analog-to-Digital Converter (ADC)

which sits in a CAMAC crate. See Figure 4–3 for an example of a PMT signal

and gate that was sent to the ADC. The length of the gate was minimized in or-

der to reduce background noise, but was made large enough to integrate the entire

electrical pulse from the PMT. The ADC integrated the charge deposited by the

PMT signal while the gate was on. The charge was subsequently read out by an

onboard VME computer (VMIVME 7750) which interfaces with the CAMAC crate

42



Figure 4–3: Left: The CAMAC equipment used in the experiment, which included
a pulse generator, attenuator, programmable dual gate generator and ADC. Right:
Typical input to the ADC. The top trace is the response of a PMT to a single 10ns
LED pulse while the bottom trace is the gate over which the ADC integrates the
pulse.
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using a VC32 VME module on the VMEBus connected to a CC32 module on the

CAMAC bus. The ADC outputs in digital counts, where one count is equivalent to

0.25 picocoulombs [46].

At each PMT voltage, 5000 ADC values were read in at different light levels

and their charge distributions were used to generate a plot of the σ2 vs µ of the

distributions, which lie in a straight line. The slope of that line was then substituted

into equation (3.9) to determine the gain. However, that equation also contains the

term α, the width parameter of the charge distribution observed, were one to detect

single photons. α can be determined directly via single photoelectron detection.

4.1.1 Single Photoelectron Measurements

The setup needed to detect individual photons closely resembles the apparatus

used in method A, albeit with some minor alterations. The first addition was the

placement of a metal plate with a ∼ 2 mm hole in it, in between the PMT and the

LED, in order to significantly reduce the light level. Afterwards, the average number

of photons detected was approximately one per flash. Another difference was the

type of PMT used. For this experiment, the XP2212B was used, since it was able to

detect single photoelectrons whereas the STACEE XP2282 tubes could not resolve

them. The XP2212B had the potential of having a higher gain without distorting

the signal. See Figure 4–5 for an example of the the PMT detecting an individual

photon.

The same readout as Method A was used, however longer data sets of 50000

ADC counts were taken at each PMT voltage, producing a charge histogram similar

to the ones shown in Figure 4–4. This resulting charge distribution was then fit
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Figure 4–4: The signal of a single photoelectron as seen by the ADC (top trace).
The ADC will integrate this signal while the gate (bottom trace) is on, and output
the charge in ADC units.
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Figure 4–5: Left: ADC output at 1500 volts with fits for the first three photoelectron
peaks. Right: ADC output at 1600 volts. Note that the first photoelectron peak
moves away from the pedestal at higher PMT voltage.
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to the expected distribution for the first few photoelectrons. The expected distri-

bution forces the number of N photoelectron events observed to obey a poissonian

probability function. Furthermore, the distance separating the peaks of successive

photoelectrons is equal. The multiple photoelectron fit identifies the width and the

location of the single photoelectron peak, so that α can be calculated.

4.2 Apparatus used in Method B: σ2

FADC vs I

The apparatus used in method B is illustrated in 4–6. Method B differed from

method A by having a constant LED light source, as opposed to a pulsing one. In

order to generate a constant LED light source, a DC power supply was connected to

the LED. In addition, instead of calculating the variance of the charge distributions,

the variance of the samples of individual traces were calculated. As a result, the

ADC used in method A was replaced by a digital oscilloscope (Tektronix TDS 620B),

which functioned much like an FADC with a very long window (See Figure 4–7 for a

photograph of the oscilloscope used). In total, 3000 traces were recorded at a given

gain and light level. Each trace had 500 samples and was 1000ns long. An example

of a typical oscilloscope trace is provided in Figure 4–7.

The oscilloscope was connected to a computer via GPIB interface. The oscil-

loscope triggered automatically, and one trace was collected by the computer every

few seconds, which was the fastest speed possible.

