Probing the Spin Structure of the Nucleon:

Measurements of A₁, d₂, g₂ on the Neutron

Brad Sawatzky for the E12-06-110 (A₁ⁿ) and E12-06-121 (d₂ⁿ) Collaborations

Hall C Winter Workshop 2019

Polarized DIS cross sections

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \uparrow -\uparrow \uparrow) = \frac{4\alpha^{2}}{MQ^{2}}\frac{E'}{\nu E}\left[(E+E'\cos\theta)g_{1}(x,Q^{2}) - \frac{Q^{2}}{\nu}g_{2}(x,Q^{2})\right] = \Delta\sigma_{\parallel}$$

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^{2}\sin\theta}{MQ^{2}}\frac{E'^{2}}{\nu^{2}E}\left[\nu g_{1}(x,Q^{2}) + 2Eg_{2}(x,Q^{2})\right] = \Delta\sigma_{\perp}$$

$$Q^{2} = 4 \text{-momentum transfer squared of the virtual photon.}$$

$$\nu = \text{energy transfer.}$$

$$\theta = \text{scattering angle.}$$

$$x = \frac{Q^{2}}{2M\nu} \text{ fraction of nucleon momentum carried by the struck quark.}$$

What are g_1 and g_2 ?

• The "g's" play a role analogous to the "F's" in the unpolarized cross section

$$rac{d^2\sigma}{d\Omega dE'} = rac{lpha^2}{4E^2 \sin^4 rac{ heta}{2}} \left(rac{2}{M} F_1(x, Q^2) \sin^2 rac{ heta}{2} + rac{1}{
u} F_2(x, Q^2) \cos^2 rac{ heta}{2}
ight)$$

- F encodes information about the momentum structure of the nucleon
- g₁ and g₂ encode information about the spin structure of the target nucleon

- The Parton Model
 - → g_1 is a measure of the spin distribution among the individual constituent quarks (ie. aligned parallel and anti-parallel to the nucleon spin) → g_2 ???

g₂ and Quark-Gluon Correlations

QCD allows the helicity exchange to occur in two principle ways

Carry one unit of orbital angular momentum

Couple to a gluon

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + ar{g}_2(x,Q^2)$$

a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 92):

$$\overline{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left(\frac{m_{q}}{M} h_{T}(y,Q^{2}) + \xi(y,Q^{2}) \right) \frac{dy}{y}$$
transversity
quark-gluon correlation

d₂: A clean probe of quark-gluon correlations

$$d_2(Q^2) = \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx = 3 \int_0^1 x^2 \overline{g_2}(x, Q^2) dx$$

- *d*₂ is a clean probe of quark-gluon correlations / higher twist effects
 - \rightarrow d₂ is the 3rd moment of a sum of the spin structure functions
 - \rightarrow matrix element in the Operator Product Expansion $-\infty$
 - » it is cleanly computable using Lattice QCD
- Connected to the *color Lorentz force* acting on the struck quark (Burkardt)
 - \rightarrow same underlying physics as in SIDIS k_{\perp} studies

d_2 for the proton and neutron

Hint of a negative d^p₂, negative twist-3 at moderate Q² ~ 3 GeV²
 → Similar hint of negative twist-3 (dips below CN elastic) in dⁿ₂
 data noted in SANE preprint – curious

Thomas Jefferson National Accelerator Facility Hall C Winter Workshop • January 29, 2019

Virtual Photon Asymmetry A₁

$$A_{1} = \frac{1}{F_{1}} \left(g_{1} - \frac{(2Mx)^{2}}{Q^{2}}g_{2}\right)$$
$$= \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

Anti-parallel spins: $\sigma_{\!_{1/2}}$

$$A_1 = \frac{1}{(E+E')D'} \Big((E-E'\cos\theta) \mathbf{A}_{\parallel} - \frac{E'\sin\theta}{\cos\phi} \mathbf{A}_{\perp} \Big)$$

• At large-x the quantity A_1 can be cleanly computed \rightarrow different models give significantly different predictions!

