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ABSTRACT

The electromagnetic form factors of hadrons at large momentum transfer have
been the subject of intense theoretical and experimental scrutiny over the past
two decades, yet there is still not a universally accepted framework for their de-
scription. This review is a synopsis of their current status. The basic theoretical
approaches to form factors at large momentum transfer are developed, emphasiz-
ing the valence quark and Feynman (soft) pictures. The discussion includes the
relation of these descriptions to the parton model, as well as the roles of factoriza-
tion, evolution, Sudakov resummation and QCD sum rules. This is followed by
a discussion of the experimental status of pion and nucleon elastic form factors
and resonance production amplitudes in the light of recent data; the successes
and shortcomings of various theoretical proposals are highlighted.
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1. INTRODUCTION

1.1 Hadronic Form Factors
Exclusive electromagnetic form factors are a source of information about the
internal structure of hadrons. The coupling of an elementary particle to the
photon is determined by only a few dimensionless parameters, for example its
total charge and magnetic moment. For a composite particle, however, these
constant coefficients are replaced by momentum-dependent functions, the form
factors, which reflect the distribution of charge and current, and, hence, the in-
ternal structure of the particle. A familiar analysis in nonrelativistic quantum
mechanics relates the electromagnetic form factor directly to the Fourier trans-
form of the charge density. Relativistic behavior also depends very much on
the nature of the hadronic state.

High momentum transfer suggests high resolution, so hard elastic scattering
is a natural way to study the detailed internal structure of hadrons. Experiments
in elastic electron-proton scattering showed long ago the famous dipole behav-
ior of the nucleon electromagnetic form factors 1/(1 + Q2/M2)2, in terms of
momentum transferQ, with M2 ∼ 0.71 GeV2 (1).

Since then, many subsequent experiments studied this and related reactions.
Their influence on our understanding of the strong interactions themselves,
however, has been somewhat overshadowed by that of the high-energy inclusive
reactions. The discovery of approximate scaling in deeply inelastic scattering,
and its explanation in terms of the parton model, opened a more direct and
efficient avenue to study the quarks themselves, since inclusive cross sections
decrease much more slowly with momentum transfer. Nevertheless, form fac-
tors at large momentum transfer remain an important window tounderstanding
quark binding in hadrons.

In this review, we will concentrate on electromagnetic form factors and res-
onance production amplitudes at large momentum transfer, in the light of per-
turbative quantum chromodynamics (QCD). QCD itself has enjoyed so many
successes, and explains so many and varied experimental results, that it is uni-
versally recognized as the theory of the strong interactions. Yet, the single
most basic fact of the theory—the binding and confinement of the elementary
degrees of freedom, the quarks and gluons, into hadrons—is still not described
in detail. Because of the property of asymptotic freedom at short distances,
perturbative methods must be relevant in some degree to elastic scattering at
large momentum transfer. Since the binding of hadrons is a long-distance ef-
fect, nonperturbative effects must play a crucial role as well. The description
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of electromagnetic form factors requires the consistent analysis of both length
scales in a single process. This, and the light that will be shed on hadronic
structure by a truly successful treatment of this problem, makes the study of
form factors attractive. We note that electromagnetic form factors are part of the
large class of exclusive hadronic amplitudes, which also describe, for example,
both proton-proton elastic scattering and the exclusive decays of heavy mesons.
Although many of the methods developed below have wide applications in this
larger class, we decided to restrict our discussion to form factors, in the hope
of improving its focus.

In the remainder of this section, we discuss what we can learn from reasoning
based on the parton model. Here, and in most of the following, we assume very
high momentum transfer, so high that parton masses may for the most part be
neglected. We use parton-model insights to identify quark counting rules, and
as an inspiration for factorization of long- and short-distance effects in exclusive
processes in terms ofwave functions. In this section, we give primarily intuitive
arguments, and concentrate on the pion for simplicity. In Section 2, we discuss
some of the central results of the QCD treatment of form factors, including
the evolution of wave functions, the behavior of the asymptotic pion form
factor, and QCD sum rules for moments of wave functions. These topics are
somewhat more mathematical, but we have attempted to motivate technical
arguments with physical intuition. We close the section with a brief summary
of results relevant to baryons, especially helicity conservation, the derivation
of form factors directly from QCD sum rules, and a few phenomenological
models for moderate-Q2 behavior. We go on in Section 3 to review the central
experimental results for pion, nucleon and resonance production form factors,
to assess the successes and failures of QCD treatments of elastic scattering,
and to explain the controversies that have enlivened this active field of inquiry.
At the end of our review, we will see that the current state of the data is not
adequate to resolve the primary theoretical controversies.

1.2 Partons and Factorization
1.2.1 PARTONS. The perturbative treatment of hard exclusive processes as-
sumes a partonic description of the participating hadrons. The general discus-
sion is closely related to the parton model of inclusive processes (2), such as
deep-inelastic scattering. The celebrated premise of the parton model, justified
and systematically extended in QCD, is that inclusive processes are determined
by the distributionsfi /h(x), which are the probabilities for point-like, con-
stituent partonsi to carry fractionx of the momentum of hadronh, summed
over all other partonic degrees of freedom. An exclusive form factor, on the
other hand, reflects the coherent scattering of a hadron by an electroweak cur-
rent. Even at large momentum transfer, it may depend on states of definite
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partonic content. In fact, atsufficientlyhigh energies, exclusive amplitudes are
dominated by hadronic states with valence quark content, ¯qq for mesons and
qqq for baryons. This is despite the fact that, in its own rest frame, each hadron
is a complicated, ever-shifting superposition of partonic states. Let us discuss
first how such a partonic picture of hard exclusive scattering emerges.

At sufficiently high momentum transfers in either hadron-lepton or hadron-
hadron scattering, the relative velocities of all participating particles are nearly
light-like. Under this condition, the quantum processes that bind the constituents
of a hadron are highly time-dilated in the rest frames of the remaining particles,
both incoming and outgoing. Correspondingly, time dilation lengthens the
lifetime of these states, and freezes the partonic content of this hadron as seen
by the other particles. Also, as relative velocities approach the speed of light, the
time during which the hadrons remain in contact, and during which momentum
can be transferred, decreases. In fact, we can always find a frame in which
any pair of particles are in contact for a time that decreases like 1/γ rel =
(1−v2

rel/c2)1/2. Under these conditions, we expect a lack of quantum interference
between long-distance hadronic binding and short-distance momentum transfer.
This incoherence between soft and hard physics implies that we may consider
each hadron to consist of a definite partonic state during the entire collision
process. This picture is illustrated for electron-pion scattering in Figure 1a, in
which long-time dynamics, described by a distribution of valence quarksφ in,
produces a valence quark-antiquark state. The distributionφ is often referred
to as a wave function. The partons of this state in turn exchange momentum
with an electron in a short-distance processT. At a later time, they reform a
pion, through the wave functionφout.

1.2.2 FACTORIZATION. We summarize the above considerations for an arbi-
trary exclusive amplitudeM by a schematic expression in which short-distance

Figure 1 Electron-pion elastic scattering: (a) Valence PQCD picture; (b) Feynman mechanism.
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momentum transfer is factorized from the long-distance hadronic binding,

M(pi · pj ) =
∏

j

φout, j (nj ) ⊗ T(nj , ni ) ⊗
∏

i

φin,i (ni ). 1.

Here, the labelsi and j refer to hadrons in the incoming and outgoing states,
respectively.φ(n) is the wave function that describes the amplitude for a pion
to be found in partonic staten, andT (nj, ni) is a perturbative function that
describes the hard scattering between the partons (and leptons). The symbol
⊗ indicates a convolution, that is, a sum or integral over the parton degrees of
freedom that correspond to statesni andnj.

A factorized expression like Equation 1 has two fundamental properties.
First, the nonperturbative wave functions are universal within a class of exclu-
sive amplitudes. This connects otherwise disparate processes, such as the pion
electromagnetic form factor and pion-pion elastic scattering (3). Second, the
factorization of long- from short-distance dynamics implies consistency condi-
tions that enable us to compute the amplitude’s dependence on the momentum
transfer. These are usually referred to as evolution equations, examples of
which we shall discuss below. The details of the convolution⊗, and the deriva-
tions of evolution equations, depend on the process in question. One example
will suffice to motivate Equation 1 and to illustrate the range of possibilities:
the electromagnetic form factor of the charged pion. We will review the classic
perturbative QCD analysis of this form factor (4, 5, 6), and also introduce a
treatment of its Sudakov effects (7, 8), the importance of which will become
clear below.

1.2.3 VALENCE PQCD AND THE FEYNMAN MECHANISM. The convolutions⊗
in Equation 1 in principle include sums over states with arbitrary numbers of
partons. As indicated above, however, the valence state, which has the fewest
partons, dominates at very large momentum transfer. We shall refer below to its
contribution as valence perturbative QCD (valence PQCD). This is a somewhat
unconventional usage; indeed, what we call valence PQCD is more commonly
referred to simply as PQCD. But this approximation does not exhaust the use
of perturbative methods in form factors at large momentum transfer, and to call
it simply PQCD is a little misleading.

