L-T Separated Kaon production Cross Sections from 5-11 GeV

- P. Bosted, S. Covrig, H. Fenker, R. Ent, D. Gaskell, T. Horn*, M. Jones, J. LeRose, D. Mack, G.R. Smith, S. Wood, G. Huber, A. Semenov,
- Z. Papandreou, W. Boeglin, P. Markowitz, B. Raue, J. Reinhold, F. Klein, P. Nadel-Turonski, A. Asaturyan, A. Mkrtchyan, H. Mkrtchyan, V. Tadevosyan, D. Dutta, M. Kohl, P. Monaghan, L. Tang, D. Hornidge, A. Sarty.
 - E. Beise, G. Niculescu, I. Niculescu, K. Aniol, E. Brash, V. Punjabi,
 - C. Perdrisat, Y. Ilieva, F. Cusanno, F. Garibaldi, M. Iodice, S. Marrone, P. King, J. Roche

JLab, Regina, FIU, CUA, Yerevan, Mississippi, Hampton, Mount Allison, Saint Mary's, UMd, JMU, California State, CNU, Norfolk, W&M, South Carolina, INF, Ohio
• Motivation

Experimental Details

Summary

January 2009

PAC34

Meson Reaction Dynamics

t-channel process

- Meson production can be described by the t-channel exchange meson pole term in the limit of small –t and large W
 - Pole term is dominated by longitudinally polarized photons
 - Meson form factor describes the spatial distribution of the nucleon
- At sufficiently high Q², the process should be understandable in terms of the "handbag" diagram
 - The non-perturbative (soft) physics is represented by the GPDs
 - Shown to factorize from QCD perturbative processes for longitudinal photons [Collins, Frankfurt, Strikman, 1997]

Form Factors and GPDs

- Form factors and GPDs are essential to understand the structure of nucleons, which make up nucleons and mesons (q-q̄ systems)
- But measurements of form factors and GPDs have certain prerequisites:
 - Before we can start looking at form factors, we must make sure that σ_L is dominated by the meson pole term at low -t
 - Before we can learn about GPDs, we must demonstrate that factorization applies
- A comparison of pion and kaon production data may shed further light on the reaction mechanism, and intriguing 6 GeV pion results

Context

- Understanding the kaon reaction mechanism is essential for form factor and GPD programs at 12 GeV
 - GPD studies require evidence of soft-hard factorization
 - Provides information about basic coupling constants through $\sigma(K^+\Sigma^{\circ}/K^+\Lambda)$ ratio
 - In order to reliably extract the kaon form factor, the influence of non-pole t-channel contributions must be shown to be modest in comparison to pole contributions
- Verifying dominance of pole contributions from unseparated kaon data is complicated by transverse contributions
 - Relative σ_L and σ_T contributions are also needed for GPD extractions since they rely on the dominance of σ_I
- Limited knowledge of L/T ratio at higher energies limits the interpretability of unseparated cross sections in kaon production
- Separated kaon production data from JLab suggest that transverse contributions are larger than predicted by Regge model calculations

Kaon σ_L , σ_T , and L/T ratio *unknown* above the resonance region

Transverse Contributions

- In the resonance region at $Q^2=2.0 \text{ GeV}^2 \sigma_T$ is not small
- In pion production, σ_T is also much larger than predicted by the VGL/Regge model [PRL97:192001 (2006)]
- Why is σ_T so large? Difficult to draw a conclusion from current data
 - Limited W and Q² range
 - Significant uncertainty due to scaling in x_B and –t

High quality σ_L and σ_T data for both kaon and pion would provide important information for understanding the meson reaction mechanism

$R = \sigma_L/\sigma_T$: Kaon form factor prerequisite

- Meson form factor extraction requires a good reaction model
 - Need high quality data to develop these models
- Current knowledge of σ_L and σ_T
 above the resonance region is
 insufficient
 - Role of the t-channel kaon exchange in amplitude unclear
- Not clear how to understand reaction mechanism through current models

L/T separations above the resonance region are essential for building reliable models, which are also needed for form factor extractions

Kaon Production Mechanism: Summary

- Understanding K⁺Λ and K⁺Σ° are important in our study of hadron structure
 - Flavor degrees of freedom provide important information for QCD model building and understanding of basic coupling constants
- $K^+\Lambda$ and $K^+\Sigma^\circ$ have been relatively unexplored because of lack of the necessary experimental facilities
 - There are practically no precision L-T separated data for exclusive K⁺ production from the proton above the resonance region
- JLab measurements at beam energies up to 6 GeV:
 - Hall B: W=1.6-2.8 GeV (separated σ_L and σ_T only for W<2GeV)
 - focus on the resonance region
 - Hall C: W=1.84 GeV
 - full separation in the resonance region
 - Hall A: W=1.8-2.1 GeV (separated σ_L and σ_T limited to the resonance region)

