L-T Separated Kaon production Cross Sections from 5-11 GeV

P. Bosted, S. Covrig, H. Fenker, R. Ent, D. Gaskell, T. Horn*, M. Jones, J. LeRose, D. Mack, G.R. Smith, S. Wood, G. Huber, A. Semenov,
Z. Papandreou, W. Boeglin, P. Markowitz, B. Raue, J. Reinhold, F. Klein, P. Nadel-Turonski, A. Asaturyan, A. Mkrtchyan, H. Mkrtchyan, V. Tadevosyan, D. Dutta, M. Kohl, P. Monaghan, L. Tang, D. Hornidge, A. Sarty,
E. Beise, G. Niculescu, I. Niculescu, K. Aniol, E. Brash, V. Punjabi, C. Perdrisat, Y. Ilieva, F. Cusanno, F. Garibaldi, M. Iodice, S. Marrone, P. King, J. Roche

JLab, Regina, FIU, CUA, Yerevan, Mississippi, Hampton, Mount Allison, Saint Mary's, UMd, JMU, California State CNU, Norfolk, W\&M, South Carolina, INF, Ohio - Motivation

- Experimental Details
- Summary

Meson Reaction Dynamics

t-channel process

- Meson production can be described by the t-channel exchange meson pole term in the limit of small -t and large W
- Pole term is dominated by longitudinally polarized photons
- Meson form factor describes the spatial distribution of the nucleon
- At sufficiently high Q^{2}, the process should be understandable in terms of the "handbag" diagram
- The non-perturbative (soft) physics is represented by the GPDs
- Shown to factorize from QCD perturbative processes for longitudinal photons [Collins, Frankfurt, Strikman, 1997]

Form Factors and GPDs

- Form factors and GPDs are essential to understand the structure of nucleons, which make up nucleons and mesons ($q-\bar{q}$ systems)
- But measurements of form factors and GPDs have certain prerequisites:
- Before we can start looking at form factors, we must make sure that σ_{L} is dominated by the meson pole term at low -t
- Before we can learn about GPDs, we must demonstrate that factorization applies
- A comparison of pion and kaon production data may shed further light on the reaction mechanism, and intriguing 6 GeV pion results

Context

- Understanding the kaon reaction mechanism is essential for form factor and GPD programs at 12 GeV
- GPD studies require evidence of soft-hard factorization
- Provides information about basic coupling constants through $\sigma\left(\mathrm{K}^{+} \Sigma^{\circ} / \mathrm{K}^{+} \Lambda\right)$ ratio
- In order to reliably extract the kaon form factor, the influence of non-pole t-channel contributions must be shown to be modest in comparison to pole contributions
- Verifying dominance of pole contributions from unseparated kaon data is complicated by transverse contributions
- Relative σ_{L} and σ_{T} contributions are also needed for GPD extractions since they rely on the dominance of σ_{L}
- Limited knowledge of L/T ratio at higher energies limits the interpretability of unseparated cross sections in kaon production
- Separated kaon production data from JLab suggest that transverse contributions are larger than predicted by Regge model calculations

Kaon $\sigma_{\mathrm{L}}, \sigma_{\mathrm{T}}$, and L / T ratio unknown above the resonance region

Transverse Contributions

- In the resonance region at $\mathrm{Q}^{2}=2.0 \mathrm{GeV}^{2} \sigma_{\mathrm{T}}$ is not small
- In pion production, σ_{T} is also much larger than predicted by the VGL/Regge model [PRL97:192001 (2006)]
- Why is σ_{T} so large? Difficult to draw a conclusion from current data
- Limited W and Q^{2} range
- Significant uncertainty due to scaling in x_{B} and - t

High quality σ_{L} and σ_{T} data for both kaon and pion would provide important information for understanding the meson reaction mechanism

$R=\sigma_{L} / \sigma_{T}:$ Kaon form factor prerequisite

- Meson form factor extraction requires a good reaction model
- Need high quality data to develop these models
- Current knowledge of σ_{L} and σ_{T} above the resonance region is insufficient
- Role of the t-channel kaon exchange in amplitude unclear
- Not clear how to understand reaction mechanism through current models

L/T separations above the resonance region are essential for building reliable models, which are also needed for form factor extractions

Kaon Production Mechanism: Summary

- Understanding $\mathrm{K}^{+} \Lambda$ and $\mathrm{K}^{+} \Sigma^{\circ}$ are important in our study of hadron structure
- Flavor degrees of freedom provide important information for QCD model building and understanding of basic coupling constants
- $\mathrm{K}^{+} \Lambda$ and $\mathrm{K}^{+} \Sigma^{\circ}$ have been relatively unexplored because of lack of the necessary experimental facilities
- There are practically no precision L-T separated data for exclusive K^{+} production from the proton above the resonance region
- JLab measurements at beam energies up to 6 GeV :
- Hall B: W=1.6-2.8 GeV (separated σ_{L} and σ_{T} only for $\mathrm{W}<2 \mathrm{GeV}$)
- focus on the resonance region
- Hall C: W=1.84 GeV
- full separation in the resonance region
- Hall A: $\mathrm{W}=1.8-2.1 \mathrm{GeV}$ (separated σ_{L} and σ_{T} limited to the resonance region)