There are, of course, many contributions from states with more than the
valence partons. For the most part, they are expected to decay rapidly with
increasing momentum transfer relative to the valence states. There is an ex-
ception, however, corresponding to states in which one parton carries nearly
all of the hadron’s momentum, while all other partons are soft. It is plausible
that such a state could contribute to elastic scattering, because all of its partons
except for one have long wavelengths. They may then overlap strongly with
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wave functions moving in any direction. When the single, hard parton scatters
elastically, the soft partons from an incoming hadron may combine with the
outgoing hard parton to form an outgoing hadron. This is illustrated for the pion
electromagnetic form factor in Figure 1b. It is known as the soft or Feynman
mechanism for elastic scattering. Nevertheless, the Feynman mechanism con-
tains a hard scattering, which may in principle be factored from the interactions
of soft partons, and treated with the methods of PQCD. For instance, Duncan &
Mueller (9, 10) analyzed it for pion and nucleon form factors. Unfortunately,
this PQCD investigation has not yet been developed extensively in the litera-
ture, and although it seems clear that the soft mechanism does not contribute
at asymptotically high momentum transfer, at what scale it becomes negligible
is not well understood. We shall come back to the role of the soft mechanism
often below, however, because its contribution may be studied directly in the
valence state using Sudakov resummation, in QCD sum rules, and, indirectly,
in models of nonperturbative hadronic structure.

1.2.4 THE PION FORM FACTOR AND QUARK COUNTING. The electromagnetic
form factor of a pion is specified by

(p2 + p1)µ Fπ (Q2) = 〈π(p2)|Jµ(0)|π(p1)〉 , 2.

whereJµ = ∑
f ef q̄f γµqf is the electromagnetic current, expressed in terms of

quark fieldsqf of flavor f and electromagnetic chargesef. We neglect particle
masses, and examine this process in a brick-wall frame, in whichp1 is in the plus
3 direction, and recoils asp2 in the minus 3 direction under the influence of the
electromagnetic currentJ. Such a momentum configuration is most naturally
described in terms of light-cone variables, which for any vectorvµ arev± =
2−1/2 (v0± v3). In these terms, we have

p+
1 = Q/

√
2, p−

1 = 0, p−
2 = Q/

√
2, p+

2 = 0 . 3.

The overall momentum transfer is (p2 − p1)
2= −2 p+

1 p−
2 = −Q2.

The valence PQCD portrait of this process is shown in Figure 2. Figure 2a
represents the pion in its valence state, consisting of a quark and an antiquark.
The variablex denotes the fraction of the pion’s momentum carried by the
quark and 1− x by the antiquark. In the chosen frame, we expect the pion
to be Lorentz-contracted in the direction of motion, as shown, so that the pair
is localized in this direction. On the other hand, we expect the partons in any
virtual state to be more-or-less randomly distributed in the transverse extent
of the pion’s wave function, since the boost from the rest frame to the frame
under consideration leaves transverse positions unchanged. This will have
important consequences for our discussion below. Similarly, the off-shellness
and the transverse momenta of the pair in Figure 2 are boost-invariant, and
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Figure 2 Pion electromagnetic form factor in valence PQCD.

we take these quantities to be fixed and negligible compared to bothxp1 and
(1 − x)p1. Correspondingly, the transverse components of their velocities vanish
asQ → ∞, and we neglect them as well. It is necessary that 1> x > 0, so
that both partons travel in the same direction as the hadron that they represent.
Figure 2a also shows an incoming, off-shell photon, carrying momentumq.

Figure 2b shows the state of the system after the action of the current that
absorbs the photon, in which the pair moves in the opposite direction. Even-
tually, the pair will fill out the full spatial extent of the pion, which is again
Lorentz-contracted in the direction of motion. To form the pion, however, their
momenta must be parallel, and each must carry a positive fraction ofp2, as
shown.

An alternative picture relies on the infinite momentum frame (IMF), in which
all participating particles move in the same direction with energiesEi � Q. In
this frame, all momentum transfers are transverse. Its main attraction lies in
the conjecture that quantization formulated in an IMF simplifies the treatment
of confinement in QCD (11).

In the process depicted in Figure 2, the quark undergoes a momentum transfer
xyQ2 and the antiquark (1− x)(1 − y)Q2, with x( y) the fractional momentum
of the quark in the incoming (outgoing) pion. This must take place during the
time that the wave functions of the incoming and outgoing pions overlap—that
is, on a time scale that vanishes as 1/Q. The uncertainty principle requires that
both members of the pair must be localized within 1/Q of each other and of the
action of the current, as indicated in Figure 2a. This restriction shows that not
all details of the valence state wave function are relevant to exclusive scattering.
We do not need the full two-particle state; we only need the probability for the
members of the pair to be within a transverse distance of 1/Q of each other. We
shall assume that this probability is simply a function ofx times the geometrical
factor 1/Q2. This scaling of the wave function inx is not exact in QCD; we
will compute corrections to it when we discuss evolution below in Section 2.2.
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Along with our assumption of incoherence, scaling enables us to estimate
theQ-dependence of the form factor. For if long- and short-distance processes
are incoherent, the cross section for elastic scattering of a pion is essentially
the product of the cross section for the elastic scattering of a point-like scalar
particle, times the probability for internal processes to produce a virtual state
in which both partons in the valence state are within 1/Q of each other in
transverse distance. Thus, we have

σel,π ∼ σel, point × F2
π (Q2) ∼ σel, point × (1/Q2)2 4.

so that

Fπ (Q) ∼ (1/Q2) . 5.

Results of this sort, based on incoherence, scaling, and geometrical estimates,
are known as quark counting (12, 13). For an arbitrary exclusive process in-
volving nh hadrons, quark counting rules give

σ(Q2)had = σ(Q2)point(Q2)−nq+nh f , 6.

wherenq is the total number of quarks and antiquarks taking part in the process,
andf depends on dimensionless variables.

From Equation 6, we see that interactions involving more than the minimum
number of partons—say, a gluon in addition to the pair—are suppressed by
a power ofQ, because asQ grows, the likelihood of finding more than the
minimum number of particles within 1/Q of each other falls asQ−2 for each
additional particle.

We note, however, that in the limitsx or y → 0 or 1 our process describes
the elastic scattering of an on-shell quark (antiquark) with nearly all of the
pion’s momentum. The remaining, soft antiquark (quark) has long wavelength,
which overlaps with both the incoming and outgoing wave functions. This is
the intersection of valence PQCD with the Feynman mechanism.

In the next section, we shall turn to the field-theoretic treatment of the pion’s
form factor and see how these features of the parton model are realized within
QCD.

2. FORM FACTORS IN QCD

2.1 The Factorized Pion Form Factor
2.1.1 CONVOLUTION IN FRACTIONAL MOMENTA. We are now ready to turn to
the pion form factor in valence PQCD (4, 5, 6). The parton model discussion of
the previous section suggests that the pion form factor can be written, following
Equation 1, as a sum over wave functions involving only quark momentum
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Figure 3 Graphical contributions toT: (a) Lowest order; (b) Typical one-loop correction.

fractions. We denote these asx andy for the incoming and outgoing pions,
respectively. We then have the following representation for the form factor

Fπ (Q2) =
∫ 1

0
dx dyφπ(y, µ2) T(y, x, Q2, µ2) φπ(x, µ2) . 7.

Here φπ (x, µ2) is the valence-state wave function describing a quark with
fractionxof the pion’s momentum.T (x, y, Q2, µ2) describes the hard scattering
of partons. It is a perturbative expansion in the strong coupling (αs (µ2)) at scale
µ2, and is free of infrared divergences order-by-order in perturbation theory.
At lowest order, it is given by the diagrams shown in Figure 3a. Since the
incoming and outgoing pairs are each at a tiny transverse separation, orbital
angular momenta are negligible, and partonic helicities must sum to zero. The
pairs of incoming and outgoing external lines in the diagrams are thus projected
onto Dirac matrices that represent these helicity-zero pairs (6). At the same time,
because masses are neglected, helicities are conserved in perturbation theory,
and hence in the hard scattering, to all orders. This has important consequences
for hadrons with spin. An exercise in dimensional counting shows thatT has
dimensions (mass)−2, and, hence, scales as 1/Q2. Its explicit lowest-order form
is

TH = 16πCFαs(µ
2)

[
2

3
· 1

xyQ2
+ 1

3
· 1

(1 − x)(1 − y)Q2

]
, 8.

whereCF = (N2−1)/2N= 4/3 in QCD.
In perturbation theory, it is possible to show that the valence PQCD result

Equation 7 is a theorem, which describes the behavior ofFπ(Q2) at largeQ2 to
all orders inαs. Corrections are suppressed by powers ofQ2, including those
due to the Feynman (soft) mechanism described above (5, 6, 10). Helicity con-
servation inT is also valid up to similar corrections. Space does not allow
a discussion here of technical aspects of this proof or of the calculation ofT
beyond lowest order. The basic technique is already illustrated by a typical
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one-loop correction, Figure 3b. For the pion form factor, the full one-loop
calculation has been performed explicitly (14, 15). We keep only those contri-
butions toT from Figure 3b where all quark and gluon lines are off-shell by
at least the renormalization scale,µ2. T then depends on only two momentum
scales,Q and µ. Alternatively, we can think ofµ2 as the minimum trans-
verse momentum carried by lines inT. Suppose, now, that we chooseµ = Q.
By the uncertainty principle, this corresponds to including inT only lines that
are within 1/Q of each other in transverse distance, as we anticipated in our
discussion of Figure 2 above. By choosingQ= µ we get the extra benefit of
expandingT in terms of the small parameterαs(Q

2). Thus,µ = Q will be our
default choice of scale, although other choices may sometimes offer special
advantages.

