Studifng Color Transparency

 through Backward π^{0} Elichtronrodudion oif a Nuclear Wrget

Color Transparency and Hadroilization Workshop

Mandelstam variables (s,t,u-channels)

s : invariant mass of the system

t : Four-momentum-transfer squared between target before and after interaction
u : Four-momentum-transfer squared between virtual photon before interaction and target after interaction
t-channel: $\boldsymbol{- t} \sim 0$, after interaction
Target: stationary
Meson: forward
Measure of how forward could the meson go.
u-channel: $\boldsymbol{- u \sim 0 \text { , after interaction }}$
Target: forward
Meson: stationary
Measure of how backward could the meson go

GPD-Like Model: TDA and Factorization

Baryon to Meson Transition Distribution Amplitude (TDA)

- Extension of collinear factorization to backward angle regime. Further generalization of the concept of GPDs.
- Backward angle factorization first suggested by Frankfurt, Polykaov, Strikman, Zhalov, Zhalov [arXiv:hep-ph/0211263]
- TDAs describe the transition of nucleon to 3-quark state and final state meson [gray oval of plot b]
- A fundamental difference between GPDs and TDAs is that TDAs are defined as hadronic matrix elements of 3-quark operator, while GPDs involve quark-antiquark operator
- Can be accessed experimentally in backward angle meson electroproduction reactions

Skewness in Backward Angle Regime

- Forward angle kinematics, $-t \sim-t_{\min }$ and $-u \sim-u_{\max }$, in the regime where handbag mechanism and GPD description may apply, Skewness is defined in usual manner:

$$
\begin{aligned}
& \xi_{t}=\frac{p_{1}^{+}-p_{2}^{+}}{p_{1}^{+}+p_{2}^{+}} \text {where } p_{1,2} \text { refer to light cone }+ \text { components } \\
& \text { in } \gamma^{*}(q)+p\left(p_{1}\right) \rightarrow \omega\left(p_{\pi}\right)+p^{\prime}\left(p_{2}\right)
\end{aligned}
$$

- Backward angle kinematics, $-u \sim-u_{\min }$ and $-t \sim-t_{\max }$, Skewness is defined with respect to u-channel momentum transfer in TDA formalism

$$
\xi_{u}=\frac{p_{1}^{+}-p_{\pi}^{+}}{p_{1}^{+}+p_{\pi}^{+}}
$$

- GPDs depend on x, ξ_{t} and $t=\left(\Delta^{t}\right)^{2}=\left(p_{2}-p_{l}\right)^{2}$

TDAs depend on x, ξ_{u} and $u=\left(\Delta^{u}\right)^{2}=\left(p_{\pi}-p_{I}\right)^{2}$

- Impact parameter space interpretation of TDAs is similar to GPDs, except one has to Fourier transform with respect to $\Delta^{u}{ }_{\mathrm{T}} \approx\left(p_{\pi}-p_{1}\right)_{\mathrm{T}}$

Impact parameter Interpretation of TDA

- After integrating over one momentum fraction x_{i}, the three exchanged quarks can be treated as an effective diquark+quark pair
- Impact picture then looks very much like that for GPDs

ERBL: $x_{3}=w_{3}-\xi \geq 0 ; \quad x_{1}+x_{2}=\xi-w_{3} \geq 0 ;$
\rightarrow All 3 quark momentum fractions x_{i} positive

Backward Angle Collinear Factorization

- Kinematical regime for collinear factorization involving TDAs is similar to that involving GPDs:
- x_{B} fixed
- $|u|$-momentum transfer small compared to Q^{2} and s
- Q^{2} and s sufficiently large
- Early scaling for GPD physics occurs $2<Q^{2}<5 \mathrm{GeV}^{2}$
- Maybe something similar occurs for TDA physics...

Two Key Predictions in Factorization Regime:

- Dominance of transverse polarization of virtual photon, resulting in suppression of longitudinal cross section by at least $1 / Q^{2}: \sigma_{T}>\sigma_{L}$
- Characteristic $1 / Q^{8}$-scaling behavior of σ_{T} for fixed x_{B}

$p\left(e, e^{\prime} p\right) \omega Q^{2}-$ Dependence from Hall C

- To investigate Q^{2}-dependence,

$$
-u=-u_{\min }
$$ fit lowest $-u$ bin values of σ_{T} and σ_{L} to Q^{-n} function - σ_{T} appears to have a flat Q^{2}-dependence within measured range

- σ_{L} shows much stronger decrease
- Decreasing L/T ratio indicates the gradual dominance of σ_{T} as Q^{2} increases.
- Trend qualitatively consistent with prediction of TDA Collinear Factorization.

