Studying Color Transparency through Backward a Electroproduction of a Nuclear Target

Garth Huber University of Regina Wenliang Li

WILLIAM どMARY

Supported by:

SAPIN-2021-000

Mandelstam variables (s,t,u-channels)

$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$$
$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$
$$u = (p_1 - p_4)^2 = (p_2 - p_3)^2$$

s: invariant mass of the system

t: Four–momentum–transfer squared between target before and after interaction

u: Four–momentum–transfer squared between virtual photon before interaction and target after interaction

t-channel: -*t* ~ 0, after interaction Target: stationary Meson: forward Measure of how forward could the meson go.

u-channel: -*u*~0, after interaction Target: forward Meson: stationary Measure of how backward could the meson go

GPD–Like Model: TDA and Factorization

Baryon to Meson Transition Distribution Amplitude (TDA)

- Extension of collinear factorization to backward angle regime.
 Further generalization of the concept of GPDs.
- Backward angle factorization first suggested by Frankfurt, Polykaov, Strikman, Zhalov, Zhalov [arXiv:hep-ph/0211263]
- TDAs describe the transition of nucleon to 3-quark state and final state meson [gray oval of plot b]
- A fundamental difference between GPDs and TDAs is that TDAs are defined as hadronic matrix elements of 3-quark operator, while GPDs involve quark-antiquark operator
- Can be accessed experimentally in backward angle meson electroproduction reactions

3

Skewness in Backward Angle Regime

Forward angle kinematics, -t ~ -t_{min} and -u ~ -u_{max}, in the regime where handbag mechanism and GPD description may apply, Skewness is defined in usual manner:

 $\xi_t = \frac{p_1^+ - p_2^+}{p_1^+ + p_2^+} \text{ where } p_{1,2} \text{ refer to light cone + components}$ $\text{ in } \gamma^*(q) + p(p_1) \to \omega(p_\pi) + p'(p_2)$

Backward angle kinematics, $-u \sim -u_{min}$ and $-t \sim -t_{max}$, Skewness is defined with respect to *u*-channel momentum transfer in TDA formalism

$$\xi_{u} = \frac{p_{1}^{+} - p_{\pi}^{+}}{p_{1}^{+} + p_{\pi}^{+}}$$

- GPDs depend on x, ξ_t and $t = (\Delta^t)^2 = (p_2 p_1)^2$ TDAs depend on x, ξ_u and $u = (\Delta^u)^2 = (p_\pi - p_1)^2$
- Impact parameter space interpretation of TDAs is similar to GPDs, except one has to Fourier transform with respect to $\Delta^{u}_{T} \approx (p_{\pi} - p_{I})_{T}$

Impact parameter Interpretation of TDA

- After integrating over one momentum fraction x_i, the three exchanged quarks can be treated as an effective diquark+quark pair
- Impact picture then looks very much like that for GPDs

ERBL : $x_3 = w_3 - \xi \ge 0$; $x_1 + x_2 = \xi - w_3 \ge 0$; \rightarrow All 3 quark momentum fractions x_i positive

Backward Angle Collinear Factorization

- Kinematical regime for collinear factorization involving TDAs is similar to that involving GPDs:
 - x_B fixed
 - /u/-momentum transfer small compared to Q^2 and s
 - Q^2 and s sufficiently large
- Early scaling for GPD physics occurs 2<Q²<5 GeV²
 - Maybe something similar occurs for TDA physics...

Two Key Predictions in Factorization Regime:

- Dominance of transverse polarization of virtual photon, resulting in suppression of longitudinal cross section by at least 1/Q²: σ_T » σ_L
- Characteristic $1/Q^8$ —scaling behavior of σ_T for fixed x_B

$p(e,e'p)\omega Q^2$ –Dependence from Hall C

W. Li, et al. PRL **123** (2019) 182501

TDA model Comparison to Data

Extension to Higher Q²

- The 6 GeV JLab Halls B,C data are qualitatively consistent with the predictions of the backward-angle factorization / TDA formalism, but they are at a too low Q² to be in quantitative agreement.
 - CLAS–6 π^+ data, Hall C ω data
- Studies of the applicability of TDA formalism are being extended in the 12 GeV era, by measuring general scaling trend of separated L/T cross sections for a variety of *u*-channel reactions
 - 12 GeV data from Hall B
 - Hall C ρ, ω, φ data (E12-09-011)
 - Dedicated Hall C π^0 measurement (E12-20-007)