2.1.2 TRANSVERSE DEGREES OF FREEDOM INFπ. Our next exercise in factor-
ization is to return to Equation 7, taking into account transverse degrees of
freedom. Remaining in the valence picture, we recall that the pair in the in-
coming and outgoing pions are not literally at a point, but are separated by
transverse vectorsbi when they undergo the hard scattering, wherei = 1 (2) for
the incoming (outgoing) pion. Again,Q2= ( p2 − p1)

2. The wave functions
in Equation 1, which we now denoteP, are characterized by both fractional
momenta and transverse separation, and the form factor is re-expressed as a
convolution in both (8),

Fπ (Q2) =
∫ 1

0
dx dy

∫
d2b1

(2π)2

d2b2

(2π)2
P(y, b2, p2, µ)

× T(y, x, pi , b, µ) P(x, b1, p1, µ), 9.

whereT is a new hard-scattering function. Because we integrate over the
variablesbi conjugate to transverse momenta,µ does not play the role of a
transverse momentum cutoff, as in Equation 7, but is simply the renormalization
scale. On the other hand, the wave functionsP depend upon the momentapi and
they, along withT, are not individually Lorentz-invariant. The requirement of
Lorentz invariance in the complete amplitudeFπ will lead to evolution equations
below. We emphasize that, summed to all orders, Equation 9 is equivalent to
Equation 7 at leading power inQ2. Depending on the details ofP, however, it
differs from Equation 7 in nonleading powers of Q2 in general.

We next explore the relation between the two factorization procedures a little
further. Intuitively, we expect that the wave functionP nearb= 0—that is
at small separation for the pair—is related to the distribution amplitudeφπ.
Specifically, it is not difficult to show that (7)

P(x, b = 1/µ, pi , µ) ∼ φ(x, µ2) , 10.
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up to corrections that are suppressed by the strong coupling evaluated at the
factorization scaleµ. The Lorentz noninvariance of theP disappears in this
limit.

Let us now compare Equation 9 to the classic expression, Equation 7. IfQ2

is large enough, we expect according to our discussion above thatT in Equation
9 is concentrated nearb ∼ 1/Q, so that by Equation 10,P may be replaced
by φπ. In this limit, the two expressions are equivalent. A closer look atT
in Equation 7, however, shows that it actually corresponds to a localization in
transverse space only at the scale (xyQ2)−1. Whenx or y vanishes, the hard
scattering spreads out in transverse space, and violates the original assumptions
of the partonic discussion of Section 1 above, and the reaction is defined by
the Feynman mechanism. Also note that ifb is large, the neglect of orbital
contributions to helicity is no longer justified, even if helicity is conserved in
the hard scattering (16, 17, 18). The contribution of the end-point regionsx or
y → 0 or 1 (the equivalent of the Feynman mechanism for ¯qq states) depends
on the details of the wave functionsφ, but it poses a problem, unlessQ is very
large (19, 20). We shall see shortly that the use of the modified factorization
in Equation 9 serves to stabilize the valence PQCD picture of scattering at
somewhat lowerQ2 than in Equation 7 (8). To see how this comes about, we
turn now to a discussion of evolution, as derived from the factorization formulas
Equation 7 and Equation 9.

2.2 Evolution and Asymptotic Behavior
Equations 7 and 11 for the elastic form factor are both convolutions of functions
that depend upon arbitrary choices: the renormalization scaleµ in the former
case, and the Lorentz frame in the latter. In fact, a great deal can be learned from
these parameters through their role in the factorization formulas. Among other
things, it will allow us, in the following subsection, to give an explicit expression
for the asymptotic behavior ofφπ and the form factor at high momentum
transfer.

2.2.1 EVOLUTION. Consider Equation 7 forFπ (Q2). The physical form factor,
of course, cannot depend uponµ:

µ
d

dµ
Fπ (Q2) = 0 . 11.

Equivalently, in terms of the hard-scattering and wave functions,

0 =
∫ 1

0
dx dy

[
dφπ(y)

dµ
Tφπ(x) + φπ(y)

dT

dµ
φπ(x)

+ φπ(y)T
dφπ(x)

dµ

]
. 12.
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This expression may be treated by separation-of-variables techniques.dφπ(y,
µ2)/dµ, for instance, may depend upon the variablesy andµ2 only, the latter
only throughαs(µ

2) (since there are no other dimensionless variables available).
In fact, its derivative with respect toµ2 must be perturbatively calculable,
because changes inµ shift contributions from lines that are off-shell by order
µ2 betweenφπ andT. (See Section 2.1.1.) The most general form that satisfies
these requirements is itself a convolution (6):

µ
dφ(y, µ2)

dµ
=

∫ 1

0
dz V(y, z, αs(µ

2))φπ(z, µ2) . 13.

The kernelV is a distribution, rather than a simple function ofy andz, but
its integral with any smooth function is finite. Given the convolution form
Equation 7 for the form factor, the evolution Equation 13 holds to all orders in
αs (µ2). Its explicit one-loop form is simply the coefficient of lnQ2 in the sum
of one-loop corrections to the hard scattering, such as Figure 3b. The kernelV
is known up to two loops (21). We shall not exhibit its explicit form, but only
note that, with the one-loopV, Equation 13 may be solved explicitly. The most
general solution is an expansion in Gegenbauer polynomialsC3/2

n (6),

φπ(x, µ2) = x(1 − x)
∑
n≥0

anC3/2
n (2x − 1)

(
ln

µ2

32

)−γn/2β2

, 14.

with β2 = (33 − 2nf)/12 the one-loop coefficient of the QCD beta function,
theγ n known anomalous dimensions and thean arbitrary coefficients.

Space allows us to make only a few observations on this fascinating result:
(i) The an are linear combinations of matrix elements, identified in Section
2.3 below; (ii)γ 0 = 0. This is because then= 0 wave function,φ0(x) = a0 x
(1− x), gives zero when integrated with the one-loop kernel in Equation 13. We
shall refer to this asymptotic form of the pion wave function many times below;
(iii) for n > 0, all γ n > 0, which implies that asµ2 → ∞, all x-dependence in
(16) that is not in the form of the asymptotic wave function decays, albeit only
logarithmically.

2.2.2 SUDAKOV RESUMMATION. Turning now to factorization in transverse
space, we see that the factorization Equation 9 suggests another evolution
equation, this time in the momentum scaleQ, which enters the wave func-
tions through (non-invariant dependence on) the momentum vectorspi. This
equation will allow us to resum perturbative logarithms of the form ln(Qb), with
b the distance between the hard scatterings, an example of Sudakov resumma-
tion. The derivation of this equation is given in a related context in (7). Here,
we shall content ourselves with a physical explanation and the basic results.
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In brief, the effect of the resummation will be to suppress the nonperturbative
contribution toFπ, and thus to extend valence PQCD to lowerQ2.

For large momentum transfer, the dynamics of elastic scattering strongly dis-
favors configurations in whichb is large. The physical reason for this result is
that an isolated accelerated charge must radiate, by correspondence to classical
gauge theory. Asb grows, the two charges associated with quark and antiquark
become more isolated, and have correspondingly more tendency to radiate
gluons. In elastic scattering, however, such radiation is forbidden by defini-
tion. Perturbatively, this manifests itself in the presence of double-logarithmic
(Sudakov) corrections of the formαn

s (µ) ln2n(bQ). We therefore expect that the
double logarithms at largeb will suppress configurations for which the charges
are separated far enough to couple strongly to radiated gluons. Because the
effect is essentially classical, it is necessary to sum to all orders (take the limit
of large quantum numbers) to make this suppression manifest.

In this case, an evolution equation is derived from the independence of
expressions like Equation 9 of the choice of inertial frame. An infinitesi-
mal Lorentz transformation changes the arguments of theP ’s and ofT, but
otherwise leaves the amplitude invariant. A full derivation (see 7; the reason-
ing there is an application of a method first developed in Ref. 22) requires more
analysis ofb andQ dependence inT than we have room for here. The result is
the following evolution equation, which takes the place of Equation 13. Taking
p+ = Q in the center-of-mass frame, we have,

Q
∂

∂Q
P(x, b, p, µ) = [K (bµ) + G(x, Q/µ)] P(x, b, p, µ) , 15.

in which the functionsK andG may be computed in perturbation theory.K
depends only on the infrared variableb, andG on the ultraviolet variableQ.