In addition to the the experiments that have been described, a simulation pro-

gram was also written to test both method A and method B. First, a single photon

pulse with the equation v(t) = At3/2e
−t
τ , with τ = 7ns, was simulated. This equation

represents the expected response one would observe on an oscilloscope in DC mode,
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Figure 4–6: A simple schematic of the main components of the experiment used to
test method B. A DC power supply provided a constant voltage to an LED which
emitted low intensity light. The PMT signal was sent to an oscilloscope, which was
then read out by a computer via GPIB interface.

with 50 Ω impedance, if a PMT detected a single photon. Then, by overlapping ran-

domly occurring pulses, traces with different currents were simulated, in a method

that will be described in some more detail in the simulations chapter.

This experimental setup has now been described in some detail. However, there

were some components of the experiment that needed to be calibrated prior to data

collection, and that is the focus of the next two sections.

4.3 Optimizing the read-in rate

This section describes how the optimum read-in rate of the ADC was determined.

The setup used in method A involved pulsing an LED in front of a PMT whose

output was integrated by an ADC before being read into a computer. Although it
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Figure 4–7: Left: The Tektronix oscilloscope used in the experiment. Right: A
typical trace on the oscilloscope of a PMT (XP2212B) illuminated by an LED with
a constant light level. The trace is made up of 500 points and is 1000ns long. The
current of the signal in this particular trace is approximately 20 microamps and the
HV applied to the PMT is 1650 volts. The large spikes corresponds to the detection
of individual photons. These occur at random times throughout the trace as is
expected. Furthermore, note that the trace also has an RF noise component.
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Figure 4–8: The rate that the computer reads in values from the ADC plotted against
the pulse rate of the LED. At about 12 Hz, the read-in rate reaches a plateau, as the
ADC cannot not read at speeds faster than 12 Hz.
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is possible to pulse the LED at very high speeds, the relatively slower speed of the

CAMAC technology of the ADC limits the speed of the experiment. Determining the

maximum read-in rate of the ADC is a worthwhile undertaking because operating

at the maximum read-in rate of the ADC maximizes time efficiency and maximizes

the time that the PMT can stabilize between pulses.

A simple experiment was executed in order to determine the read-in rate of the

ADC: the pulse rate of the LED was recorded for a range of rates and was compared

at each rate with the actual read-in rate of the ADC. Figure 4–8 shows the maximum

read-in rate was ∼ 12 Hz. Consequently, the LED was pulsed at a value slightly less

than the 12 Hz cut-off, which was chosen to be 10 Hz.

4.4 Investigating the PMT warm-up time

Figure 4–9: Typical PMT response to a flash of light detected from a 241Am source
embedded inside a small piece of plastic scintillator. The PMT is at 2500 volts.
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Figure 4–10: The average amplitude of the PMT pulse due to light from alpha decay
for three PMTs at 2500 volts as a function of run number. The data set was taken
after the HV was first turned on. Each point represents the average of 50 traces read
in with the oscilloscope and the data points are separated by a 100 s delay. Each
plot is of 2 - 3 hour duration. No significant trend was observed, suggesting that the
PMTs do not need time to warm up.
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Figure 4–11: Amplitude of the PMT signal vs time. Both the PMT and the LED
were turned on and the average amplitude of the PMT signal was read out. This is a
plot of the amplitude of the PMT signal as a function of run number, such that each
point on the graph corresponds to approximately 15 minutes, or 1000 traces. Note
that after a few hours, the light level stopped decreasing and the system stabilized.
Also note the suppressed zero.
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When a PMT’s HV is first turned on, it is possible that it takes a certain amount

of time for the gain of the PMT to stabilize. The existence of this so-called warm-

up time was investigated by a simple procedure that involved reading in the PMT

output directly after the PMT’s HV was turned on. Meanwhile, the PMT was being

exposed to a constant light source.

The constant light source used was a 241Am source embedded inside a small piece

of plastic scintillator. Via alpha-decay, the 241Am source released alpha particles that

excited the surrounding scintillator so that it produced flashes of light (Figure 4–9).