Predictions for A_1 **and** $\Delta q/q$ **at Large** x

$$\left| \boldsymbol{p}^{\dagger} \right\rangle = \frac{1}{\sqrt{2}} \left| \boldsymbol{u}^{\dagger} (\boldsymbol{u}\boldsymbol{d})_{00} \right\rangle + \frac{1}{\sqrt{18}} \left| \boldsymbol{u}^{\dagger} (\boldsymbol{u}\boldsymbol{d})_{10} \right\rangle - \frac{1}{3} \left| \boldsymbol{u}^{\downarrow} (\boldsymbol{u}\boldsymbol{d})_{11} \right\rangle$$
$$- \frac{1}{3} \left| \boldsymbol{d}^{\dagger} (\boldsymbol{u}\boldsymbol{u})_{10} \right\rangle - \frac{\sqrt{2}}{3} \left| \boldsymbol{d}^{\downarrow} (\boldsymbol{u}\boldsymbol{u})_{11} \right\rangle$$

	$\frac{F_2^n}{F_2^p}$	$\frac{d}{u}$	$\frac{\Delta d}{\Delta u}$	$\frac{\Delta u}{u}$	$\frac{\Delta d}{d}$	A_1^n	A_1^p
DSE-1	0.49	0.28	-0.11	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	-0.07	0.88	-0.33	0.34	0.88
$0^{+}_{[ud]}$	$\frac{1}{4}$	0	0	1	0	1	1
NJL	0.43	0.20	-0.06	0.80	-0.25	0.35	0.77
SU(6)	$\frac{2}{3}$	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{5}{9}$
CQM	$\frac{1}{4}$	0	0	1	$-\frac{1}{3}$	1	1
pQCD	$\frac{3}{7}$	$\frac{1}{5}$	$\frac{1}{5}$	1	1	1	1

Table 1: Predictions for the x = 1 value of various models. From Craig D. Roberts et al. arXiv:1308.1236

• DSE-1 (or "DSE realistic") indicates use of the momentumdependent dressed-quark massfunction;

• DSE-2 (or "DSE contact") corresponds to predictions obtained with a contact interaction.

• "pQCD" expresses predictions assuming a SU(6) spin-flavour wave function for the proton's valencequarks and the corollary that a hard photon may interact only with a quark that possesses the same helicity as the target

The only place QCD (and many other models) can make absolute predictions for structure functions.

A₁ for Neutron

Thomas Jefferson National Accelerator Facility Hall C Winter Workshop • January 29, 2019

$(\Delta u + \Delta \bar{u})/(u + \bar{u})$ and $(\Delta d + \Delta \bar{d})/(d + \bar{d})$

Upcoming Pol ³He Experiments in Hall C

- Two 12 GeV Measurements in Hall C
 - $\rightarrow A_1^n$ (E12-06-110) High Impact
 - » 36 PAC days
 - $\rightarrow d_2 n, g_2 n$ (E12-06-121)
 - » 29 PAC days

(Both measure g_1^n as well)

- Both make use of
 - \rightarrow 11 GeV beam
 - \rightarrow SHMS (+ HMS) spectrometers
 - → Upgraded 3He target

Polarized 3He Run Group in Hall C

E12-06-121: *d*^{*n*}₂, *g*^{*n*}₂

- Hall C: SHMS + HMS
- Two beam energies:
 - \rightarrow 11 GeV/c (production)
 - \rightarrow 2.2 GeV/c (calib.)
- Beam Current
 - \rightarrow 30 uA (production)
 - \rightarrow 45 uA (max, I calib.)
- Target: 40 cm Polarized ³He
- Each arm measures an <u>absolute polarized cross</u> <u>section</u> independent of the other arm (g_1, g_2)

$$\rightarrow d_2(Q^2) = \int_0^1 x^2 [2g_1(x,Q^2) + 3g_2(x,Q^2)] dx$$

- SHMS collects data at
 - $\rightarrow \Theta = 11^{\circ}, 13.3^{\circ}, 15.5^{\circ} \text{ and } 18.0^{\circ} \text{ for } 125 \text{ hrs each}$
 - \rightarrow data from each setting divided into 4 bins
- HMS collects data at