Hall C 12 GeV data already acquired

K⁺ L/T–experiment (E12–09–011)

Spokespersons: T. Horn, G.M. Huber, P. Markowitz

- Data acquired fall 2018–spring 2019
- Main purpose of experiment is to acquire t-channel L/T-separated p(e,e'K+)A data for reaction mechanism and K+ form factor studies
- Abundant u-channel p(e,e'p)X data acquired parasitically
 - Will allow backward angle studies for several meson states over a wide kinematic range

Setting	Low ε data	t <mark>a</mark> High ε data	
Q ² =0.50 W=2.40			
Q ² =2.1 W=2.95			
Q ² =3.0 W=2.32			
Q ² =3.0 W=3.14		*	
Q ² =4.4 W=2.74		-	
Q ² =5.5 W=3.02			

University

Backward Exclusive π^0 Production

E12–20–007: $u \approx 0 \pi^0$ production in Hall C

Spokespersons: W.B. Li, G.M. Huber, J. Stevens

Purpose: test applicability of TDA formalism for π^0 production

- Is σ_T dominant over σ_L ?
- Does the σ_T cross section at constant x_B scale as $1/Q^8$?
- Kinematics overlap forward angle $p(e, e'\pi^0)p$ experiment with NPS+HMS

$p(e,e'p)\pi^0$ Skewness Range

HMS and SHMS acceptance cuts, and diamond cuts applied

12

CT and Backward-angle Factorization

12

14

• CT has recently been shown to not apply in $C(e,e^{p})$ up to $Q^{2}=14$ GeV², in contrast to CT applying already in A(e,e' π^+) at Q² \approx 5 GeV²

Color Transparency is a co-requisite of reaching the factorization regime, and is expected to be an equally valid requirement for both forward-angle and backward-angle factorizations

Backward-angle A(e,e'p) π^0

- Since JLab 6 GeV data are qualitatively consistent with early factorization in backward kinematics, backward-angle meson production events with a high momentum forward proton may provide an alternate means of probing Color Transparency
- Example is π^0 production, but technique extendable also to vector meson production. A short test could be attempted in E12-20-007

A(e,e'p) π^0 Kinematics E _{beam} =10.6 W=2 GeV						
Q ² (GeV ²)	<i>e</i> ' (GeV/c, deg)	p (GeV/c, deg)	$oldsymbol{\pi^0}$ (GeV/c, deg)	<i>t</i> (GeV²)	u (GeV²)	
3	7.3 @	3.9-3.6 @	0.2-0.5 @	-5.7 to	+0.5 to	
	11.3º	23º-30º	202º-95º	-5.2	-0.1	
6	5.7 @	5.6-5.2 @	0.1-0.5 @	-8.8 to -	+0.6 to	
	18.1º	19º-24º	196º-79º	8.2	0.0	
10	3.6 @	7.7-7.3 @	0.0-0.5 @	-12.8 to	+0.6 to	
	29.7º	13º-16º	193º-61º	-12.1	-0.1	
14	1.5 @	9.9-9.5 @	0.1-0.5 @	-16.8 to	+0.6 to	
	56.7º	7º-9º	187º-50º	-16.2	-0.1	

Theoretical considerations

- Halls B,C 6 GeV data hint at applicability of backward-angle factorization mechanism as early as Q²=2.5 GeV²
- If this interpretation is correct, it can be confirmed by *u*-channel CT measurements such as A(e,e'p)π⁰
- Considerations:
 - CT will not appear in the same way for backward π^0 as for the other experiments. This is because the π^0 does not originate from a point-like quark configuration, it is attached to the TDA which has no small transverse distance inside
 - Even if factorization applies, the π⁰ will be subject to strong interactions in the nucleus, such as absorption, or formation of a 2π state
 - One should not insist on detecting the final meson. Rather, it would be sufficient to require 120<m_{missing}<500 MeV. It is important to detect the high-momentum forward-going nucleon.
- More work would clearly be needed for model calculations of CT ratios for this new type of experiment. It gives rise to the intriguing idea of "Half Color Transparency".[Bernard Pire]

Summary

- New experimental technique pioneered at JLab Hall C has opened up a unique kinematic regime for study:
 - Extreme backward angle (*u*≈0) scattering
 - Detect forward–going proton in parallel kinematics
 - Leaves "recoil" meson nearly-at-rest in target
- Possible access to Transition Distribution Amplitudes
 - Universal perturbative objects in u-channel, analogous to GPDs
 - Access to 3–quark plus sea component $\Psi_{(3q+q\bar{q})}$ of nucleon
- The approach of backward angle factorization regime can be studied via *u*-channel CT measurements, such as A(e,e'p)π⁰, across a variety of nuclei