On average, the amount of light indirectly produced by the alpha decay process is

constant.

Three XP2282B PMTs were tested with the scintillator placed directly on the

photocathode of the PMT. The signal from each PMT was read out for ∼ 2 hours

after the PMT’s HV was turned on. Since the light source was constant, any changes

in the average size of the signal detected could be attributed to a change in the PMT

gain. Ultimately, the PMT gain did not appear to change over time, thus no warm

up time was observed (Figure 4–10).

Although the PMT did not show evidence for a warm-up time, the LED did

(Figure 4–11). It is interesting to note that in the case where the LED is turned

on for the first time after a being off for several days, it takes time for the light

level to stabilize. Before reaching equilibrium, the LED light intensity decreases as

a function of time.
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CHAPTER 5

Simulation Results

Both methods A and B for measuring the gain were already motivated using

a simple theory. This theory will now be compared to simulations. This section

aims to describe these simulations used in detail as well as well as the important

results. In this section, method A2, which uses substitutes the charge for current

(See Equation 3.12), will be used. This expression makes more sense for constant

light levels as opposed to single flashes of light.

A program was written using ROOT [47] and C++. First, a single photon pulse

with the equation v(t) = At3/2e
−t
τ , with τ = 7ns, was simulated (Figure 3–11). This

equation represents the response one would expect to observe on an oscilloscope in

DC mode, with 50 Ω impedance, were a PMT to detect a single photon. The input

gain was calculated by integrating the pulse. The program then proceeded by adding

multiple pulses in order to make up a trace, such that the arrival of the pulses was

random. Pulses that reached the end of the trace were overlapped at the beginning.

The simulations were executed under two conditions, with α = 0, and α = 0.25. As

was previously defined in Chapter 3, α is equal to σ1

µ1−µ0

. α = 0 means that the single

photoelectron peak has zero width, and α = 0.25 means that the width of the single

phototelectron peak is equal to a quarter of its pedestal-subtracted mean.

55



5.1 α = 0

α was set equal to 0 by making every photoelectron pulse equal in size. The data

generated by the simulation program are shown in Figure 5–1. In total, 200 traces

were simulated at each of 12 different light levels, with the current ranging from 0

to 100 microamps. Calculating the value of the input gain amounted to integrating

the pulse shape and dividing it by e. The amplitude of the pulses were fixed such

that the input gain was 2.153 × 106.

Using the total set of 2400 (200 traces × 12 light levels) simulated traces, both

methods A2 and B were tested (Figure 5–1). Using equation (3.12), method A2

resulted in a gain of 2.12 ± 0.06 × 106 (Figure 5–2). The input gain of 2.153 × 106

lies within error of this measurement, thus the results for method A2 are consistent.

Using equation (3.25), method B gave a more accurate and more precise measurement

of the gain, 2.161±0.002×106. However, the input gain does not lie within the error

but is close to it. The errors are produced from the straight line fit. Based on this

set of simulations, both methods A2 and B should be capable of predicting the gain

to within a few percent.

5.2 α = 0.25

The same simulations were repeated, however, with non-uniform pulses. The

scale height of each simulated pulse was assigned a random value, such that 68%

of the scale heights fell within 25% of the average height. Thus, α, which is equal

to σ1

µ1−µ0

as was described in Chapter 3, is 0.25. For these simulations, method A

calculated a gain of 2.18 ± 0.04 was obtained while method B resulted in a gain of

2.163 ± 0.002 (Figure 5–3). Similar to the previous simulation where α = 0, the
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Figure 5–1: Simulated data at 12 light levels (1) the response of a PMT to an
individual photon as seen on an oscilloscope (2) the amplitude profile (3) a simulated
trace at 100 microamps (4) a histogram of the mean voltages of all 100 microamp
traces (5) a histogram of a sample trace at 100 microamps (6) σ2

FADC vs I
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Figure 5–2: Top: σ2 vs I with error and the best line fit forced through the origin.
The slope is used to calculate the gain of 2.12 ± 0.06 × 106 using method A. The
actual gain of 2.153 × 106 lies within error of this value. Bottom: σ2

FADC vs I with
error and the best line fit forced through the origin. The slope is used to calculate a
gain of 2.161 ± −.002 × 106 using method B. The actual gain is close to this value
but not within error.
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actual gain lies within the errors of method A, and close to method B. Again, this

supports that both methods should be capable of predicting the gain to within a few

percent.