12 GeV : access to kaon production above resonance region!

High $Q^{2}: Q^{-n}$ scaling of σ_{L} and σ_{T}

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
- A test is the Q^{2} dependence of the cross section:
$-\sigma_{L} \sim Q^{-6}$ to leading order
$-\sigma_{T} \sim Q^{-8}$
- As Q^{2} gets large: $\sigma_{L} \gg \sigma_{T}$
- The QCD scaling prediction is reasonably consistent with recent JLab $\pi^{+} \sigma_{\mathrm{L}}$ data, BUT σ_{T} does not follow the scaling expectation

T. Horn et al., Phys. Rev. C78, 058201 (2008)

Kaon production data would allow for a quasi model-independent comparison that is more robust than calculations based on QCD factorization and present GPD models

Bonus: Interference Terms

- In the hard scattering limit, these terms are expected to scale:

$$
\begin{aligned}
& -\sigma_{L T} \sim Q^{-7} \\
& -\sigma_{T T} \sim Q^{-8}
\end{aligned}
$$

- Additional information about the reaction mechanism may be obtained for free if one performs a full cross section separation
$\mathrm{K}^{+} \Lambda\left(\Sigma^{\circ}\right)$ as calculated in VGL/Regge model

Bonus: $F_{\pi, \mathrm{K}}-a$ factorization puzzle?

T. Horn et al., Phys. Rev. Lett. 97 (2006) 192001.
T. Horn et al., arXiv:0707.1794 (2007).

Comparing the observed Q^{2} dependence of $\sigma_{L, T}$ and FF magnitude with kaon production would allow for better understanding of the onset of factorization

Motivation Summary

- L/T separated kaon production cross sections play a large role in our understanding of form factors
- If σ_{L} not dominated by the K^{+}pole term at low -t, we cannot extract the form factor from the data and interpretation of unseparated data questionable
- The charged kaon L/T ratio is of significant interest to the study of GPDs at 12 GeV
- Can only learn about GPDs if soft-hard factorization applies
- If transverse contributions are large, the accessible phase space may be limited

Our theoretical understanding of hard exclusive reactions will benefit from L/T separated kaon data over a large kinematic range

- Constraints for QCD model building using both pion and kaon data
- Understanding of basic coupling constants (Σ° / Λ ratio)
- Quasi model-independent comparison of pion and kaon data would allow a better understanding of the onset of factorization

Experimental Goals

- Measure the -t dependence of the $\mathrm{p}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{K}^{+}\right) \Lambda, \Sigma^{\circ}$ cross section at fixed Q^{2} and $\mathrm{W}>2.5 \mathrm{GeV}$ to search for evidence of K^{+}pole dominance in σ_{L}
- Separate the cross section components: L, T, LT, TT
- First L/T measurement above the resonance region in K^{+}production
- Measure the Q^{2} dependence of the $\mathrm{p}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{K}^{+}\right) \Lambda\left(\Sigma^{\circ}\right)$ cross section at fixed x_{B} and -t to search for evidence of hard-soft factorization
- Separate the cross section components: L, T, LT, TT
- The highest Q^{2} for any L / T separation in $\mathrm{K}+$ electroproduction
- If warranted by the data, extract the Q^{2} dependence of the kaon form factor to shed new light on the apparent pion form factor scaling puzzle

Experiment Overview

- Measure the separated cross sections at varying -t and X_{B}
- If K^{+}pole dominates σ_{b} allows for extraction of the kaon ff ($\mathrm{W}>2.5 \mathrm{GeV}$)
- Measure separated cross sections for the $\mathrm{p}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{K}^{+}\right) \Lambda\left(\Sigma^{\circ}\right)$ reaction at two fixed values of $-t$ and x_{B}
- Q^{2} coverage is a factor of 2-3 larger compared to 6 GeV at much smaller - t
- Facilitates tests of Q^{2} dependence even if L / T ratio less favorable than predicted

\mathbf{x}	\mathbf{Q}^{2} $\left(\mathrm{GeV}^{2}\right)$	\mathbf{W} (GeV)	-t $(\mathrm{GeV} / \mathrm{c})^{2}$
$0.1-0.2$	$0.4-3.0$	$2.5-3.1$	$0.06-0.2$
0.25	$1.7-3.5$	$2.5-3.4$	0.2
0.40	$3.0-5.5$	$2.3-3.0$	0.5

Cross Section Separation

- The virtual photon cross section can be written in terms of contributions from transversely and longitudinally polarized photons.