Garth Huber, huberg@uregina.ca

TDA Formalism (e.g. u-channel π^0)

• Fourier transform of the πN transition matrix element $4\mathcal{F}\langle \pi_{\alpha}(p_{\pi})|\hat{O}_{\rho\tau\chi}(\lambda_{1}n,\lambda_{2}n,\lambda_{3}n)|N_{\iota}(p_{1})\rangle$ Factorization scale $=\delta(x_{1}+x_{2}+x_{3}-2\xi_{u})\sum_{s.f.}(f_{a})_{\iota}^{\alpha\beta\gamma}s_{\rho\tau,\chi}H_{s.f.}^{\pi N}(x_{1},x_{2},x_{3},\xi_{u},\Delta^{2};\mu_{F}^{2})$

• πN TDA invariant amplitudes (eight TDAs at leading twist)

$$H_{s.f.}^{\pi N} = \{V_{1,2}^{\pi N}, A_{1,2}^{\pi N}, T_{1,2,3,4}^{\pi N}\}$$

Factorizing out the *u*-dependence:

meson to nucleon transition form factor

$$H^{\pi N}(x,\xi_u,\Delta^2) = H^{\pi N}(x_i,\xi_u) \times G(\Delta^2)$$

J.P. Lansberg, B. Pire, K. Semenov–Tian–Shansky, L. Szymanowski, Phys. Rev. D 85 (2011) 054201

π^{0} p TDAs as functions of q-diquark coordinates

.7

Partonic Interpretation of TDA

J.P. Lansberg et al., PRD **85** (2012) 054201

Main reactions of interest to date:

- **Backward angle exclusive** π^0 , π^+ , ρ , ω , φ production
- Backward angle DVCS

Interpretation of πN TDAs in light–cone quark model

- a) Quark sea contrib to baryon wf (ERBL region)
- b) Minimal Fock states of baryon & meson (DGLAP-1) region
- c) Quark sea contribution to meson wf (DGLAP-2)

Model based on spectral representation w/ CZ sol for DA as input (function of quark-diquark coord)

TDAs Formalism – 1

huberg@uregina

Garth Huber,

TDA Meson Production Cross Section

• Unpolarized exclusive π^0 production cross section:

$$\frac{d^{2}\sigma_{T}}{d\Omega_{\pi}} = |\mathcal{C}^{2}| \frac{1}{Q^{6}} \frac{\Lambda(s, m^{2}, M^{2})}{128 \pi^{2} s(s - M^{2})} \frac{1 + \xi}{\xi} (|\mathcal{I}|^{2} - \frac{\Delta_{T}^{2}}{M^{2}} |\mathcal{I}'|^{2})$$

$$\mathcal{I} = \int \left(2\sum_{\alpha=1}^{7} T_{\alpha} + \sum_{\alpha=8}^{14} T_{\alpha} \right) \qquad \mathcal{I}' = \int \left(2\sum_{\alpha=1}^{7} T_{\alpha}' + \sum_{\alpha=8}^{14} T_{\alpha}' \right)$$

$$\frac{\alpha}{1 - \frac{\omega(s)}{\frac{-\varkappa}{4s}} \frac{-\frac{\omega}{4s}}{\frac{3}{s}} \frac{\omega(s)}{s(s)}} \frac{-\frac{Q_{u}(2\xi)^{2}[(V_{1}^{p\pi^{0}} - A_{1}^{p\pi^{0}})(V^{p} - A^{p}] + 4T_{1}^{p\pi^{0}}T^{p} + 2\frac{\Delta_{T}^{2}}{M^{2}} T_{1}^{\mu^{\alpha}} T_{1}} \frac{-Q_{u}(2\xi)^{2}[(V_{2}^{p\pi^{0}} - A_{2}^{p\pi^{0}})(V^{p} - A^{p}] + 4T_{1}^{p\pi^{0}}T^{p}} \frac{-Q_{u}(2\xi)^{2}[(V_{2}^{p\pi^{0}} - A_{2}^{p\pi^{0}})(V^{p} - A^{p}] + 2T_{1}^{p\pi^{0}}T^{p}} \frac{-Q_{u}(2\xi)^{2}[(V_{2}^{p\pi^{0}} - A_{2}^{p\pi^{0}})(V^{p} - A^{p}) + 2T_{1}^{p\pi^{0}}T^{p}} \frac{-Q_{u}(2\xi)^{2}[(V_{2}^{p\pi^{0}} - A_{2}^{p$$