Figure 5–3: Top: σ2 vs I with error and the best line fit forced through the origin.
The slope is used to calculate the gain using method A, and gives a value of 2.12 ±

0.06 × 106, within error of the actual gain of 2.153 × 106. Bottom: σ2

FADC vs I with
error and the best line fit forced through the origin. The gain is calculated using
method B and the slope of the line and yields a value of 2.163 ± 0.002 × 106.
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Figure 5–4: σ2 vs I with error and the best line fit forced through the origin for
currents up to 800 microamps. The trend remains linear for the entire range.

5.3 Deviations from Linearity

A low limit approximation for Rw was used in the derivation of the gain in

method B, requiring Rw << 1. Recall that R is the rate of the incoming pulses and

w is the width of a pulse. As long as this approximation is valid, the gain should be

proportional to σ2

FADC/I, otherwise some higher order terms result. Furthermore,

R increases with current. In order to investigate the potentially non-linear effects,

simulations were done at the gain of 2.153 × 106, and the currents were increased

to up to 800 microamps, which is well-beyond the regime that a PMT should be

operating in (Figure 5–4). This simulated a high-rate environment. However, even

at high current, the relationship between σ2

FADC and current remained linear. This

justifies the use of the low rate approximation.
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CHAPTER 6

Results

This chapter focuses on the gains measured using different methods, one of which

is known to function and the other which is being tested. Since method A relies on

measurements of the width and mean of the single photoelectron peak, the single

photoelectron results will be presented first.

6.1 Single Photoelectron Detection

It was found that it was not possible to detect individual photons using the

XP2282B PMTs since the single photoelectron peak was located too close to the

pedestal to be resolved (Figure 6–1). A simple calculation shows that at gains typical

for this type of PMT (∼ 6 × 105), the single photoelectron peak would lie less than

one ADC count away from the pedestal. The PMT gain could be further increased,

however single photon resolution depends more on the dynode material than the

gain (especially the material of the first dynodes). Therefore, increasing the gain

would still not resolve a single photon. The inability to distinguish the photoelectron

peak suggests that α is large. Were α to be small, one would observe the single

photoelectron peak to be well separated from the pedestal.

The procedure for the single photoelectron detection method was carried out

with an XP2212B PMT instead. This particular PMT is able to resolve the single

photoelectron peak. Since the α values for one PMT is not the same as a different

type of PMT, the results from this experiment cannot be combined with the results
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Figure 6–1: ADC output at 2500 volts using a XP2282B PMT for the pedestal (top
left) and three low light levels. The light level is slowly increased from zero but the
single photoelectron peak lies too close to the pedestal to be resolved.
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Figure 6–2: ADC output at 1600 volts using an XP2212B PMT. The multiple pho-
toelectron fit is a sum of gaussians centered at each photoelectron mean, Nµ, where
N = 1,2,3,4 and µ is the mean of the single photoelectron. The area of each gaussian
is equal to the poissonian probability of getting N photoelectrons. The fit is used to
obtain the width and mean of the single photoelectron peak.
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Figure 6–3: Left: Mean charge of the single photoelectron peak as a function of HV
for a XP2212B PMT. The fit is of the form µpe1 = kµHV γ, where γ from the fit is
12.53 ± 0.01. Right: α, the width parameter of the single photoelectron peak plotted
against HV. The large error bars at 1600 volts are the result of a poor fit.
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for the XP2282B. Despite this, the single photon detection results will be outlined

briefly to give a feeling for the parameter α.