12 GeV: access to kaon production above resonance region!

High Q^2 : Q^{-n} scaling of σ_L and σ_T

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
- A test is the Q² dependence of the cross section:
 - $\sigma_L \sim Q^{-6}$ to leading order
 - $-\sigma_T \sim Q^{-8}$
 - As Q² gets large: $\sigma_L >> \sigma_T$
- The QCD scaling prediction is reasonably consistent with recent JLab π^+ σ_L data, BUT σ_T does not follow the scaling expectation

T. Horn et al., Phys. Rev. C78, 058201 (2008)

Kaon production data would allow for a quasi model-independent comparison that is more robust than calculations based on QCD factorization and present GPD models

Bonus: Interference Terms

 In the hard scattering limit, these terms are expected to scale:

$$-\sigma_{LT} \sim Q^{-7}$$

$$-\sigma_{TT} \sim Q^{-8}$$

 Additional information about the reaction mechanism may be obtained for free if one performs a full cross section separation

$K^+\Lambda(\Sigma^\circ)$ as calculated in VGL/Regge model

Bonus: $F_{\pi,K}$ - a factorization puzzle?

- T. Horn et al., Phys. Rev. Lett. 97 (2006) 192001.
- T. Horn et al., arXiv:0707.1794 (2007).
- The Q² dependence of F_π is also consistent with hard-soft factorization prediction (Q⁻²) at values Q²>1 GeV²
- BUT the observed magnitude of F_{π} is larger than the hard QCD prediction
 - Could be due to QCD factorization not being applicable in this regime
 - Or insufficient knowledge about additional soft contributions from the meson wave function

Comparing the observed Q^2 dependence of $\sigma_{L,T}$ and FF magnitude with kaon production would allow for better understanding of the onset of factorization

Motivation Summary

- L/T separated kaon production cross sections play a large role in our understanding of form factors
 - If σ_L not dominated by the K^+ pole term at low -t, we cannot extract the form factor from the data and interpretation of unseparated data questionable
- The charged kaon L/T ratio is of significant interest to the study of GPDs at 12 GeV
 - Can only learn about GPDs if soft-hard factorization applies
 - If transverse contributions are large, the accessible phase space may be limited

Our theoretical understanding of hard exclusive reactions will benefit from L/T separated kaon data over a large kinematic range

- Constraints for QCD model building using both pion and kaon data
- Understanding of basic coupling constants (Σ°/Λ ratio)
- Quasi model-independent comparison of pion and kaon data would allow a better understanding of the onset of factorization

Experimental Goals

- Measure the –t dependence of the p(e,e'K+)Λ,Σ° cross section at fixed Q² and W>2.5 GeV to search for evidence of K+ pole dominance in σ_I
 - Separate the cross section components: L, T, LT, TT
 - First L/T measurement above the resonance region in K⁺ production
- Measure the Q² dependence of the p(e,e'K⁺) $\Lambda(\Sigma^{\circ})$ cross section at fixed x_B and –t to search for evidence of hard-soft factorization
 - Separate the cross section components: L, T, LT, TT
 - The highest Q² for any L/T separation in K+ electroproduction
- If warranted by the data, extract the Q² dependence of the kaon form factor to shed new light on the apparent pion form factor scaling puzzle

Experiment Overview

- Measure the separated cross sections at varying –t and x_B
 - If K^+ pole dominates σ_L allows for extraction of the kaon ff (W>2.5 GeV)
- Measure separated cross sections for the p(e,e'K+) $\Lambda(\Sigma^{\circ})$ reaction at two fixed values of –t and x_B
 - Q² coverage is a factor of 2-3 larger compared to 6 GeV at much smaller –t
 - Facilitates tests of Q² dependence even if L/T ratio less favorable than predicted

x	Q ²	W	-t
	(GeV²)	(GeV)	(GeV/c) ²
0.1-0.2	0.4-3.0	2.5-3.1	0.06-0.2
0.25	1.7-3.5	2.5-3.4	0.2
0.40	3.0-5.5	2.3-3.0	0.5

Cross Section Separation

 The virtual photon cross section can be written in terms of contributions from transversely and longitudinally polarized photons.

$$\frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dtd\phi} + \frac{d\sigma_T}{dtd\phi} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dtd\phi} \cos 2\varphi_{\varepsilon} + \varepsilon \frac{d\sigma_{TT}}{dtd\phi} \cos 2\varphi_{\varepsilon}$$

Separate σ_L , σ_T , σ_{LT} , and σ_{TT} by simultaneous fit using measured azimuthal angle (ϕ_K) and knowledge of photon polarization (ϵ)