TDA model Comparison to Data

Hall C ω Electroproduction

Both data sets suggestive of early TDA scaling $Q^{2} \approx 2.5 \mathrm{GeV}^{2}$!?

Hall B π^{+}Electroproduction
K. Park et al., PLB 780 (2017) 340

Extension to Higher Q^{2}

- The 6 GeV JLab Halls B,C data are qualitatively consistent with the predictions of the backward-angle factorization / TDA formalism, but they are at a too low Q^{2} to be in quantitative agreement.
- CLAS-6 π^{+}data, Hall C ω data
- Studies of the applicability of TDA formalism are being extended in the 12 GeV era, by measuring general scaling trend of separated L / T cross sections for a variety of u-channel reactions
- 12 GeV data from Hall B
- Hall C ρ, ω, φ data (E12-09-011)
- Dedicated Hall C π^{0} measurement (E12-20-007)

Hall C 12 GeV data already acquired

$p\left(e, e^{\prime} p\right) X \quad$ Online Data Analysis

$$
Q^{2}=3.00 \quad W=2.32 \quad \theta_{p q}=+3.0^{\circ}-u=0.15 \quad \xi_{u}=0.15
$$

$K^{+} \mathrm{L} / \mathrm{T}$-experiment (E12-09-011)
Spokespersons: T. Horn, G.M. Huber, P. Markowitz

- Data acquired fall 2018-spring 2019
- Main purpose of experiment is to acquire t-channel L/T-separated $p\left(e, e^{\prime} K^{+}\right) \wedge$ data for reaction mechanism and K^{+}form factor studies
- Abundant u-channel $p\left(e, e^{\prime} p\right) X$ data acquired parasitically
- Will allow backward angle studies for several meson states over a wide kinematic range

Setting	Low ε data	High ε data
$\mathrm{Q}^{2}=0.50$		
$\mathrm{~W}=2.40$		
$\mathrm{Q}^{2}=2.1$		
$\mathrm{~W}=2.95$		
$\mathrm{Q}^{2}=3.0$		
$\mathrm{~W}=2.32$		
$\mathrm{Q}^{2}=3.0$		
$\mathrm{~W}=3.14$		
$\mathrm{Q}^{2}=4.4$		
$\mathrm{~W}=2.74$		
$\mathrm{Q}^{2}=5.5$		
$\mathrm{~W}=3.02$		

Backward Exclusive π^{0} Production

E12-20-007: $\boldsymbol{u \approx 0} \pi^{0}$ production in Hall C
Spokespersons: W.B. Li, G.M. Huber, J. Stevens
Purpose: test applicability of TDA formalism for π^{0} production

- Is σ_{T} dominant over σ_{L} ?
- Does the σ_{T} cross section at constant x_{B} scale as $1 / Q^{8}$?
- Kinematics overlap forward angle $p\left(e, e^{\prime} \pi^{0}\right) p$ experiment with NPS+HMS

$\mathbf{p}\left(\mathbf{e}, \mathrm{e}^{\prime} \mathbf{p}\right) \pi^{0}$ Skewness Range

$$
\xi_{u}=\frac{p_{1}^{+}-p_{\pi}^{+}}{p_{1}^{+}+p_{\pi}^{+}}
$$

HMS and SHMS acceptance cuts, and diamond cuts applied

CT and Backward-angle Factorization

- CT has recently been shown to not apply in $\mathrm{C}\left(\mathrm{e}, \mathrm{e}\right.$ 'p) up to $\mathrm{Q}^{2}=14 \mathrm{GeV}^{2}$, in contrast to CT applying already in $\mathrm{A}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{+}\right)$at $\mathrm{Q}^{2} \approx 5 \mathrm{GeV}^{2}$

- Color Transparency is a co-requisite of reaching the factorization regime, and is expected to be an equally valid requirement for both forward-angle and backward-angle factorizations

Backward-angle A(e, $\left.\mathbf{e}^{\prime} p\right) \pi^{0}$

-Since JLab 6 GeV data are qualitatively consistent with early factorization in backward kinematics, backward-angle meson production events with a high momentum forward proton may provide an alternate means of probing Color Transparency

- Example is π^{0} production, but technique extendable also to vector meson production. A short test could be attempted in E12-20-007