 $\rightarrow \Theta = 13.5^{\circ}$, 16.4°, 20.0° and 25.0° for 125 hrs each

SHN	AS Produc	tion	HMS Production					
Setting	P ₀	Angle	Setting	P ₀	Angle			
А	7.5	11.0°	A'	4.3	13.5°			
В	7.0	13.3°	B'	5.1	16.4°			
С	6.3	15.5°	C'	4.0	20.0°			
D	5.6	18.0°	D'	2.5	25.0°			

Aⁿ Kinematics

Kine	E_b		θ	E_p	e^- production	e^+ prod.	Tot. Time
	(GeV)		(°)	(GeV)	(hours)	(hours)	(hours)
		-		D	DIS		
1	11.0	HMS	12.5	5.70	12	0	12
2	11.0	HMS	12.5	6.80	24	0	24
3	11.0	HMS	30.0	2.82	96	0	96
4	11.0	HMS	30.0	3.50	551	1	552
A	11.0	SHMS	12.5	5.80	36	0	36
В	11.0	SHMS	30.0	3.00	464	0	464
С	11.0	SHMS	30.0	2.25	88	0	88
				Reso	nances		
D	11.0	SHMS	12.5	7.50	96	0	96

Kine	E_b	E_p	θ	elastic x-sec	elastic	Asymmetry	Time
	GeV	GeV	(°)	(nb/sr)	rate (Hz)		(hours)
Elastic	2.200	2.160	12.5	106.986	1293.9	$A_{\parallel} = 0.0589$	11.2 – A
$\Delta(1232)$	2.200	1.815	12.5	-	-	$A_1 \sim a \text{ few } \%$	6

Jefferson Lab

Standard Hall C Detector Packages

- SHMS ('default' detector package)
 - → Hodoscopes, Wire chambers, NGC, Calorimeter
 - → HGC tank remains installed: may pump to vacuum, or fill with Argon for auxiliary PID
- HMS ('default' detector package)
 → Hodoscopes, Wire chambers, Calorimeter
 - \rightarrow Gas Cer fill with Argon, or
 - C_4F_{10} (sub-atmosphere)
- DAQs

 \rightarrow Standard DAQ and triggers

Nominal Beam Requirements

- Beam Characteristics
 - \rightarrow 1-pass, 5-pass beam
 - \rightarrow Beam polarization: 80%
 - » Measured to ~3% via Moller Polarimeter
 - \rightarrow Circular beam raster @ 2.5mm radius
 - \rightarrow Modest ramp rate to protect glass cell (0.5–1 uA/sec)
 - » Total beam trip rate really matters here!
 - \rightarrow < 50 ppm charge asym (average over ~ 1–2 hr run)
 - \rightarrow 30 uA (max) on glass cell targets
 - \rightarrow 30 uA (max) on solid targets

Nominal Target Requirements

- Polarized ³He Target Requirements
 - \rightarrow 55–60% polarization
 - \rightarrow 30 uA beam current capability
 - \rightarrow ~0.1 spin angle measurement (2 mrad)
 - » Challenging, but achievable
- Target Ladder components
 - \rightarrow Polarized ³He production cell (40cm)
 - \rightarrow Reference cell:
 - » vacuum, H₂, ³He, Nitrogen
 - \rightarrow Optics foils (7)
 - \rightarrow Single-carbon foil
 - \rightarrow Carbon-hole (alignment, raster checks)

E12-06-121 Projected results

Jefferson Lab

Thomas Jefferson National Accelerator Facility Hall C Winter Workshop • January 29, 2019

E12-06-110 A_1^n in Hall C

Spokespeople: X. Zheng, G. Cates, JP Chen, Z-E Meziani

Slide from X. Zhang March 2018 readiness review

A_1^n, d_2^n Summary

- 12 GeV Hall C A_1^n and d_2^n , g_2^n measurements will run 2019–2020
 - \rightarrow Focus on high-x and Q² evolution of these quantities
 - » Large new precision data set in previously unmeasured domain
 - \rightarrow Finally rule out DSE or pQCD A_1^n models?
 - \rightarrow First evaluations of d_2^n at truly fixed Q^2 values
 - » Insight into quark-gluon correlations
- *Major installation effort (Target focused) beginning this Summer!*
- Large A_{1}^{p} , g_{1}^{p} data set from upcoming CLAS12 E12-06-109 as well! \rightarrow Compliments Hall C neutron measurements for $\Delta q/q$ extractions