The details of the solution to this equation are straightforward, and may be
found in (7). The result is striking:

P(x, b; p, µ) = e−S(x,b,Q,µ)
{
φπ(x, 1/b2) +O [

α2
s(1/b)

]}
, 16.

whereφπ is the usual light-cone wave function for the pion, now evaluated at
µ = 1/b. The Sudakov exponentS strongly suppresses the wave function at
largeb, through the summation of double logarithms ofbQper loop,

S = CF

∫ x Q

1/b

dµ′

µ′
αs(µ

′)
π

ln

(
x Q

µ

)
+ x ↔ 1 − x + · · · , 17.

where we have suppressed terms with fewer logarithms per loop. Note in
particular that within the integral the perturbative coupling runs with the vari-
ableµ′, so that the Sudakov exponentSdiverges atb= 1/3QCD. WhenQ �
3QCD, the exponent is large, and the suppression great, wheneverb � 1/Q,
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even forb � 1/3QCD. The quark-antiquark state with opposite helicities again
dominates in this limit. The suppression of large-b configurations has many
applications to hadron-hadron reactions, and helps justify the concept of trans-
parency in hadron-nucleus scattering (23).

2.2.3 THE ASYMPTOTIC FORM FACTOR. We are now ready to discuss one of the
central results of the perturbative treatment, the asymptotic behavior of the pion
electromagnetic form factor. We begin by recalling that the natural choice of
scale in the factorized expression Equation 7 isQ= µ (see Section 2.1.1). For
Q large enough, then, the wave function will be dominated by thea0 term in its
expansion (Equation 14), andT will be well-approximated by its lowest-order
contribution, Equation 8. Thex andy integrals in Equation 7 are then simple,
and the only remaining uncertainty is in a factor ofa2

0.
To fix a0, we observe that the decay of the charged pion through the weak

interactions may be treated by the same method of factorizing hard and soft de-
grees of freedom. In this case, the hard interaction is at a scale of the order of the
W-mass, and the wave function of Equation 14 is again dominated entirely by its
a0 coefficient. Then, defining the pion decay constantfπ (with fπ ∼ 93 MeV) by〈

0|d̄(0)γ µ(1 − γ5)u(0)|π(p)
〉 = −

√
2pµ fπ , 18.

we may identifya0 = √
3 fπ in Equation 14. (More generally, we have 3

fπ/
√

N with N the number of colors). This result, along with properties of the
anomalous dimensions (γ n > 0 for n > 0), allows us to identify the largeµ2

(or Q2) behavior of the pion’s quark wave function:

φπ(x, µ2) →
√

3 fπ x(1 − x) . 19.

This is generally referred to as the asymptotic wave function of the pion. We
emphasize that it is model-independent.

Substituting Equation 19 into Equation 7, and using the lowest-order hard-
scattering functionT (Equation 8) withµ = Q, we find an elegant expression
for the pion form factor at high energy, which is valid up to corrections in
αs(Q) ∼ 1/ln(Q) (5, 6),

Fπ (Q2) = 12 f 2
π πCFαs(Q2)

Q2
. 20.

2.2.4 SUDAKOV RESUMMATION FORFπ. With an eye to contributions for which
the pair is widely separated, we may also use the Sudakov-resummed transverse
wave function (18) in Equation 9, to get

Fπ (Q2) =
∫ 1

0
dx dy

∫
d2b

(2π)2
φπ(y, 1/b2) e−S(y,b,Q,µ)

× T(y, x, Q, b, µ) e−S(x,b,Q,µ) φπ(x, 1/b2) 21.
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where we have simplified to a single transverse separation (8, 24). The Sudakov
exponential suppresses contributions fromb � 1/Q. The natural scale of the
coupling inT isµ ∼ 1/b, even in the end-point region. Perturbation theory thus
remains self-consistent, by the dynamical suppression of the overlap region of
valence PQCD and the soft mechanism. For moderateQ2, however,Fπ still
receives substantial contributions from relatively largeb < 1/3QCD. In this
region, Ref. 24 should be thought of as a valence PQCDmodelfor Fπ. Form
factors computed according to each of these procedures will be confronted with
the data in Section 3 below.

2.3 Wave Functions and Nonperturbative Analysis
In the factorized picture of elastic scattering we treat hadrons as superpositions
of states, each with definite numbers and positions (or momenta) of partons.
Also, as we have seen, it is the states with the fewest partons—the valence
states—that dominate exclusive processes at sufficiently highQ2. Relativistic
valence wave functions for valence states may be identified with matrix ele-
ments that connect single-particle states of definite hadron momentum|h(p)〉
with the hadronic vacuum|0〉 by the action of fields that absorb the relevant
valence quanta. The analysis of these matrix elements can lead to valuable
nonperturbative information, which supplements the purely perturbative results
outlined above.

2.3.1 MATRIX ELEMENTS. The light-cone wave function in position space for
the valence state of aπ+ may be defined in terms of the matrix element of an
up-quark fieldu with a conjugate down-quark field,

9(z · p, z2) = 〈
0|d̄0 γ +γ5u(z)|π+

(p)
〉
, 22.

wherep is taken in the plus direction. In the following, we shall generally
neglect hadronic masses. We recall thatγ ± = 1/

√
2

(
γ 0 ± γ 3

)
. So that

9(z · p, z2) may have a natural interpretation in terms of independent measure-
ments of the up and antidown quark fields, we choose the separation between
the two fields to be space-like,z2 < 0. The Dirac structureγ +γ 5 projects out
precisely the zero-helicity combinations of the quark and antiquark fields.

As defined, the wave function9 of Equation 22 is gauge-dependent. A
common choice of gauge for the gluon fieldA is A+ = 0 for a pion moving
in the plus direction. Alternately, we may connect the fieldsd̄ andu(z) by a
path-ordered exponential in the directionzµ, P exp[

∫ 1
0 dt zµ Aµ(zt)], with Aµ

expressed as a matrix in the quark representation.
The momenta of the partons in the valence state may be fixed by taking

Fourier transforms. Forφπ(x), we fix the fractional momentum of the quark
to bexp in the pion’s direction of motion, and integrate freely over all of its
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other components (and hence those of the antiquark) by settingz+ = zT = 0,
and taking the transform of9 with respect toz−,

φπ(x, µ2) =
∫ ∞

−∞

dz−

2π
ei z−xp+

9(z− p+, 0)A+=0 . 23.

Hereφπ(x) depends explicitly on the renormalization scaleµ2, because the limit
z+, zT → 0, which takeszµ to the light cone,z2 = 0, is singular. Defined in
this fashion,φπ(x) is referred to as alight-cone wave function.

Readers familiar with the QCD analysis of deeply inelastic scattering (DIS)
will recognize a similarity between the valence quark wave function given
by Eqs. 22 and 23 and the inclusive parton distribution density in a hadron.
Note, however, that while a parton distribution in DIS is a probability,φπ is
an amplitude. Thus, although we know the behavior of our light-cone wave
functions at very largeµ, they might evolve slowly to this form, and we would
like further information on their properties for intermediate values ofµ. A
direct approach is to compute the relevant matrix elements using the methods
of lattice QCD. Moments of proton wave functions have been computed in
this fashion (25, 26), and more work may be anticipated in the future. Direct,
nonperturbative information on the wave functions may also be found using
instanton models of the QCD vacuum (27).

The traditional approach to derive extra, nonperturbative knowledge on wave
functions has been the use of QCD sum rules (28) to determine their moments
of φπ with respect tox. We shall discuss light-cone wave functions only, but we
note that sum rules have recently been applied to wave functions with transverse
degrees of freedom (29, 30).

2.3.2 SUM RULES FOR WAVE FUNCTIONS QCD sum rules (28) have many ap-
plications, whenever a nonperturbative quantity can be related by analyticity to
the integral of a Green function (vacuum expectation value of a time-ordered
product of local fields) over a range of highly virtual momenta. When this is
the case, perturbation theory, supplemented by the operator product expansion
(OPE), may be used to calculate the integral of the Green function, from which
the value of the matrix element may then be inferred.

In the following, we show how QCD sum rules may be used to obtain the
moments of wave functions, parameterized in terms of experimentally fitted
gluon and quark vacuum condensates (28). Using this technique, Chernyak &
Zhitnitsky (31) obtained the following simple wave function,

φCZ
(
x, µ2

0

) = 5
√

3 fπ x(1 − x)(1 − 2x)2, 24.

withµ0 ≈ 0.5 GeV. This result became a common test case for many subsequent
authors. This wave function is plotted, along with the asymptotic wave function,
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Figure 4 CZ wave function (solid) and asymptotic wave function (dashed).

in Figure 4. Compared to the asymptotic expression of Equation 19, which is
centered atx = 1/2, the CZ wave function has a double humped form, with
maxima near the extremes ofξ . It has been the subject of much controversy,
as will be discussed in Section 3.1.

To derive sum rules for moments of the wave functionφπ (31), we first
perform a formal Taylor expansion of the quark fieldu(z) in Equation 22,

u(z−) =
∞∑

n=0

(z−)n

n!
(∂+)n u(0) . 25.

Substituting the resulting expression into Equation 23, and carrying out thez−

integrals, we derive the following expansion in local operators,

φπ(x, µ2) =
∞∑

n=0

(−i )n

n! p+n+1

dnδ(x)

dxn

〈
0|d̄(0)γ +γ5 (∂+)nu(0)|π(p)

〉
. 26.