First, the charge distributions of the pulses at very low light levels were plotted

in a histogram (Figure 6–2). The distribution was then fit with a sum of normalized

gaussians centered at each photoelectron mean (Nµ) where N = 1,2,3,4 ... and

µ is the mean charge of the single photoelectron. Refer back to Figure 2–5 for a

detailed fit of the first few photoelectrons that was done for a VERITAS PMT.

The fit determines the location and width of the single photoelectron peak. Using

the results from the fit, the resulting distribution of the mean charges of the single

photoelectron peak and α were plotted as a function of HV (Figure 6–3).

6.2 Gain measurement
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Figure 6–4: Charge of PMT signal vs HV, fit to µ = kµHV γ, where µ is the charge,
kµ is constant and γ, also a constant, reflects the structure of the dynode chain of
the PMT.
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This section describes the result of calculating the gain of four PMTs (XP2282B)

using different methods. The PMTs will be referred to by number (PMT 1, PMT

2 etc.). Due to the fact that single photoelectron detection was not possible for

these PMTs, α was set to zero, but is in fact likely to be large. This measure will

introduces some error into the calculation of the gain using method A (See Equation

(3.9)). However, if one compares method A to method B, this error will decrease

significantly, since only the change in α as a function of HV will contribute. Thus it is

valid to compare the two methods, and to expect them to agree within a few percent

of each other, a discrepancy which arises due to the ∼ 10 % variation observed in α

values as a function of HV, as seen in Figure 6–3.

Prior to measuring the gain of a PMT, a simple test was executed to ensure

that it was in working order. An LED was pulsed at a constant light level, while the

HV was changed. At each HV, 5000 pulses were integrated with an ADC, and the

average charge was plotted as a function of HV (See Figure 6–4 for the results for

PMT 1). Mean charge (µ) is proportional to the gain, therefore, in order to verify

that the gain behaves as expected, one can simply test whether the relationship

µ = kµHV γ is satisfied. This fit applied to the PMT 1 charges was very reasonable,

demonstrating that the gain of this PMT behaves as expected.

6.3 Method A results

Method A involved reading in the charge of pulses from a PMT exposed to

pulsed light at different high voltages and different light levels. At each light level

and HV, the charges of the PMT signals were binned into histograms. Figure 6–5

shows an example of such histograms for PMT 1 at 2100 volts. The σ2 vs µ of these
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Figure 6–5: Histograms of charge distributions for PMT 1 at 2100 volts exposed to
increasing light levels. The first distribution is for the PMT with the light turned off
(pedestal). As the light level increases, so do µ and σ.
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Gain of a PMT using photo-statistics

 1.759E+04±Gain = 4.357E+05 

Figure 6–6: σ2 vs µ for the charge distributions from the previous figure, for PMT 1
at 2100 volts. The gain is proportional to the slope of the line and using method A,
the gain is calculated to be 4.4 ± 0.2 × 105.
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Figure 6–7: Gain calculated using method A plotted as a function of HV for PMT
1. The fit is reasonable and the γ value of 4.435± 0.001 agrees reasonably well with
4.34 ± 0.03, the previously measured γ.

charge distributions were then plotted and the slope was calculated (Figure 6–6).

Finally, the gain was calculated by substituting these slopes into equation 3.9, but

with α set to zero. These gains were then plotted as a function of HV (See Figure 6–7

for the gains of PMT 1). A power-law fit to this plot should yield approximately

the same γ as was previously obtained. The two agree within a few percent, and are

4.435 ± 0.001 and 4.34 ± 0.03, respectively.