BACKUP

Thomas Jefferson National Accelerator Facility Hall C Winter Workshop • January 29, 2019

 A_1^n Kinematics - x, W, and background estimation

	Kine	E_b	E_p	θ	(e, e')	π^{-}/e	e^+/e^-	$x (Q^2, \text{ in GeV}^2) (W, \text{ in GeV})$			
		GeV	GeV	(°)	rate (Hz)			coverages			
DIS											
1	HMS	11.0	5.70	12.5	575.42	< 0.4	< 0.1%	0.25 - 0.55 (2.59 - 4.40) (2.1 - 2.9)			
2	HMS	11.0	6.80	12.5	426.14	< 0.2	< 0.1%	0.25 - 0.60 (2.43 - 4.53) (2.0 - 2.9)			
3	HMS	11.0	2.82	30.0	2.69	< 10.7	< 0.1%	0.40-0.71 ($6.55-10.19$) ($2.2-3.3$)			
4	HMS	11.0	3.50	30.0	0.74	< 2.4	< 0.1%	0.50-0.77 (7.72-10.60) (2.0-2.9)			
А	SHMS	11.0	5.80	12.5	701.73	< 0.5	< 0.1%	0.25 - 0.60 (2.64 - 4.42) (2.0 - 3.0)			
В	SHMS	11.0	3.00	30.0	2.70	< 12.2	< 0.1%	0.40-0.77 ($6.63-10.54$) ($2.0-3.3$)			
С	SHMS	11.0	2.25	30.0	6.96	< 91.0	< 0.1%	0.25 - 0.65 (4.71 - 9.49) (2.4 - 3.9)			
					F	lesonance	es				
D	SHMS	11.0	7.50	12.5	104.79	—	_	0.50-1.00(3.12-4.45)(0.9-2.0)			

March 19th, 2018

A1n/d2n ERR

Break-down of Uncertainties

March 19th, 2018

A1n/d2n ERR

Thomas Jefferson National Accelerator Facility Hall C Winter Workshop • January 29, 2019

E12-06-121 Systematic Error Table

Item description	Subitem description	Relative uncertainty
Target polarization		1.5 %
Beam polarization		3 %
Asymmetry (raw)		
	 Target spin direction (0.1°) 	$< 5 imes 10^{-4}$
Cross section (raw)	Beam charge asymmetry	< 50 ppm
	• PID efficiency	< 1%
	Background Rejection efficiency	<1% ≈1%
	Beam charge	< 1 %
	Beam position	< 1 %
	Acceptance cut	2-3 %
	Target density	< 2%
	 Nitrogen dilution 	< 1%
	Dead time	<1%
	• Finite Acceptance cut	<1%
Radiative corrections		\leq 5 %
From ³ He to Neutron correction		5 %
Total systematic uncertainty (for both $g_2^n(x, Q^2)$:	and $d_2(Q^2))$	≤ 10 %
Estimate of contributions to <i>d</i> ₂ from unmeasured region	$\int_{0.003}^{0.23} \tilde{d}_2^n dx$	4.8×10^{-4}
Projected absolute statistical uncertainty on d_2		$\Delta d_2 \approx 5 \times 10^{-4}$
Projected absolute systematic uncertainty on d_2 (assuming $d_2 = 5 \times 10^{-3}$)		$\Delta d_2 \approx 5 \times 10^{-4}$

• PREx-II, CREx ERR accepted < 0.1 ppm Charge Asym requirement as achievable

 Target spin direction precision achievable (see backup slide)

27

or Facility

29, 2019

```
P May
```

Magnetic Field Direction

Longitudinal Field: - air floating compass (left) - needle compass (above) $\Delta \Theta < 2 \text{ mrad } (< 0.1 \text{ degree})$