Moments ofφπ with respect tox then pick out individual matrix elements: (32)

(p+)n+1
∫ 1

0
dxxnφπ(x, µ2) = i n〈0|Jn(0)|π(p)〉 , 27.

where

Jn(0) = d̄(0)γ +γ5(∂
+)nu(0). 28.
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Figure 5 Contours in thep2 plane.

Analogous relations between moments of a light-cone distribution and matrix
elements of local operators are familiar from DIS.

We now consider the specific Green function (correlator)

Gn(p2, p+) =
∫

d4zei p·z〈0|T [ Jn(z)J0(0)]|0〉, 29.

with Jn (z) given via Equation 28. Such a two-field Green function enjoys
the analyticity structure shown in Figure 5. At fixedp+ > 0, Gn( p2, p+) is
an analytic function in the complexp2 plane, except for poles and branch cuts
along the real, positivep2 axis. By Cauchy’s theorem, the integral ofGn( p2, p+)
along the two contoursCA andCB in Figure 5 give the same result. The value
p2 = s0 where these contours meet is sometimes called the duality interval,
referring to the complementary (dual) manners in which they are evaluated.

ContourCA is evaluated using our knowledge of hadron spectroscopy. Be-
cause the contour runs around the real axis, the integral is given by the imaginary
part ofGn( p2, p+): a sum of delta function contributions from hadronic bound
states with the quantum numbers of the pion, plus possible multiparticle contin-
uum contributions. To emphasize the lowest-lying state, in this case the pion,
we multiply Gn( p2, p+) by the entire function e−p2/M2

, with M2 an adjustable
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mass. Then, a short calculation for the integral alongCA gives

I A(M2) =
∫

CA

dp2

2π i M 2
Gn(p2, p+)e−p2/M2

= (i p+)n+1

M2
〈xn〉〈x0〉 + RA, 30.

where〈xn〉 is the weighted integral ofφπ in Equation 30, andRA is a remainder,
associated with higher-mass resonances such as thea1 and the continuum. This
integral is referred to as a Borel transform.

The corresponding integralIB(M2) taken along contourCB is computed quite
differently. Along CB, the integrand is evaluated far from any resonances,
and we may hope that it behaves as it does for Euclideanp2 < 0, where the
OPE applies. Rules for its calculation are straightforward but rather technical.
The basic structure of the answer, however, is readily expressed as a sum of
a perturbative term plus two nonperturbative contributions, from the gluon
condensate〈Gµν(A) Gµν (A)〉0 and the quark condensate〈q̄q〉0,

I B(M2) = h(n)
I (M2, p+) + h(n)

G2 〈G2〉0 + h(n)

(q̄q)2(〈q̄q〉0)
2 + RB, 31.

whereRB represents corrections. All theh’s (coefficient functions of the OPE)
are computed in perturbation theory.

The values ofM2 ands0 are to be chosen to minimizeRA in Equation 30.
Values of〈q̄q〉0 and〈G2〉0 may be found from the analysis ofe+e− → hadrons
(28). Finally the coefficient functionsh(n) depend on a renormalization scale
µ2

0. Combining these choices and parameters, and settingIA = IB, we may
therefore determine〈xn〉, or equivalently〈ξn〉, with ξ = 1 − 2x the relative
fractional momentum. The CZ wave function in Equation 24 above was found
by fitting its moments to those found by the sum rules.

2.4 Beyond the Pion
2.4.1 GENERALIZATIONS. Most of the developments outlined above for the
pion apply as well to electromagnetic form factors for other hadrons, espe-
cially baryons (9, 34, 35, 36) and also resonance production, as well as vector
mesons and kaons (6, 31, 37, 38). The form factors of baryons are determined
by three-quark valence wave functions, and for both vector mesons and baryons
nontrivial spin structure must be taken into account. So long as transverse de-
grees of freedom may be neglected, however, spin may be described in terms
of conserved helicity, where the helicity of a hadron is given by the sum of the
helicities of the its partons. A PQCD treatment of violations of helicity conser-
vation has been proposed in (16, 17). We shall have occasion below to review
some of the successes and limitations of this rich constellation of predictions
for hadronic form factors.
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For example, the wave function of a proton is a sum of terms describing total
helicity±1/2, times functionsφ i(x1, x2, x3, µ

2) with 6 i xi = 1. The application
of evolution analysis to these wave functions shows that asymptotically they
have the simple form,

φP
ASY(xi ) = const. × x1x2x3. 32.

In this case, no readily observed decay amplitude is available to normalize
the asymptotic wave function, and hence the proton’s form factor. A Sudakov
analysis of the proton wave function and form factor is also possible, with
the same general properties as for the pion (7, 36). It involves two transverse
separations, however, and is correspondingly more complex.

Another important difference between the proton and the pion is in the bary-
onic analogue of Equation 7 for helicity form factorsG (see below), which we
may represent schematically as

G(Q2) =
∫

dx1dx2 dy1dy2 φP
(
yj , µ

2
)

TG(yj , xi , Q) φP
(
xi , µ

2
)
, 33.

whereTG, and henceG, is proportional toQ−4, and begins at orderα2
s . Here,

in contrast to Equation 7 for the pion, however, the perturbative expansion of
the hard-scattering functionTG receivesinfrared divergentcontributions from
regions that resemble the Feynman mechanism, in which one quark carries
essentially all of the proton’s momentum, beginning at two loop corrections
(9, 10). Such regions are suppressed by Sudakov corrections. Progress has
been made in quantifying this observation for valence PQCD, by introducing
transverse degrees of freedom for baryons, as for the pion, but a complete
formalism for baryon form factors, even to leading power inQ2, remains for
the future.

2.4.2 BARYON HELICITY MATRIX ELEMENTS. For use below, let us define
electromagnetic helicity matrix elements for nucleons. Taking into account
resonance production, an initial state with helicityλ = 1/2 may become a final
state withλ′ = 1/2 or 3/2. Transitions between a nucleon state|N〉 and final
state|N ′〉 can be expressed in terms of dimensionless helicity matrix elements,

GH ≡ 1

2MN
〈N ′, λ′|εµ · Jµ|N, 1/2〉. 34.

This notation follows (39). The polarization vectorsε ± ,0 correspond to right
(G+) and left (G−) circularly polarized photons and longitudinally (G0) po-
larized photons, respectively.G+, G0, andG− describe transitions in which
1λ = 0, 1, and 2, respectively. Assuming that helicity is conserved, valence
PQCD suggests thatG+ ∝ QG0 ∝ Q2G−. For elastic scattering, since the
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recoil nucleon has spin 1/2, only the helicity conservingG+ (1λ = 0) and
non-conservingG0 (1λ = 0) contribute.

2.5 Nonasymptotic Form Factors
The valence PQCD results above determine the form factor at very highQ2.
How high one must be, however, is a matter of debate (see below). It is therefore
important to develop treatments of the transition to asymptotic behavior. The
evolution of wave functions is a step in this direction, but at moderateQ2, it is
necessary to apply methods or develop models that take into account processes
that are suppressed even by powers ofQ2 at high energy. These include the soft
processes discussed above.

2.5.1 SUM RULES FOR FORM FACTORS. Ioffe & Smilga (40) and Nesterenko &
Radyushkin (41) have utilized the sum rule approach to directly obtain form
factors, without the intermediate step of determining wave functions. This
approach, as described above, depends on the analyticity properties of Green
functions that are associated with form factors. It is thus not a dynamical theory
of soft or hard interactions, but relies on general properties of QCD, such as
the OPE, in addition to perturbative calculations. For a hybrid approach, with
features of both QCD sum rules and valence PQCD (see 42).

For the pion form factor the relevant Green function may be expressed as

Tµ(p1, p2) = i 2
∫

e−i p1·y+i p2·z〈0
∣∣T [ J(y)Jem

µ (0)J(z)]
∣∣0〉

d4zd4y, 35.

with J= J0 defined as in Equation 28, andJem
µ the electromagnetic current. In

terms of a related scalar amplitudeT, this Green function possesses a double
dispersion relation,

T
(

p2
1, p2

2, Q2
) = 1

π2

∫ ∞

0
ds1

∫ ∞

0
ds2

ρ(s1, s2, Q2)(
s1 − p2

1

)(
s2 − p2

2

) . 36.

The spectral function contains a pion pole which defines the pion form fac-
tor, ρππ(s1, s2, Q2) = 2π2 f 2

π Fπ . . ., as well as a continuum above the 3-pion
threshold, which also includes the broada1 state. The form factorFπ is extracted
by relating the two contours of Figure 5, this time in both variabless1 ands2. In
(41), the Borel transform is replaced by a simple integral (M2 → ∞), ands0
∼ 8π2 f 2

π ∼ 0.7 GeV2 is adjusted to reflect this choice, known as local dual-
ity. This leads to a relation betweenFπ(Q2) and the lowest-order perturbative
contribution toρ, which may be evaluated to give

Fπ (Q2) = 1 −
(
1 + 6s0/Q2

)(
1 + 4s0/Q2

)3/2 . 37.