	$\mathrm{A}(\mathrm{e}, \mathrm{e}$ 'p $) \pi^{0}$ Kinematics $\mathrm{E}_{\text {beam }}=10.6 \mathrm{~W}=2 \mathrm{GeV}$					
	$\underset{\left(\mathrm{GeV}^{2}\right)}{\boldsymbol{Q}^{2}}$	$\begin{gathered} \boldsymbol{e}^{\prime}(\mathrm{GeV} / \mathrm{c}, \\ \mathrm{deg}) \end{gathered}$	$\begin{gathered} \boldsymbol{p}(\mathrm{GeV} / \mathrm{c}, \\ \mathrm{deg}) \end{gathered}$	$\begin{gathered} \pi^{0}(\mathrm{GeV} / \mathrm{c}, \\ \mathrm{deg}) \end{gathered}$	$\begin{gathered} \boldsymbol{t} \\ \left(\mathrm{GeV}^{2}\right) \end{gathered}$	$\underset{\left(\mathrm{GeV}^{2}\right)}{\boldsymbol{u}}$
	3	$\begin{aligned} & \hline 7.3 @ \\ & 11.3^{\circ} \end{aligned}$	$\begin{gathered} \hline 3.9-3.6 @ \\ 23^{\circ}-30^{\circ} \end{gathered}$	$\begin{aligned} & \hline 0.2-0.5 \text { @ } \\ & 2020-95^{\circ} \end{aligned}$	$\begin{gathered} -5.7 \text { to } \\ -5.2 \end{gathered}$	$\begin{gathered} +0.5 \text { to } \\ -0.1 \end{gathered}$
	6	$\begin{aligned} & \hline 5.7 @ \\ & 18.1^{\circ} \end{aligned}$	$\begin{gathered} \hline 5.6-5.2 @ \\ 190-24^{\circ} \end{gathered}$	$\begin{gathered} \hline 0.1-0.5 @ \\ 1966^{\circ}-79^{\circ} \end{gathered}$	$\begin{gathered} \hline-8.8 \text { to }- \\ 8.2 \end{gathered}$	$\begin{gathered} \hline+0.6 \text { to } \\ 0.0 \end{gathered}$
	10	$\begin{aligned} & 3.6 @ \\ & 29.7^{\circ} \end{aligned}$	$\begin{array}{c\|} \hline 7.7-7.3 @ \\ 13^{\circ}-16^{\circ} \end{array}$	$\begin{gathered} \hline 0.0-0.5 @ \\ 1930-61^{\circ} \end{gathered}$	$\begin{gathered} -12.8 \text { to } \\ -12.1 \end{gathered}$	$\begin{gathered} \text { +0.6 to } \\ -0.1 \end{gathered}$
	14	$\begin{aligned} & \hline 1.5 @ \\ & 56.7^{\circ} \end{aligned}$	$\begin{aligned} & \hline 9.9-9.5 @ \\ & 70-90 \end{aligned}$	$\begin{gathered} \hline 0.1-0.5 @ \\ 187^{\circ}-50^{\circ} \end{gathered}$	$\begin{gathered} -16.8 \text { to } \\ -16.2 \end{gathered}$	$\begin{gathered} \hline+0.6 \text { to } \\ -0.1 \end{gathered}$

Theoretical considerations

- Halls B,C 6 GeV data hint at applicability of backward-angle factorization mechanism as early as $\mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}$
- If this interpretation is correct, it can be confirmed by u-channel CT measurements such as $A\left(e, e^{\prime} p\right) \pi^{0}$
- Considerations:
- CT will not appear in the same way for backward π^{0} as for the other experiments. This is because the π^{0} does not originate from a pointlike quark configuration, it is attached to the TDA which has no small transverse distance inside
■ Even if factorization applies, the π^{0} will be subject to strong interactions in the nucleus, such as absorption, or formation of a 2π state
- One should not insist on detecting the final meson. Rather, it would be sufficient to require $120<\mathrm{m}_{\text {missing }}<500 \mathrm{MeV}$. It is important to detect the high-momentum forward-going nucleon.
- More work would clearly be needed for model calculations of CT ratios for this new type of experiment. It gives rise to the intriguing idea of "Half Color Transparency". [Bernard Pire]

Summary

- New experimental technique pioneered at JLab Hall C has opened up a unique kinematic regime for study:
- Extreme backward angle ($u \approx 0$) scattering
- Detect forward-going proton in parallel kinematics
- Leaves "recoil" meson nearly-at-rest in target
- Possible access to Transition Distribution Amplitudes
- Universal perturbative objects in u-channel, analogous to GPDs
- Access to 3-quark plus sea component $\psi_{(3 q+q \bar{q})}$ of nucleon
- The approach of backward angle factorization regime can be studied via u-channel CT measurements, such as $\mathrm{A}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right) \pi^{0}$, across a variety of nuclei

