BigCal Elastic Calibrations for SANE Experiment

Garth Huber Cornel Butuceanu

Outline

- Elastics Simulations and Run Plan.
- ep Calibrations from Gep-3.
- Outlook.

Ep Elastics Energy Calibration

- The purpose of the elastic calibrations is to provide an absolute energy calibration of scattered electrons in the calorimeter.
- Coincidence events with an electron detected in BigCal tagged with a proton in the HMS.
- Constraints in selecting the appropriate calibration kinematics:
 - Deflection of the incident electron beam by the target magnetic field.
 - Proton and electron angles must not be obstructed by the target coils.
 - Desirable to calibrate with electrons of 0.8-2.4 GeV energy.
- An energy of 2.4 GeV beam and 0°/180° target orientation are planned to be available (compatible with these requirements).
- As the target material will not be polarized, beam current up to 1 μA can be used to reduce the total beam-time required.

In order to calibrate most of the BigCal several scans will be needed as well as several HMS angular settings.

- Full strength (5.1 T) parallel & anti-parallel fields.
- Half strength (2.55 T) parallel & anti-parallel fields.
- Magnetic field turned off.

Elastic Coincidence Rates - E_{beam}=2.400 GeV

- In comparison to the 2.317 GeV beam energy assumed in the original calibration run-plan:
 - Q^2 is about 0.1GeV² higher.
 - BigCal is at same angle, but the beam energy is higher.
 - ep coincidence rates are about 20% lower.
- Simulation now takes the cutoff due to the target coil obstruction into account.
 - This eliminates about half of the events for the θ_{HMS} =30.0° setting.
 - Take only half statistics there to keep the run-times reasonable.
- At 60% beam taking efficiency, it will take 4 days of beam to calibrate ~ 90% of the calorimeter with ~400 elastic counts per 4x4 cm² crystal.
 - 5 target field configurations (Full @ 0,180°; Half @0,180°; Off).

Elastic Rates per Setting

E _e ,	θ_{e} ,	P _p	$\theta_{\rm p}$	Counts/cell/hr			Beam-time (hrs)		
(GeV)	(deg)	(GeV)	(deg)	0^{o}	180°	Off	0° .	1 80°	Off
1.789	30	1.233	46.50	810	810	2160	0.5	0.5	0.2
1.706	33	1.334	43.75	1480	1440	1550	0.3	0.3	0.3
1.617	36	1.443	41.00	830	830	880	0.5	0.5	0.5
1.522	39	1.555	38.25	450	450	470	0.9	0.9	0.9
1.423	43	1.670	35.50	240	250	260	1.7	1.6	1.5
1.318	47	1.789	32.75	118	120	122	3.4	3.3	3.3
1.213	50	1.907	30.00	36	36	42	5.6*	5.6*	4.8*
Total Time (100% efficiency)							13	13	12

* Take 200/cell instead of 400.

100 counts vs. 400 counts per 4x4 cm2 crystal?

- No significant improvement in the energy resolution, but no background processes included in the simulation.
- The actual number of elastic events to be acquired will depend on the background conditions obtained when using ammonia target.

Elastic Events Selection for BigCal Calibration

• Assuming elastic scattering use the HMS tracking & proton momentum to calculate electron hit position in the BigCal.

• Use a cut on the correlation between the predicted electron position (X,Y) by the HMS and respectively the BigCal cluster position.

BigCal Calibration using Elastic Electrons

(3)

$$E_{ij} = C_{j} A_{ij}$$
(*

$$E_{i} = \sum_{j=1}^{1744} C_{j} A_{ij}$$
(*

$$\sum_{i} E_{i} A_{ik} = \sum_{j=1}^{1744} C_{j} X_{kj}$$
(*

- 1) E-electron energy (e_hms)
 - A-ADC value
- 2) **C**—calibration coefficient
 - i—event number
 - j—block number

Where
$$X_{jk} = \sum_{i} A_{ij} A_{ik}$$

• k=1 1744

• Solve 1744 linear equations (3) for calibration coefficients C_{j} ,

$$A \propto e^{\alpha V}$$
 (4)

- Use C_j to calculate new High Voltage.
- 1ADC channel=1MeV

Energy Calibration Results in Gep3

HMS proton momentum was used to predict the electron energy.

Parasitic Calibration using π^0 Events

- Select two cluster events with at least 4 blocks/cluster, with a deposited energy of at least 550 MeV/block and with a minimum 50 cm distance between the clusters.
- The ratio between the reconstructed mass of these events and the expected pion mass is used to calibrate each block. $\mathbf{M}^{\mathrm{reg}}\pi$ / \mathbf{M}

SANE Collaboration Meeting, 30 May 2008

Energy Resolution vs Electron Energy

Energy Resolution*E^{1/2} vs Elastic Electron Energy

Energy Resolution vs Electron Energy

Energy Resolution*E^{1/2} vs Elastic Electron Energy

To do list:

- Implement the target magnetic field in the HMS tracking code (use the RSS target field map).
- Implement the slow beam raster in the Analyzer.
- Look at backgrounds obtained in April Test Run. (conditions were similar to SANE Target Field Off configuration.)
- Complete a more detailed draft at 2.400 GeV for BigCal Elastic Calibration Run Plan by August.

Parasitic Energy Calibration Monitor

- The use of HMS coincidences to parasitically monitor the BigCal energy calibration during the 4.6, 5.7 GeV physics runs has also been investigated.
- The elastic cross section drops steeply with angle, so the low rates preclude the use of more than one HMS angle per beam energy.
- Only a few dozen coincidences per crystal per 100 hours of running are expected.
- The most important use of these events may ultimately be to provide two higher energy calibration points to verify the linearity of the energy calibration.
 - Would need to sum over several dozen adjacent crystals to obtain the necessary statistical precision.
- Might also measure the target packing fraction by comparing to the known elastic cross sections.