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 1
99

7.
47

:1
93

-2
33

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
R

eg
in

a 
on

 1
2/

26
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



             
P1: ARS/dat P2: ARK/vks QC: MBL/abe T1: MBL

September 29, 1997 16:41 Annual Reviews AR043-06

214 STERMAN & STOLER

Expanding in inverse powers ofQ, this expression behaves asQ−4 for large
momentum transfers, and is thus eventually nonleading compared to the per-
turbative prediction (2). Nevertheless, as we shall see, it gives a viable fit to the
available data, which implies at the least that soft physics plays an important
role in the charged pion form factor at present energies. Beyond lowest order,
ρ includes gluonic corrections, which appear to correspond to the hard gluons
of valence QCD. Similar methods have been used to treat baryon form factors
(43, 44).

2.5.2 MODELS. Unfortunately the complexity of soft processes in QCD does
not lend them to simple physical models. Their description in terms of fun-
damental QCD is one of the outstanding theoretical challenges in the theory.
There have, however, been useful attempts to bridge the low and highQ2 re-
gions with various phenomenological or empirical approaches, concentrating
on nucleon form factors.

The generalized vector dominance model (VDM) or hybrid model of (45)
begins with the VDM, which yields the requisite lowQ2 form-factor. Addi-
tional terms join VDM form-factors smoothly to PQCD expectations at high
Q2 (GM ∝ Q−4 andGE ∝ Q−6). With the appropriate choice of parameters
an excellent agreement with theGP

M data is achieved over the entire range of
availableQ2. Agreement with the other elastic form factors, however, turns out
to be poor in the light of more recent data.

The constituent quark model has been been modified and relativized to extend
its validity into the few GeV2 region ofQ2 (46, 47, 19). For example, in the
calculation of hadronic form factors in (19), the constituent quarks, of mass
≈.33 GeV, have wave functions which are solutions to a potential derived from
a quark-quark interaction model. In a light-cone frame the wave function takes
the formψ(x, pT) ∼ X (x)P(x, pT). The range ofpT in the model wave function
effectively has an ultraviolet cutoff so that the one-gluon perturbative parts are
not included in the derived form factor. With reasonable choice ofX thesoft
components play an important, and even dominant, role over the entire range of
measuredQ2. However, these models are not rigorous enough to make precise
predictions.

The diquark model (48, 49, 50) assumes that the baryon distribution function
can be expressed in terms of two constituents, a quark and a diquark, which
consists of a correlated quark pair. The diquark structure allows for helicity
non-conservation, and thus at some level can also account for soft processes.
The diquark becomes completely equivalent to the valence PQCD model in the
high Q2 limit. Its several parameters can be tuned to give a good fit over the
entire range ofGP

M , including the transitionQ2 range.
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3. EXPERIMENTAL STATUS OF HADRONIC
FORM FACTORS

3.1 Pion Form Factors
In this section we will discuss theπ+ andπ0 form factors as obtained in the
reactionsp(e, e′π+)n and e+ + e− → π0, respectively. Given the relative
simplicity of the mesonic valence state, we might expect perturbative analysis
to apply at lower momentum transfers for pions than for nucleons. We discuss
the successes and shortcomings of the valence QCD approach in explaining the
data, and also point out important uncertainties in the data at highQ2.

3.1.1 THE CHARGED-PION FORM FACTOR. Theπ+ form-factor is obtained by
studying electroproduction on a hydrogen target (see Figure 6). The aim is
to separate thet-channel process, in which the electron scatters from a nearly
on-shell virtual pion emitted from the proton. Thist-channel cross section,
which is due to the exchange of a longitudinal (L) photon, determines the pion
form factor, though the relation

σL ∼ − tg2
π N N(t)(

t − m2
π

)2 F2
π (Q2) , 38.

wheret is the squared momentum transfer to the nucleon, andg2
πNN(t) is the

πNN coupling.

Figure 6 (a) Interpretation oft-channelπ+ production in terms of the pion form factorFπ. (b)
Lowest order diagram for theπ0 form factor.

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 1
99

7.
47

:1
93

-2
33

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
R

eg
in

a 
on

 1
2/

26
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



                 
P1: ARS/dat P2: ARK/vks QC: MBL/abe T1: MBL

September 29, 1997 16:41 Annual Reviews AR043-06

216 STERMAN & STOLER

Figure 7 The form factor of theπ+ mesonQ2Fπ(Q2) vsQ2. The data are from (51–53). See the
text for comments on the interpretation of the higherQ2 data. The dot-dash curves labelled CZ and
ASY are obtained from Equation 39, usingφCZ andφASYrespectively. The dashed curve labelled
SR is the direct sum rule result of (43). The solid curve LS is from (8), using the CZ valence quark
distribution amplitude, and including the effects of Sudakov suppression.

Nearly all the existing highQ2 data, shown in Figure 7, were obtained at
Cornell (51–53). Care, however, must be exercized in the interpretation of the
higherQ2 points, which do not include systematic errors. The reason for this
uncertainty is that the separation ofσ L from the complete cross section requires
measurements at different electron scattering angles at the sameQ2. This
“Rosenbluth separation” was not practical at the highestQ2 in this experiment.
ForQ2 > 4 GeV2, the (unwanted) transverse cross section was estimated from
an extrapolation of lowQ2 data, and subtracted by hand. Thus, although reliable
data exist forQ2 < 3 GeV2, the 6.3 and 9.7 GeV2 points provide little help in
distinguishing between theoretical models.

There are also important theoretical issues in the extraction of the data. For
instance, the struck pion is off-shell, and one must extrapolate to the physical
pion pole att = +m2

π . Uncertainties in thet dependence ofg2
π N N(t) also lead to

uncertainties inFπ. In addition, the reliability of high-Q2 form factors extracted
in this manner has been questioned by (54), who claim that otherhard, non-
resonant processes compete with thet-channel process, and may be difficult to
separate from it. These objections aside, an important future goal is to extend
the pion form factor data to higherQ2 (55).
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3.1.2 COMPARISON WITH THEORY. In the valence PQCD framework, the pion
form factor may be written in factorized form as in Equation 7. Treating the
hard-scattering at lowest order, withfπ ∼ 93 MeV, we have

Fπ (Q2) = 16πCFαs(κ
2)

Q2
|I |2 with I =

∫ 1

0
dx

φπ(x)

x
. 39.

This formula, with a valence quark distribution amplitude derived from QCD
sum rules (31), denotedφCZ, gives a pion form factor in rough agreement with
the data as shown in Figure 7. In obtaining this, the variation inαSwas fitted to
the evaluated data (56), withκ2 = Q2/4. The asymptotic distribution amplitude
8ASY, Equation 19, which yields Equation 20, seriously underestimates the
data. Referring to Figure 4, the difference is that8CZ, Equation 24, has a
double-hump structure, concentrated nearx ∼ 0 and 1, and hence yields a
larger value forI than the more central8ASY. This apparent success inspired
many theoretical papers based upon the QCD sum rule technique for describing
exclusive reactions. The authors of (19, 20) on the other hand, observed that
with 8CZ, Equation 39 is dominated by soft gluon momentak2

g (=xyQ2), near
the end-point regions discussed above. They argued that Equation 39, or for
that matter PQCD, is invalid in the kinematic regime where data is available,
because higher-order perturbative corrections would be uncontrollably large
for gluons of such low momenta. If one cuts off the integral in Equation 39
below a minimum gluon invariant mass, sayk2

g ≈ .5 GeV2, one derives a much
smaller “legal” part of the form factor (≈10 – 20% remains forQ2 between 5 and
10 GeV2 ).

Roughly, proponents of valence PQCD were faced with the dual problems of
how to keep the main contributions to thex integral in Equation 39 away from
the endpoints, at the same time enhancing their values relative to the simple
use of8ASY. One way of doing this is to resum a selection of higher-order
corrections into the argument of the strong coupling. Choosingµ2= xyQ2 in
T in Equation 7 results in a significant enhancement, because the perturbative
running coupling grows as its scale decreases. This running coupling, however,
diverges forxyQ2= 32

QCD, which requires the introduction of a scale below
which the coupling is frozen. The result is naturally quite sensitive to the cutoff,
but it can give a reasonable result without dipping too far into the nonperturbative
region (57).

In a related development, it was argued that transverse degrees of freedom
should not be neglected, and indeed mimic a gluon effective mass, which sup-
presses the blowup nearx, y = 0 (58). We have already seen how Sudakov
resummation of transverse degrees of freedom in Equation 24 results in a nat-
urally self-consistent calculation of the form factor, without cutoffs (8). In
this case, the CZ distribution amplitudes continued to account for the existing
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data, when the enhancement associated with the running coupling was included.
These results for theπ+ form factor are plotted in Figure 7.

The calculation of (8) has been generalized in (59), who specifically included
an intrinsic transverse wave function. That is, in Equation 21 above, they
replaced exp(−S) → exp(−S) 6(x, b). Using a model, Gaussian shape for
6, they found that this further protected the resulting form factor from the soft
region, but also further supressed the hard part of the form factor below the data.
Of course, this procedure introduced an additional parameter, in the Gaussian,
and it included a constituent quark mass.