Transverse Field: - air floating compass (left) $\Delta \theta \sim 1 \text{ mrad} (\sim 0.05 \text{ degree})$

> A. Kolarkar, Ph.D. Thesis, UKy, 2008 C. Dutta, Ph. D. Thesis, UKy, 2010

d2n Production Kinematics for HMS

Table 4: Expected rates for the three HMS settings. The uncertainties for A_{\parallel} and A_{\perp} are <i>statistical</i> only.												
	θ ₀	E'_{cent}	Q ²	X	W	e ⁻ rate	π^- rate	t	t_{\perp}	ΔA_{\parallel}	ΔA_{\perp}	Ì
	[0]	[GeV]	$[GeV^2]$		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	$[\cdot 10^{-4}]$	
	13.5	4.305	2.617	0.208	3.293	954	765	8	117	2.0	0.6	
	16.4	5.088	4.555	0.410	2.727	218	15	12	113	3.9	1.2	
	20.0	4.000	5.31	0.404	2.951	76	66	10	115	6.0	1.8	
	25.0	2.500	5.15	0.323	3.417	20	84	13	112	10.7	3.1	

• Rate table from PAC36

- \rightarrow 30 uA beam
- \rightarrow 55% polarization
- \rightarrow Assumed 60 cm long cell
- Current target
 - \rightarrow 40 cm long cell
- As discussed in the PAC36 update, we have been conservative on our statistical run times and are not statistics limited, even with the shorter production cell.

d2n Production Kinematics for SHMS

Table 3: Kinematic bins and expected rates for the SHMS. The uncertainties for A_{\parallel} and A_{\perp} are *statistical* only.

SHMS	E' _{bin}	Q ²	X	W	e ⁻ rate	π^- rate	t _{ll}	t⊥	ΔA_{\parallel}	ΔA_{\perp}
Setting	[GeV]	[GeV ²]		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	[.10 ⁻⁴]
$\theta_0 = 11^\circ$	7.112	2.875	0.394	2.305	1058	11	12	113	2.0	0.5
	7.709	3.116	0.504	1.988	708	3.1	12	113	2.3	0.7
$E'_{cent} = 7.5$	8.304	3.357	0.663	1.610	259	0.83	12	113	3.7	0.1
GeV	8.900	3.597	0.912	1.109	2.7	0.21	12	113	36	10
$\theta_0 = 13.3^{\circ}$	6.647	3.922	0.480	2.267	268	3.1	12	113	3.5	1.0
	7.203	4.250	0.596	1.941	139	0.8	12	113	4.8	1.5
$E'_{cent} = 7.0$	7.758	4.578	0.752	1.548	31.6	0.16	12	113	10	3.1
GeV	8.314	4.906	0.972	1.012	0.10	0.033	12	113	173	55
$\theta_0 = 15.5^\circ$	5.997	4.798	0.511	2.342	96	1.9	12	113	5.7	1.8
	6.496	5.197	0.614	2.037	49	0.47	12	113	7.8	2.5
$E'_{cent} = 6.3$	6.995	5.597	0.744	1.677	13.5	0.11	12	113	15	4.7
GeV	7.494	5.996	0.911	1.215	0.29	0.025	12	113	98	33
$\theta_0 = 18.0^\circ$	5.348	5.756	0.542	2.397	35	1.1	12	113	9.5	3.1
	5.790	6.235	0.637	2.106	17	0.25	12	113	13	4.4
$E'_{cent} = 5.6$	6.233	6.711	0.749	1.769	5.1	0.05	12	113	24	8.1
GeV	6.675	7.187	0.885	1.350	0.38	0.01	12	113	87	30

- Table from PAC36 update
 - \rightarrow Same considerations as noted on prior slide apply.

Thomas Jefferson National Accelerator Facility Hall C Winter Workshop • January 29, 2019

Fallback / Contingency Plans

- Worst case:
 - →Fall back to these params and we still have a viable measurement.
- See also:
 - → Section 5 of <u>PAC36 Update</u> (last few paragraphs)