부밍운 University

TDA Formalism (e.g. u-channel π^{0})

- Fourier transform of the πN transition matrix element

$$
\begin{aligned}
& 4 \stackrel{\downarrow}{\mathcal{F}}\left\langle\pi_{\alpha}\left(p_{\pi}\right)\right| \widehat{O}_{\rho \tau \chi}\left(\lambda_{1} n, \lambda_{2} n, \lambda_{3} n\right)\left|N_{\iota}\left(p_{1}\right)\right\rangle \\
= & \delta\left(x_{1}+x_{2}+x_{3}-2 \xi_{u}\right) \sum_{\text {s.f. }}\left(f_{a}\right)_{\iota}^{\alpha \beta \gamma} s_{\rho \tau, \chi} H_{s . f .}^{\pi N}\left(x_{1}, x_{2}, x_{3}, \xi_{u}, \Delta^{2} ; \mu_{F}^{2}\right)
\end{aligned}
$$

- πN TDA invariant amplitudes (eight TDAs at leading twist)

$$
H_{s . f .}^{\pi N}=\left\{V_{1,2}^{\pi N}, A_{1,2}^{\pi N}, T_{1,2,3,4}^{\pi N}\right\}
$$

- Factorizing out the u-dependence:
meson to nucleon transition form factor

$$
H^{\pi N}\left(x, \xi_{u}, \Delta^{2}\right)=H^{\pi N}\left(x_{i}, \xi_{u}\right) \times G\left(\Delta^{2}\right)
$$

$$
\Delta^{2}=u
$$

J.P. Lansberg, B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 85 (2011) 054201

$\pi^{0} p$ TDAs as functions of q-diquark coordinates

University
of Regina

$$
w=\xi_{u}-x_{3} ; v=\frac{x_{1}-x_{2}}{2}
$$

Axiäl-Vector

Partonic Interpretation of TDA

Main reactions of interest to date:

- Backward angle exclusive $\pi^{0}, \pi^{+}, \rho, \omega, \varphi$ production
- Backward angle DVCS

Interpretation of πN TDAs in light-cone quark model
a) Quark sea contrib to baryon wf (ERBL region)
b) Minimal Fock states of baryon \& meson (DGLAP-1) region
c) Quark sea contribution to meson wf (DGLAP-2)

$\pi^{0} p$ TDAs (CZ): Vector

Axial-Vector

Tensor

Model based on spectral representation w/ CZ sol for DA as input (function of quark-diquark coord)

TDAs Formalism - 1

$$
T_{\alpha}
$$

$$
T_{\alpha}^{\prime}
$$

computed as functions of quark-diquark coordinates

TDA Meson Production Cross Section

■ Unpolarized exclusive π^{0} production cross section:

$$
\begin{aligned}
& \text { 皆 } \quad \frac{d^{2} \sigma_{T}}{d \Omega_{\pi}}=\left|\mathcal{C}^{2}\right| \frac{1}{Q^{6}} \frac{\Lambda\left(s, m^{2}, M^{2}\right)}{128 \pi^{2} s\left(s-M^{2}\right)} \frac{1+\xi}{\xi}\left(|\mathcal{I}|^{2}-\frac{\Delta_{T}^{2}}{M^{2}}\left|\mathcal{I}^{\prime}\right|^{2}\right) \\
& \mathcal{I}=\int\left(2 \sum_{\alpha=1}^{7} T_{\alpha}+\sum_{\alpha=8}^{14} T_{\alpha}\right) \quad \mathcal{I}^{\prime}=\int\left(2 \sum_{\alpha=1}^{7} T_{\alpha}^{\prime}+\sum_{\alpha=8}^{14} T_{\alpha}^{\prime}\right)
\end{aligned}
$$

J. P. Lansberg, B. Pire, K. Semenov-Tian-Shansky, L. Szymananovski, Phys. Rev. D 85 (2011) 054021

TDA Model Predictions for JLab E12-19-006

$\mathbf{F} \boldsymbol{\pi}$ - $\mathbf{1 2}$ experiment (E12-19-006) L/T separations up to $Q^{2}=8.5 \mathrm{GeV}^{2}$ Spokespersons: D. Gaskell, G.M. Huber, T. Horn

- L/T-Separations over wide kinematic range will allow σ_{T} " σ_{L} and $1 / Q^{8}$ scaling predictions to be checked with greater authority
- u-channel φ-electroproduction particularly interesting
- Sensitive to Strangeness content of nucleon
- Combined analysis of ρ, ω production allows one to disentangle isotopic structure of $V N$ TDAs in non-strange sector

At $Q^{2}=6.0 \mathrm{GeV}^{2}$, ω predicted to remain dominant (unlike t-channel), φ to drop rapidly with $-u$.