In an alternative approach (described in Section 2.5.1 above) the direct pre-
diction ofFπ from QCD sum rules, Equation 37 (41), accounts for most of the
measuredFπ, without including gluon exchange into its perturbative calcula-
tion, even though the resulting expression decays asQ−4 at higherQ2. In this
and other alternatives to the valence-quark picture, the apparent scaling withQ2

of the present data is interpreted as something of an accident. The extra con-
tribution of a gluon exchanged between quarks, which producesQ−2 behavior
asymptotically, has been estimated (60), and leads to a modest increase at the
highest availableQ2. These two contributions are referred to as soft and hard
(60), the latter being identified with the valence PQCD prediction.

Other publications continue to focus on the relative importance of soft and
hard processes, and in particular how to deal with the difficult soft sector.
Examples are (18, 29, 30, 42, 59, 61), who all conclude that soft processes are
important forQ2 corresponding to the existing data.

3.1.3 TIME-LIKE (s = q2 > 0) PION FORM FACTOR. This is obtained in the reac-
tion e+ + e− → γ ∗ → π+ + π−. Only one data point exists in the multi-GeV2

region, ats = M2
J/ψ ≈ 9.6 GeV2, obtained from the ratio (J/ψ →π+π−)/(J/ψ

→ e+e−) by (62). This point appears to be more reliable than the higher-Q2

space-like data. Its calculation is identical to the space-like case in most re-
spects, and it would be useful to obtain time-like data over a range ofQ2. This
process was calculated (63) with valence PQCD techniques, employing evo-
lution and Sudakov suppression, as in (8). The ratio of experimental timelike
to spacelike form factors, about 2, is consistent with the valence PQCD calcu-
lation, although the overall normalization is low by a factor of two or more,
depending on the light-cone distribution amplitude employed.

3.1.4 THEπ0 FORM FACTOR. Theγ + γ ∗ → π0 form factor is expected to be
a particularly good test for the pion’s valence distribution amplitude, since at
lowest order in the hard scattering it is a pure QED process (see Figure 6b).
Higher Fock state contributions are suppressed by powers ofαs(Q

2)/Q2. In
addition, there is no analogue of the soft, Feynman mechanism contributions,
which require an incoming and an outgoing pion.
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Figure 8 Form factor in the few GeV2 range forγ + γ ∗ → π0. Data forQ2 > 3 GeV2 are from
(64), and lowerQ2 data from (66). The dot-dash curve labelled CZ is the result of usingφCZ in
the integralI in Equation 40, and the solid curve labelled ASY is obtained when usingφASY. To
obtain these curves, Equation 40 has been modified so that the form factor joins smoothly with the
known value atQ2 = 0, using a generalization of the prescription of (6). The horizontal line at the
right labelled ASY-limit is the highQ2 limit, usingφASY. The dashed curve labelled SR is the soft
form factor obtained directly from QCD sum rules (67).

Experimentally, theπ0 form factor can be studied via either the Primakoff
effect or virtual Compton scattering. The former is accessible ine+e− colliders,
while the latter is more appropriate to fixed target machines. Figure 8 includes
data of the CLEO-II group, (64) which reported measurements up toQ2 ≈
8 GeV2, from reactionse+ e−→ π + γ .

Working to lowest (zero) order inαs, by analogy with Equation 39, the
relationship between theπ0 form factor and the valence quark distribution
amplitudes is

Fγ γπ0(Q2) = 4√
3Q2

I , I =
∫ 1

0
dx

φπ(x)

x
. 40.

A calculation (65) following (8), including Sudakov effects, and an intrinsic
transverse distribution amplitude as above,

Fγ γπ0(Q2) =
∫

dx
d2b

4π
φπ(x)6(x, b)T̂H (x, b, Q)e−S(x,b,Q) , 41.

appears to account well for theπ0 form factor. The results with8π = 8CZ and
φASY are shown in Figure 8. To compare theory with experiment in this lower
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Q2 region, Equation 40 has been modified so that the form factor joins smoothly
with the known value atQ2 = 0, using a generalization of the prescription of
(32). In this case,8ASY accounts for the data, while8CZ overshoots it. A recent
sum rule computation of this form factor (67) also accounts well for the data.
Because the hard-scattering in theπ0 form factor starts, as in Equation 43, at
zero order inαs, the sum rule and valence PQCD approaches both begin with the
same perturbative diagrams. Finally, one may determine the integralI directly
by fitting Equation 40 to theπ0 data, and the result is close to the value ofI for
8ASY.

Comparing theπ0 andπ+ form factors, the success of the asymptotic distri-
bution amplitude in the former suggests that8ASY should be used to compute
the valence PQCD contribution to the latter as well. Then, however, the valence
contribution with lowest order gluon exchange accounts for less than one half
of theπ+ data (see, for instance, 63). We conclude that, if the charged pion
data is accurate at all, either non-valence (soft) contributions, or higher-order
contributions in valence PQCD, must play an important role. We note that
we do not need the soft mechanism in theπ0 form factor, which is consistent
with these observations. Higher-order hard corrections are also different in the
two form factors, however, so it is difficult to draw a final conclusion without
further study. We consider, however, that it is likely that the soft mechanism
plays an important, and possibly dominant, role in the region of a few GeV2

where reliable data exist.

3.2 Nucleon Form Factors
In this section and the next we consider nucleon elastic form factors and transi-
tion form factors involving resonant states of nucleons. Since there exist stable
on-shell baryon targets, the nucleons, and there are a large variety of final states
of spin and isospin, the resonances, a wealth of experimental information can
be accessed. Nevertheless, rather limited data exist at highQ2.

3.2.1 NUCLEON ELASTIC FORM FACTORS. The elastic electron-nucleon cross
section, expressed in terms of the Sachs form factors, is

dσ

d�e
= σM frec

( |GE|2 + τ |GM |2
1 + τ

+ 2τ |GM |2 tan2 θ/2

)
. 42.

Here,σM is the Mott cross section for scattering from a point object,frec =
E′/E is a recoil factor,τ ≡ Q2/4M2

N andκ is the anomalous magnetic moment
of the nucleon, in nuclear magnetons:κP = 1.79, andκN = − 1.91.

The helicity matrix elementsG± ,0, defined above in Section 2.4, are related
to the Sachs form factors, and the Fermi and Pauli form factors (F1 andF2) as
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follows:

G+ = Q√
2MN

GM = Q√
2MN

(F1 + κF2),

G0 = GE = F1 − Q2

4M2
N

κF2.

43.

For elastic scattering from nucleons there are two helicity conserving and
two helicity non-conserving form factors,GP

M , GN
M andGP

E, GN
E , respectively.

At low Q2 (less than one or two GeV2) all the form factors are consistent with
a dipoleQ2 dependence, 1/(1 + Q2/M2)2, with M2 ≈ 0.71 GeV2.

At high Q2, valence PQCD predicts that theQ2 behavior of the helicity con-
serving form factorsGP

M or GN
M should followα2

s (Q2)/Q4 (see Section 2.4.1),
where we recall thatαs (Q2) decreases logarithmically inQ2. In addition, their
magnitudes are determined by relations like Equation 33 using nucleon wave
functions, either of the asymptotic form (Equation 32), or as found, for instance,
from sum rules. The helicity non-conserving form factorsGP,N

E , should fall as
GP,N

M /Q2 (6). In the high-Q2 limit of Equation 43,F1 ∼ GM ∝ G+.
Figure 9 summarizes what is known experimentally about these four form

factors, which were mostly obtained at SLAC.GP
M is known best, followed in

order byGN
M , GP

E andGN
E . We will consider each in turn.

3.2.2 THE PROTON MAGNETIC FORM FACTOR. Only GP
M has been measured at

highQ2. In the lowQ2 limit GP
E andGP

M are comparable, and can be separated
with comparable accuracy by a Rosenbluth separation. Separated form factors
only exist out toQ2 ∼ 9 GeV2 (68), and unseparated data exist up toQ2 ∼
31 GeV2 (69). However, at lowerQ2 it is observed thatGP

E is much smaller
thanGP

M , and that they are roughly proportional. Since at higherQ2 the GP
E

contribution is kinematically suppressed (see Equation 42), (69) estimatedGP
M ,

assuming only thatGP
E does not grow anomalously. The result is presented as

a measurement ofGP
M .

Much theoretical work has focused on the application of the valence PQCD
techniques described above to the calculation of the helicity conservingGP

M
(what is actually calculated isF1) (31, 74, 75, 57). The broad issues are similar to
those discussed above for the pion. An advantage relative to the pion, however,
is that, because we can scatter electrons from on-shell protons,GP

M is relatively
unambiguous over a larger range ofQ2. A disadvantage is that the proton’s
three valence quarks make it theoretically more complex.

It was observed quite early that theQ2 dependence ofGP
M is in agreement

with quark counting (and hence valence PQCD) predictions. We have already
encountered the basic methods and arguments in our discussion for the charged
pion form factor. Once again, calculations based on lowest-order gluon ex-
change and asymptotic distribution amplitudes fall far below the data. After
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Figure 9 The elastic form factors as a function ofQ2 divided by the dipole shape: a)GP
M (space-

like): • - (70),+ - (68, 71). The curves are: solid (57), dashed (20), dot-dash (45).GP
M (time-like):

• - (79), + - (80). b)GP
E : • (70). The curves are: dashed (20), dot-dash (45). c)GN

M : ◦ (81),
• (72), + (73). The curves are: solid (57), dashed (20), dot-dash (45). d)GN

E : • (81), ◦ (72),
× (73). e)Q2F2/ F1: ◦ (70),• (71), × (81). The curves are: dashed (20), dot-dash - (45).
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the initial development of sum rule distribution amplitudes (31), however, the
situation appeared to improve. This was taken as compelling evidence of the
applicability of valence PQCD techniques at measurableQ2. This conclusion
has been the focus of many papers, sometimes quite contentious, by both pro-
ponents and detractors of the use of valence PQCD at accessibleQ2.