6.4 Method B results

In this method, traces were read from the oscilloscope at 10 different light levels,

where the light level was constant as opposed to pulsing. Both σ2

FADC and I were

calculated from the trace (Figure 6–8) and plotted (Figure 6–9). The slope of σ2

FADC

vs I is proportional to the gain, therefore the slopes were plotted as a function of
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Figure 6–8: Three plots from the data of PMT 1 at 2100 volts used in method B.
Top: Profile of the amplitude of the PMT signal for 10 light levels, where the light
is constant and not pulsed. Note that the light level is not exactly constant over
each of the 10 light levels, thus the profile breaks it down further. The amplitude of
the light decreases with time as the LED approaches equilibrium, and this change
effectively allows a sampling over extra light levels. Bottom Left: A sample trace as
read in from the oscilloscope. Bottom Right: Histogram of the trace samples. The
distribution is approximately gaussian with mean µ and variance σ2

FADC .
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Figure 6–9: σ2 vs I for 10 different light levels for PMT 1 at 2100 volts. Each point
represents 10 ADC traces and each light level is broken up into 5 points because the
light level is not very constant. The slope of the best fit was found to be .0379±0.0008.
This slope is plotted in the next plot.
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Figure 6–10: Slope of σ2

FADC/I vs HV as per method B plotted as a function of HV
(PMT 1). Only statistical errors are included and γ from the fit is 4.66 ± .01
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HV and fit to a power-law (Figure 6–10). The fit is also reasonable and the power

law factor agrees approximately with those in Figures 6-7 and 6-4.

6.5 Method A vs Method B
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Gain vs slope of sigma squared vs I

Figure 6–11: The gain calculated using method A plotted against the slope of
σ2

FADC/I from method B for PMT 1. The slope is 9.7 ± 0.3 × 106.

The two methods will now be compared to determine whether both give a similar

value for the gain. For PMT 1, the gain from method A was plotted against the slopes

of σ2

FADC vs I from method B. The relationship one expects to observe is a straight

line with zero intercept, and a slope that is within a few percent of 8.26 × 107,

according to equation (3.25) which states G = 1

1.21×10−8

σ2

FADC

I
1 . This slope was

found to be 9.7± 0.3× 106 for PMT 1 (Figure 6–11), which is an order of magnitude

1 1

1.21×10−8 = 8.26 × 107
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Slope of the gain vs σ2

FADC/I
PMT# Slope (×106) Error (×106)
PMT 1 9.7 .3
PMT 2 9.5 .3
PMT 3 1.1 .3

Tube 4
7.6 .4
6.9 .4

Table 6–1: Table of slopes of the gain vs σ2

FADC/I for 4 PMTs. PMT 4 was repeated
and both results are included. The expected slope is 8.26× 107, which is an order of
magnitude higher than the slopes observed. Furthermore, although three PMTs have
slopes that agree with each other, one does not agree. It is interesting to note that
the slope is directly related to the pulse shape due to an individual photoelectron.

less than the expected slope. This means that the expression for the gain in method

B is not consistent with data. Furthermore, none of the other three PMTs tested

agreed with the theoretical slope. Their slopes are listed in Table 6–1.

One possible explanation for this discrepancy is that the pulse shape of this PMT

is different than was initially proposed. The factor relating the gain to σ2

FADC/I

comes directly from the pulse shape. Thus a different pulse shape should result in

a different factor for the slope. However, the actual pulse shape of an individual

photon was not measured for this PMT, thus this theory has not yet been tested.

The three remaining PMTs that were studied also had plots of method A vs.

method B. These plots are presented in Figures 6–12, 6–13 and 6–14. The first three

PMTs had slopes that agreed with other, while the fourth one did not agree. The

fact that the slopes for the different PMTs do not all agree with each other means

that each individual PMT would have to calibrated in order to determine the slope.

This would makes this method of measuring the gain impractical for testing large

numbers of similar PMTs.

72



slope of sigma squared vs I
0.02 0.03 0.04 0.05 0.06 0.07

G
ai

n

300

400

500

600

700

800
310×

 / ndf 2χ  0.2074 / 3
p0        1.309e+04± 7.518e+04 
p1        3.429e+05± 9.52e+06 

 / ndf 2χ  0.2074 / 3
p0        1.309e+04± 7.518e+04 
p1        3.429e+05± 9.52e+06 
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Figure 6–12: The gain calculated using method A plotted against the slope of
σ2

FADC/I from method B for PMT 2. The slope is 9.5 ± 0.3 × 106.
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Figure 6–13: The gain calculated using method A plotted against the slope of
σ2

FADC/I from method B for PMT 3. The slope is 1.1 ± 0.3 × 107.

