c pole_ratio.f c ratio of K+/pi+ dsigL/dt assuming pole dominance c see eqns 3,4 of Huber 2008 paper and references listed below c gh 21.05.31 implicit none real*8 mkg,mpg,mLg,mSg,mpig,mng,pi,hbarc real*8 q2g,wg,nug,pgamg,betacm,gammacm,pcmLg,ekcmLg,pcmSg,ekcmSg real*8 pgamcmg,nuparcmg,tminLg,tminSg,Fk,fksq real*8 r2_mono,Fpi_mono,r2_dip,Fpi_dip,pmono,Fpi_fit,fpisq real*8 lNpi,lNk,gpoleKL,gpoleKS,tt,gkLn,gkSn,gpolepi,gpinn real*8 dl_polepi,dl_poleKL,dl_poleKS real*8 ratio_KLpi,ratio_KSpi integer itt mkg=0.49368 mpg=0.93827 mLg=1.11568 mSg=1.19264 mpig=0.13957 mng=0.93957 pi=3.14159 hbarc=0.197 ! (GeV-fm) write(6,100) 100 format(' Enter Q^2, W in GeV') read(5,*)q2g,wg nug = (wg**2 + q2g - mpg**2)/(2.*mpg) pgamg = sqrt( nug**2 + q2g) c find speed of virtual photon+proton c.m. frame betacm = pgamg/(nug+mpg) gammacm = (nug+mpg)/wg pcmLg = sqrt( (wg**2 + mLg**2 - mkg**2)**2 - 4.*(wg*mLg)**2 ) 1 /(2.*wg) ekcmLg= sqrt(pcmLg**2 + mkg**2) c pcmSg = sqrt( (wg**2 + mSg**2 - mkg**2)**2 - 4.*(wg*mSg)**2 ) c 1 /(2.*wg) c ekcmSg= sqrt(pcmSg**2 + mkg**2) ! calculate t_min pgamcmg = (pgamg-betacm*nug)*gammacm nuparcmg= nug/gammacm-betacm*pgamcmg !p.59 of notes tminLg = q2g-mkg**2+2.*(nuparcmg*ekcmLg-pgamcmg*pcmLg) !p.105 c tminSg = q2g-mkg**2+2.*(nuparcmg*ekcmSg-pgamcmg*pcmSg) c fit to experimental Fpi c monoopole+dipole fit eqns 8-10 of Huber 2008 paper c Amendolia fits, units fm^2 r2_mono=0.431 Fpi_mono=1./(1.+(r2_mono*q2g)/(6*hbarc**2)) r2_dip=0.411 Fpi_dip=1./(1.+(r2_dip*q2g)/(12*hbarc**2))**2 pmono=0.85 ! best fit is 85% monopole + 15% dipole Fpi_fit=pmono*Fpi_mono+(1-pmono)*Fpi_dip fpisq=Fpi_fit**2 c fit to experimental Fk c use monopole formula from Goloskokov & Kroll, EPJA 47, 112 (2011) c essentially Fpi multiplied by 0.9 to account for flavor-symmetry breaking Fk=0.9/(1.+q2g/0.462) fksq=Fk**2 c g_piNN form factor values from P. Kroll, arXiv:1602.03803 c coupling const=13.1+/-0.2 and monopole cutoff=0.44+/-0.07 c note the lambda_N cutoff value determined by T. Meissner, PRC 52(1995)3386, c is much bigger, 0.80 GeV, for similar 13.4 coupling constant. lNpi=0.44 gpolepi=13.1 c g_kpY form factor values from Goloskokov & Kroll, EPJA 47, 112 (2011) c they give no guidance on the cutoff lNk=(0.44+0.80)/2 gpoleKL=-13.3 gpoleKS=-3.5 write(6,10) 10 format(/,4x'Q2',7x,'W',6x'-t K+L/pi+n',2x,'K+S/pi+n') do itt=1,30 tt=-tminLg-0.05*float(itt-1) gpinn=gpolepi*(lNpi**2-mpig**2)/ (lNpi**2-tt) gkLn= gpoleKL*(lNk**2-mkg**2) / (lNk**2-tt) gkSn= gpoleKS*(lNk**2-mkg**2) / (lNk**2-tt) c simplified sigL with flux factor and other common factors removed c c BTM calculation of Actor, Korner, Bender, Il.Nuo.Cim 24A(74),369 c according to Favart et al, aXiv:1511.04535 the only changes from pion pole c should be the meson mass, gkYn and lN dl_polepi= ((gpinn**2)*fpisq)/ ((tt-mpig**2)**2) dl_poleKL= ((gkLn**2)*fksq) / ((tt-mkg**2)**2) dl_poleKS= ((gkSn**2)*fksq) / ((tt-mkg**2)**2) ratio_KLpi= dl_poleKL / dl_polepi ratio_KSpi= dl_poleKS / dl_polepi write(6,110)q2g,wg,tt,ratio_KLpi,ratio_KSpi 110 format(3f8.3,3x,2f10.4) enddo end