Separation in a Multi-Dimensional Phase Space

- Cuts are placed on the data to equalize the Q²-W range measured at the different ε-settings
- Multiple SHMS settings (±3° left and right of the q vector) are used to obtain good φ coverage over a range of –t
 - Measuring 0<φ<2π allows to determine L, T, LT and TT

Kaon PID

- π^+/K^+ separation provided by heavy gas Cerenkov for p_{SHMS}>3.4 GeV/c
 - Detector is being built by U.o.Regina
- For reliable K+/p separation above 3 GeV/c an aerogel Cerenkov is essential
 - Provision has been made in the SHMS detector stack for two threshold aerogel detectors

- Four sets of aerogel would provide reliable K+/p separation over the full momentum range (2.6-7.1 GeV/c)
- Alternate PID methods (such as RICH) are also possible

Expected Missing Mass Resolution

- Missing mass resolution (~30 MeV)
 is clearly sufficient to separate Λ
 and Σ° final states
- Good π⁺/K⁺ (p/K⁺) separation using gas (aerogel) Cerenkov, and also accidental coincidence subtraction
- Acceptance allows for simultaneous studies of both Λ and Σ° channels
 - Total effect of the Λ tail and possible collimator punch-through to $K^+\Sigma^\circ$ projected to be <0.1% of the size of the tail

Simulation at Q2=2.0 GeV2 , W=3.0 and high $\,\epsilon$

Projections of $R = \sigma_L / \sigma_T$

- Empirical kaon parameterization based on Hall C data was used in rate estimates
 - Conservative assumptions on the evolution of L/T ratio
 - Projected Δ(L/T)=28-60% (10-33% using VGL/Regge) for typical kinematics
- PR12-09-011 may indicate larger values of R, with associated smaller uncertainties
 - Reaching Q²=8 GeV² may ultimately be possible

Projected Uncertainties for σ_L and σ_T

High quality kaon L/T separation above the resonance region

• Projected uncertainties for σ_L and σ_T use the L/T ratio from Hall C parameterization

PR12-09-011: Precision data for W > 2.5 GeV

Projected Uncertainties for the Kaon FF

- If the K⁺ pole dominates low -t σ_L, we would for the first time extract F_K above the resonance region (W>2.5 GeV)
- Projected uncertainties for σ_L use the L/T ratio from Hall C parameterization

Projected Uncertainties for Q-n scaling

- QCD scaling predicts $\sigma_L \sim Q^{-6}$ and $\sigma_T \sim Q^{-8}$
- Projected uncertainties use R from the Hall C parameterization

х	Q ² (GeV ²)	W (GeV)	-t (GeV/c) ²
0.25	1.7-3.5	2.5-3.4	0.2
0.40	3.0-5.5	2.3-3.0	0.5

Is onset of scaling different for kaon than pion?
Kaons and pions together provide quasi model-independent study

Beam Time Estimate

Q ² (GeV ²)	xВ	LH2 (hrs)	Dummy	Overhead (hrs)	Total (hrs)
0.40	0.072	189.4	12.9	8	210.3
1.25	0.122	29.5	2.1	8	39.6
2.00	0.182	113.4	7.9	12	133.3
3.00	0.250	159.3	11.2	8	178.5
Subtotal react mech					561.7 (23.4 days)
1.70	0.25	39.4	2.8	8	50.2
3.50	0.25	103.5	0.7	8	112.2
Subtotal x=0.25					162.4 (6.8 days)
3.00	0.40	19.2	1.3	8	28.5
4.40	0.40	62.6	4.4	8	75.0
5.50	0.40	179.5	12.5	8	200.0
Subtotal x=0.40					303.5 (12.6 days)
Subtotal LH ₂ /K ⁺		895.8	55.8	76	1027.6
Calibrations					48.0
Beam energy					48.0
Total					1123.6 (46.8 days)

PR12-09-011 Summary

- L/T separated K⁺ cross sections will be essential for our understanding of the reaction mechanism at 12 GeV
 - If transverse contributions are found to be large, the accessible phase space for GPD studies may be limited
 - Basic coupling constants in kaon production (Σ°/Λ ratio)
 - If t-channel exchange dominates σ_L , we can perform the first reliable extraction of the kaon form factor above the resonance region
- L/T separated K⁺ data over a wide kinematic range will have a significant impact on our understanding of hard exclusive reactions
 - Constraints on QCD model building using both pion and kaon data
 - Quasi model-independent comparison of kaon and pion data would allow better understanding of the onset of factorization

Request 47 days to provide first precision L/T separated kaon production data above the resonance region. Excellent candidate for early running.