73



slope of sigma squared vs I
0.02 0.03 0.04 0.05 0.06

G
ai

n

200

250

300

350

400

450

500

550

600

310×
 / ndf 2χ  27.79 / 10

p0        1.13e+04± 6.555e+04 
p1        3.515e+05± 7.562e+06 

 / ndf 2χ  27.79 / 10
p0        1.13e+04± 6.555e+04 
p1        3.515e+05± 7.562e+06 

Gain vs slope of sigma squared vs I

slope of sigma squared vs I
0.01 0.02 0.03 0.04 0.05 0.06

G
ai

n

150

200

250

300

350

400

450

310×
 / ndf 2χ  43.24 / 10

p0         9463± 6.758e+04 
p1        3.556e+05± 6.919e+06 

 / ndf 2χ  43.24 / 10
p0         9463± 6.758e+04 
p1        3.556e+05± 6.919e+06 

Gain vs slope of sigma squared vs I

Figure 6–14: The gain calculated using method A plotted against the slope of
σ2

FADC/I from method B for PMT 4. The experiment was repeated and they repre-
sent the left and right plots. The slopes are 7.6 ± 0.4 × 106 and 6.9 ± 0.4 × 106
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CHAPTER 7

Conclusion

Photomultiplier tubes (PMTs) are used to detect light coming from gamma-

ray initiated showers in the earth’s atmosphere. The gain of the PMTs are pivotal

in determining the amount of light detected and consequently, the energy of the

incoming gamma ray. In this thesis, a new method of measuring the gain of a PMT

was proposed. The method was motivated mathematically, tested with experiments,

and shown to work in simulations. However, when it was compared with an existing

method of measuring the gain, the new method was shown to be able to predict the

gain only to within a constant of multiplication. The discrepancy might be due to

ignorance regarding the pulse shape of an individual photon for the PMT used. A

generic pulse shape was hypothesized but it is entirely possible that it is not suitable

for this particular PMT.

The best way to test this hypothesis would be to measure the pulse shape

directly, or to simulate a range of possible pulse shapes in order to determine how

large an effect pulse shape has. Measuring the pulse shape directly would not be

possible with the XP2282B used, however, it would be possible with PMTs with

better single photoelectron response. Indirect measurement of the pulse shape is

also a possibility.
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A major limitation of this project was the limited number of PMTs of the same

type that were available. From the PMTs that were available, several showed non-

ideal behaviour such as the gain not increasing with high voltage. These PMTs were

immediately discarded and four remained for study. A sample size of four is not

sufficient to make hard conclusions, especially in investigating why three PMTs had

similar slopes for gain vs σ2

FADC/I and one differed. Although the experiment was

repeated in order to ascertain that the odd PMT out was not a accident, it is still

possible that there is something different or malfunctioning with that single PMT.

It would therefore be interesting to study more PMTs. In fact, a very large number

of PMTs of the same type could potentially be studied simultaneously by using the

4 x 499 PMTs of the VERITAS gamma-ray detector and exposing them to a light

source simultaneously.

The purpose of this thesis was to investigate the possibility of using a new

method to measure the gains at the VERITAS detector. The main reason why this

proposed method could be useful is that all of the inputs that are needed to calculate

the gain are continually being read into the VERITAS data stream, in the form of

current measurements and pedestal data. Using the variance of this pedestal data

and plotting it against the current, one could calculate the gain using this method.

These gain measurements would be taken without cutting into the time that the

telescope could be observing, which is an advantage it would have over the current

calibration techniques.

On a final note, as long as the constant multiplier is intrinsic to each PMT, this

method could still be used to monitor the stability of the PMTs.
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