Choose the reaction you want to calculate : 1 = (e, e' p pi_minus) 2 = (e, e' pi_plus) 3 = (e, e' pi_zero) 4 = Form factors Give choice for FORWARD scattering mechanism 1 = t-channel pion 2 = rho 3 = pion gaugeinvariant 4 = pion gaugeinvariant + rho Give choice for degeneracy of PION trajectory 1 = non-degenerate trajectory 2 = degenerate trajectory with rotating phase (default for pi+) 3 = degenerate trajectory with NON-rotating phase (default for pi-) 4 = single pole Give choice for degeneracy of RHO trajectory 1 = non-degenerate trajectory 2 = degenerate trajectory with rotating phase (default for pi+) 3 = degenerate trajectory with NON-rotating phase (default for pi-) 4 = single pole Give choice for electromagnetic form factor of PION 1 = Monopole parametrization of Bebek et al., (cut-off)^2 = 0.462 GeV^2 2 = Monopole at large Q_sqr, correct charge radius at low Q_sqr 3 = Monopole parametrization with (cut-off)^2 as free parameter 4 = Laget's t-dependent parametrization with (cut-off)^2 as free parameter Give the value for the monopole (cut-off)^2 in the pion ff (e.g. 0.65) Give choice for RHO-PI-GAMMA transition form factor 1 = Same as choice 1 for pion electromagnetic form factor 2 = Same as choice 2 for pion electromagnetic form factor 3 = Monopole parametrization with (cut-off)^2 as free parameter 4 = Monopole parametrization with (cut-off)^2 = 2 GeV^2 5 = Laget's t-dependent parametrization with (cut-off)^2 as free parameter 6 = ff = 1. Give the value for the (cut-off)^2 in the rho-pi-ga ff (e.g. 0.6) Give the BACKGROUND constant value for the L part (The constant is COMPLEX and sign matters) (The constant is added only to the -G.I. or not- pion pole) (Also, at this point, it only applies to the pi+ channel) Enter real part : Enter imaginary part : Give choice for OBSERVABLE to calculate 1 = separated cross section : RESPONSE functions 2 = unseparated cross section with input files for kinematics of Cornell experiments : Bebek et al. 3 = unseparated cross section without input files 4 = unseparated cross section for simulations 5 = gdh integral 6 = TARGET ASYMMETRY as function of t at fixed W Choose the kinematics of the experiment 1 : L/T separation : W = 2.0 GeV, Q^2 = 1, 3, 6 GeV^2 2 : Ackermann et al. NPB 137 (1978) 294 (DESY). : W = 2.1 GeV, Q^2 = 0.35 GeV^2 3 : Bebek et al. PRL 37 (1976) 1326 (Cornell). : W = 2.15 GeV, Q^2 = 1.19 GeV^2 : W = 2.65 GeV, Q^2 = 2.0 GeV^2 : W = 2.65 GeV, Q^2 = 3.3 GeV^2 4 : Brauel et al. PLB 65 (1976) 184 (DESY). : W = 2.19 GeV, Q^2 = 0.70 GeV^2 5 : Driver et al. NPB 30 (1971) 245 (DESY). : W = 2.2 GeV, Q^2 = 0.26 GeV^2 : W = 2.2 GeV, Q^2 = 0.55 GeV^2 : W = 2.2 GeV, Q^2 = 0.75 GeV^2 6 : Mack (JLab). : W = 1.95 GeV, Q^2 = 0.6 GeV^2 : W = 1.95 GeV, Q^2 = 0.75 GeV^2 : W = 1.95 GeV, Q^2 = 1. GeV^2 : W = 1.95 GeV, Q^2 = 1.6 GeV^2 7 : Bogdan (JLab) -dsig/dt(t=tmin).vs.Q2- : W = 2. GeV, E_e= 4. GeV, t = t_min 8 : User-defined kinematics 1 : Q2 dependence 2 : t dependence 3 : W dependence Which W Which Q2 t_min ? t_max ? t_step ? OUTPUT1 : -t (GeV2), dsig_T/dt (mubarn/GeV2), dsig_T/dOmega_cm (mubarn/sr) OUTPUT2 : -t (GeV2), dsig_L/dt (mubarn/GeV2), dsig_L/dOmega_cm (mubarn/sr) OUTPUT3 : -t (GeV2), dsig_TT/dt (mubarn/GeV2), dsig_TT/dOmega_cm (mubarn/sr) OUTPUT4 : -t (GeV2), dsig_TL/dt, (mubarn/GeV2),dsig_TL/dOmega_cm (mubarn/sr) OUTPUT5 : -t (GeV2), dsig_TLp/dt, (mubarn/GeV2),dsig_TLp/dOmega_cm (mubarn/sr)