$$
\frac{d R \sigma}{d t d \varphi}=\varepsilon \frac{d \sigma_{L}}{d t d \varphi}+\frac{d \sigma_{T}}{d t d \varphi}+\sqrt{2 \varepsilon(\varepsilon+1)} \frac{d \sigma_{L_{T}}}{d t d \varphi} \cos \varphi+\varepsilon \frac{d \sigma_{T}}{d t d \varphi} \cos 2 \phi
$$

- Separate $\sigma_{L} \sigma_{T}, \sigma_{L T}$, and $\sigma_{T T}$ by simultaneou's fit using measured azimuthal angle $\left(\varphi_{K}\right)$ and knowledge of photon polarization ()

Separation in a Multi-Dimensional Phase Space

- Cuts are placed on the data to equalize the $\mathrm{Q}^{2}-\mathrm{W}$ range measured at the different ε-settings
- Multiple SHMS settings ($\pm 3^{\circ}$ left and right of the q vector) are used to obtain good φ coverage over a range of $-t$
- Measuring $0<\varphi<2 \pi$ allows to determine L, T, LT and TT

Kaon PID

- π^{+} / K^{+}separation provided by heavy gas Cerenkov for $\mathrm{p}_{\mathrm{SHMS}}>3.4 \mathrm{GeV} / \mathrm{c}$
- Detector is being built by U.o.Regina
- For reliable $\mathrm{K}^{+} / \mathrm{p}$ separation above $3 \mathrm{GeV} / \mathrm{c}$ an aerogel Cerenkov is essential
- Provision has been made in the SHMS detector stack for two threshold aerogel detectors

- Four sets of aerogel would provide reliable $\mathrm{K}^{+} / \mathrm{p}$ separation over the full momentum range (2.6-7.1 GeV/c)
- Alternate PID methods (such as RICH) are also possible

Expected Missing Mass Resolution

- Missing mass resolution ($\sim 30 \mathrm{MeV}$) is clearly sufficient to separate Λ and Σ° final states
- Good $\pi^{+} / \mathrm{K}^{+}\left(\mathrm{p} / \mathrm{K}^{+}\right)$separation using gas (aerogel) Cerenkov, and also accidental coincidence subtraction
- Acceptance allows for simultaneous studies of both Λ and Σ° channels
- Total effect of the Λ tail and possible collimator punch-through to $\mathrm{K}^{+} \Sigma^{\circ}$ projected to be $<0.1 \%$ of the size of the tail

Simulation at $\mathrm{Q}^{2}=2.0 \mathrm{GeV}^{2}, \mathrm{~W}=3.0$ and high ε

Projections of $R=\sigma_{L} / \sigma_{T}$

- Empirical kaon parameterization based on Hall C data was used in rate estimates
- Conservative assumptions on the evolution of L/T ratio
- Projected $\Delta(\mathrm{L} / \mathrm{T})=28-60 \%$ (10-33\% using VGL/Regge) for typical kinematics
- PR12-09-011 may indicate larger values of R, with associated smaller uncertainties
- Reaching $Q^{2}=8 \mathrm{GeV}^{2}$ may ultimately be possible

Projected Uncertainties for σ_{L} and σ_{T}

- High quality kaon L/T separation above the resonance region
- Projected uncertainties for σ_{L} and σ_{T} use the L/T ratio from Hall C parameterization

PR12-09-011:
Precision data for W > 2.5 GeV

Projected Uncertainties for the Kaon FF

- If the K^{+}pole dominates low - t σ_{L}, we would for the first time extract F_{K} above the resonance region ($\mathrm{W}>2.5 \mathrm{GeV}$)
- Projected uncertainties for σ_{L} use the L/T ratio from Hall C parameterization

Projected Uncertainties for Q^{-n} scaling

- QCD scaling predicts $\sigma_{L} \sim Q^{-6}$ and $\sigma_{T} \sim Q^{-8}$
- Projected uncertainties use R from the Hall C parameterization

\mathbf{x}	\mathbf{Q}^{2} $\left(\mathrm{GeV}^{2}\right)$	\mathbf{W} (GeV)	-t $(\mathrm{GeV} / \mathrm{c})^{2}$
0.25	$1.7-3.5$	$2.5-3.4$	0.2
0.40	$3.0-5.5$	$2.3-3.0$	0.5

Is onset of scaling different for kaon than pion?
Kaons and pions together provide quasi model-independent study

Beam Time Estimate

PR12-09-011 Summary

- L/T separated K^{+}cross sections will be essential for our understanding of the reaction mechanism at 12 GeV
- If transverse contributions are found to be large, the accessible phase space for GPD studies may be limited
- Basic coupling constants in kaon production (Σ° / Λ ratio)
- If t-channel exchange dominates σ_{L}, we can perform the first reliable extraction of the kaon form factor above the resonance region
- L/T separated K^{+}data over a wide kinematic range will have a significant impact on our understanding of hard exclusive reactions
- Constraints on QCD model building using both pion and kaon data
- Quasi model-independent comparison of kaon and pion data would allow better understanding of the onset of factorization

Request 47 days to provide first precision L/T separated kaon production data above the resonance region.

Excellent candidate for early running.