J. P. Lansberg, B. Pire, K. Semenov-Tian-Shansky, L. Szymananovski, Phys. Rev. D 85 (2011) 054021

Garth Huber, huberg@uregina.ca

TDA Model Predictions for JLab E12–19–006

F π –**12 experiment (E12–19–006)** L/T separations up to Q^2 =8.5 GeV² Spokespersons: D. Gaskell, G.M. Huber, T. Horn

- L/T–Separations over wide kinematic range will allow $\sigma_T \gg \sigma_L$ and $1/Q^8$ scaling predictions to be checked with greater authority
- u-channel φ -electroproduction particularly interesting
 - Sensitive to Strangeness content of nucleon
- Combined analysis of ρ , ω production allows one to disentangle isotopic structure of *VN* TDAs in non–strange sector

At Q²=6.0 GeV², ω predicted to remain dominant (unlike *t*-channel), φ to drop rapidly with -u.

SIMC: Q²–W overlap at high, low ε

izaro_200_211_52_+0000 // Piot: W vs Q2 // Factors: (normfac/events) * Weight // Cuits: Insdeita, sadaita, huyptar, ssyptar, hospiar, sseptar // Low ontop High =

arth Hu

24

pizero_300_249_54_+0000 // Piot: W vs Q2 // Factors: (normfac/events) * Weight // Cuts: hadeita, sadeita, hoyptar, sosptar, hosptar, sosptar // Low ontop High //

π^0 Channel Expected to be Clean

- In comparison to backwardangle ω electroproduction, there is little physics background in π^0 production.
- **Bethe–Heitler process** has no backward-angle peak, and will be negligible.
 - VCS should dominate backward–angle γ production, but is expected to be much smaller than π^0 production.

- BH+VCS simulations based on code by P. Guichon and M. Vanderhaeghen.
- BH calculation is exact.
- VCS calculation makes use of ad-hoc ansatz based on *u*-channel ω data.

'egina.

huberg@ur

Garth

0.02

0.04

0.06

0.08

Mm² GeV²

10⁻⁷ _____

-0.02

0

SIMC: Missing Mass squared

Central Kinematics are x_{Bjorken}=0.36

Garth Huber, huberg@uregina.ca

HMS and SHMS acceptance cuts, and diamond cuts applied

$p(e,e'p)\pi^0 Q^2$ -dependence projections $\operatorname{Versity}_{\text{of Regina}}$

Missing Mass Background Removal

Less that 100 raw counts

29

Background Extraction and Check

30

Yield Ratio and Model Cross–Section

University

of Regina

Unseparated Cross Sections

Regge Trajectory Model by J–M Laget

Hadronic Model: Regge Model by JM Laget

Soft structure → **Hard** → **Soft transition!**

Extension to Higher Q²

- 1. Determine if the backward angle peak observed in exclusive ω electroproduction occurs also in other channels, over a broad kinematic range.
- Measure the u-dependence of L/T-separated cross sections, to determine the relevance of Regge-rescattering and TDA mechanisms in JLab kinematics.
- 3. Assuming the backward angle peak is present, as expected, measure the σ_T/σ_L ratio over a wide Q² range for W>2 GeV.
 - Where does $\sigma_T * \sigma_L$, as predicted by TDA formalism?
- 4. Determine the Q²–dependence of σ_T at fixed x_B .
 - Where does $\sigma_T \sim 1/Q^8$ as predicted by TDA formalism?

- Halls B,C 6 GeV data hint at applicability of backward-angle factorization mechanism as early as Q²=2.5 GeV²
- If this interpretation is correct, it can be confirmed by *u*-channel CT measurements such as A(e,e'p)π⁰
- The observation of CT in A(e,e'p)π⁰ by Q2=14 GeV2, when it is absent in A(e,e'p), would be a considerable achievement
- Other Considerations:
 - In the quasi-elastic process, the observed fast nucleon is part of the nuclear target. In the TDA picture, the fast proton comes from the partons of the original proton target.
 - It is not obvious that the fast proton from the *u*-channel interaction is the same as the original construct of the "original" valence quarks, thus would it really inherit all of the properties from the original proton?
 - Is the proton from the fast proton quasi-elastic process the same as the fast u-channel fast proton, and could this proton experience color transparency?