SIMC: Q²_W overlap at high, low $\varepsilon, ~_{\varepsilon}$

$\boldsymbol{p}(\boldsymbol{e}, \boldsymbol{e} \boldsymbol{p}) \boldsymbol{\pi}^{\boldsymbol{0}}$: HMS and SHMS acceptance cuts applied

π^{0} Channel Expected to be Clean

- In comparison to backwardangle ω electroproduction, there is little physics background in π^{0} production.
- Bethe-Heitler process has no backward-angle peak, and will be negligible.
- VCS should dominate backward-angle γ production, but is expected to be much smaller than π^{0} production.

$\mathrm{BH}+\mathrm{VCS}$ simulations based on code by P. Guichon and M. Vanderhaeghen.
- BH calculation is exact.
- VCS calculation makes use of ad-hoc ansatz based on u-channel ω data.
$Q^{2}=3.0 \mathrm{GeV}^{2}, W=2.49 \mathrm{GeV}, \phi=0$

SHMS+HMS Q ${ }^{2}=3.0$ Simulation

SIMC: Missing Mass squared

Missing mass ${ }^{2}$

Missing mass ${ }^{2}$

HMS and SHMS acceptance cuts, and diamond cuts applied

Missing mass ${ }^{2}$

Central Kinematics are $\mathrm{x}_{\text {Bjorken }}=0.36$

HMS and SHMS acceptance cuts, and diamond cuts applied

$p\left(e, e^{\prime} p\right) \pi^{0} Q^{2}$-dependence projections

Ex University of Regina

Missing Mass Background Removal

Background Extraction and Check

Reconstructed Missing Energy

 Worse Example
Yield Ratio and Model Cross-Section

Unseparated Cross Sections

* U University of Regina

$$
2 \pi \frac{d^{2} \sigma}{d t d \phi}=\varepsilon \frac{d \sigma_{L}}{d t}+\frac{d \sigma_{T}}{d t}+\sqrt{2 \varepsilon(\varepsilon+1)} \frac{d \sigma_{L T}}{d t} \cos \phi+\varepsilon \frac{d \sigma_{T T}}{d t} \cos 2 \phi
$$

Regge Trajectory Model by J-M Laget

"
of Regina

33

Hadronic Model: Regge Model by JM Laget

Soft structure \rightarrow Hard \rightarrow Soft transition!

Extension to Higher \mathbf{Q}^{2}

1. Determine if the backward angle peak observed in exclusive ω electroproduction occurs also in other channels, over a broad kinematic range.
2. Measure the u-dependence of L/T-separated cross sections, to determine the relevance of Regge-rescattering and TDA mechanisms in JLab kinematics.
3. Assuming the backward angle peak is present, as expected, measure the σ_{T} / σ_{L} ratio over a wide Q^{2} range for $\mathrm{W}>2 \mathrm{GeV}$.

- Where does $\sigma_{T} » \sigma_{L}$, as predicted by TDA formalism?

4. Determine the $Q^{2}-$ dependence of σ_{T} at fixed x_{B}.

- Where does $\sigma_{T} \sim 1 / Q^{8}$ as predicted by TDA formalism?

Questions to be addressed

- Halls B,C 6 GeV data hint at applicability of backward-angle factorization mechanism as early as $\mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}$
- If this interpretation is correct, it can be confirmed by u-channel CT measurements such as $A\left(e, e^{\prime} p\right) \pi^{0}$
- The observation of CT in $A\left(e, e^{\prime} p\right) \pi^{0}$ by Q2=14 GeV2, when it is absent in A(e,e'p), would be a considerable achievement
- Other Considerations:
- In the quasi-elastic process, the observed fast nucleon is part of the nuclear target. In the TDA picture, the fast proton comes from the partons of the original proton target.
- It is not obvious that the fast proton from the u-channel interaction is the same as the original construct of the "original" valence quarks, thus would it really inherit all of the properties from the original proton?
- Is the proton from the fast proton quasi-elastic process the same as the fast u-channel fast proton, and could this proton experience color transparency?