An example is the calculation of (57), based on wave functions derived from
QCD sum rules (Section 3). The result of usingφP

CZ from (31) is plotted along
with the data in Figure 9a. Once again, the coupling is forced to run with the
virtuality of the exchanged gluons, down to a mass scale at which it is frozen.
Good fits to the data were obtained, when this scale (termed an effective gluon
mass) is 0.3 GeV. The curve in Figure 9a is not applicable at lowQ2, since it is
based on leading order PQCD.

This approach has been strongly criticized (19, 20), for the proton as for the
pion. The basic question is whether the major contribution to the form factor
comes from gluon exchange at low virtuality, where higher-order contributions
are not under control. Indeed, sum rules seem to suggest asymmetric nucleon
distribution amplitudes, which, as in the case of the pion, enhance contributions
from low gluon virtuality. At the very least, this produces strong sensitivity
to the mass at which the coupling is frozen, and shakes our confidence in the
self-consistency of the valence calculation. Also, it was concluded (76, 77) that
the uncertainties in obtaining reliable distribution functions from sum rules,
given the experimental uncertainties in the condensates, are so great that the
distribution amplitudes are essentially undetermined from sum rules alone. We
may also note that the lattice calculation of (25) supports a rather symmetric
wave function in the nucleon.

Finally, as for the charged pion form factor, the inclusion of transverse mo-
mentum effects (58, 8, 36) stabilizes valence PQCD calculations and improves
their self-consistency, while generally reducing the resulting form factor. Thus,
Bolz and colleagues (78), following up on the pion calculation of (59), recalcu-
latedF1 (or GP

M ) according to the techniques of (8, 36), including intrinsic-k⊥
componants in the distribution amplitude,φP (x) → φP (x)�P (x, b), with �P a
Gaussian. In contrast to the pion form factor, the Sudakov resummation for the
proton form factor leaves a sensitivity to largeb in a corner of theb, x space,
necessitating the inclusion of an infrared cutoff, that is, a maximum transverse
separation in the distribution amplitude. It should be noted, however, that alter-
nate resummations that suppress all largeb should be possible, although they
have not been explored in the literature. As in the pion case, the extended
calculation of (78) reduces the hard scattering form factor significantly below
experimental data, for bothφP

CZ andφP
ASY. GP

M at time-like momentum trans-
fer can extend the range ofQ2 and, together with space-like data, can further
constrain theory. The time-like proton form factor has been measured for three
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values ofQ2 near 10 GeV2 (79). This, with lowerQ2 data (80), is also shown in
Figure 9a. As in the pion case, a factor of about two in the ratio for the space-like
and time-like form factors is consistent with expectations from valence PQCD
(63).

3.2.3 PROTON ELECTRIC FORM FACTOR. As Q2 increases, kinematic suppres-
sion of the contribution ofGP

E in Equation 42 makes a Rosenbluth separation
less and less accurate. As a result, onceQ2 exceeds a few GeV2, the errors on
available data forGP

E are significantly worse than forGP
M . The most recent

data (71) obtained by Rosenbluth separation exhibits much smaller errors than
previous data, and extends the measured range out toQ ∼ 9 GeV2. The data,
shown in Figure 9b, follow a dipole shape over the entire range ofQ2 to within
the limited accuracy.

As indicated above, becauseGP
E ∝ GP

0 , which is helicity nonconserving, at
high Q2 the ratioQ2GP

E/GP
M or Q2F P

2 /F P
1 should approach a constant. As

seen in Figure 9c, it appears to do so. This qualitative success of valence PQCD
in the 5 – 10 GeV2 range makes it attractive to extend the experimental range of
accurateGP

E data to higher values ofQ2. A decrease in the ratioQ2GP
E/GP

M for
largeQ2 of 20 GeV2, say, might be a signal that soft processes are still dominant
over hard processes in this range.

Of course, at increasingQ2 the Rosenbluth separation becomes more diffi-
cult. Other methods, involving polarized beam and target or polarized beam
and proton recoil polarimeter (82, 83, 84), which measure the ratioGP

E/GP
M ,

become more favorable. Using such techniques, it will be possible to extend
measurements ofGP

E to higherQ2.

3.2.4 NEUTRON FORM FACTORS. Form factors of neutrons are difficult to ob-
tain, because there are no free neutron targets. Most of the available data were
obtained in quasielastic scattering from deuterons, in which the proton contri-
bution is subtracted. This method has intrinsic uncertainies, since one must
unfold from the quasielastic peak the contributing neutron and proton nuclear
wave functions, which must be independently known, as well as the intru-
sive tails of the inelastic processes, which are also broadened by Fermi motion.
This becomes increasingly difficult with increasingQ2, as the contribution from
quasielastic scattering relative to the inelastic processes decreases dramatically.
Eventually, the tail of the inelastic background dominates, and the extraction of
the quasielastic peak becomes extremely sensitive to uncertainties in the mod-
eling of inelastic processes. Thus, at this time data onGN

M andGN
E are limited

to the rangeQ2 ≤ 10 GeV2 and 4 GeV2 respectively.
There are various ways of improving the situation. The detection in coin-

cidence of the struck neutron along with the electron can effectively eliminate
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the quasielastic proton contribution, and significantly reduce background due
to inelastic processes. ForGN

E , which is much smaller thanGN
M , polarization

asymmetry techniques can yield the ratioGN
E/GN

M . This method has been em-
ployed successfully at lowerQ2 (85), and is currently planned (86, 87) for the
few GeV2 range. Neutron form factor data in the GeV2 region were obtained at
SLAC (72), employing careful Rosenbluth L/T separations of single-arm cross
section measurements. The available data are summarized in Figure 9c and
Figure 9d. TheGN

M data are consistent with the dipole shape over the entire
range ofQ2, athough there is significant variation between data sets below about
1 Gev2. The data forGN

E is consistent with zero up to the highestQ2, although
the errors are quite large.

The value of these data, even though the range is mostly limited to the region
where soft processes may still dominate, is quite apparent. All the theoretical
nonvalence PQCD curves deviate from the data onGN

M with increasingQ2.
Examples shown are the hybrid (45) and the QCD sum rule result of (20). The
constituent quark (47) and vector dominance (88) models also appear to diverge
monotonically with increasingQ2. The data onGN

E clearly eliminate the hybrid
model, whereas the VDM and QCD sum rule based calculations are consistent
with zero over theQ2 range.

To make further use of the selectivity of the nucleon form factors, it will be
important to obtain data onGN

E , GN
M andGP

E atQ2greater than the present limits.
Such experiments forGN

M andGP
E have been proposed for future accelerators

(89, 84). ForGP
M at least, its scaling asQ−4 over such a large range suggests that

valence PQCD is relevant to its description. The soft mechanism may, however,
also play an important role, especially at moderateQ2. The clarification of this
role is an important project for theory and experiment.

Only global tests involving all available form factors can seriously hope to
select among varying points of view. We stress the importance of measuring the
helicity non-conserving form factors to as highQ2 as possible, since in valence
PQCD they are driven by nonleading processes, and therefore offer important
constraints on the relative importance of soft and hard processes with varying
Q2.

3.3 Baryon Resonance Amplitudes and Form Factors
The study of transition form factors to excited baryons at highQ2 can make
an important contribution to our knowledge of hadronic structure. Figure 10
shows the virtual photon cross section atQ2 = 1 GeV2 as a function of baryon
invariant massW. ForW< 2 GeV, the most significant feature is the existence
of three maxima, known as the first, second and third resonance regions. In this
interval there are about 20 known resonances. These are denotedL2I,2J(W),
whereL is the angular momentum of the single pion decay, andI andJ are
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Figure 10 The virtual photon cross section for proton excitation atQ2 = 1 GeV2. The data are
reconstructed from an evaluation by Brasse et al (90). The known contributing states are indicated
at the bottom by vertical lines. The largest contributing states are indicated by long vertical lines.

respectively the resonance isospin and spin. However, except for the first,
which is due to the1(1232), the resonances are largely overlapping, even with
a significant non-resonant underlay. In future programs, the separation of the
contributing electromagnetic multipoles will require measurement of exclusive
reactions such as (e, e′ π ) and (e, e′ η) to as highQ2 as possible, with polarized
beams and targets.

The second resonance region is dominated by two strong negative parity
states, theD13(1520) and theS11(1535). At lowQ2 (< 1 GeV2) theD13(1520)
is dominant, whereas at higherQ2 (> 3 GeV2) theS11(1535) dominates. The
Roper resonance, theP11(1440), has not yet been definitely observed atQ2 > 0,
but is of considerable interest since there is speculation regarding its character
(91). In the third resonance region, the largest excitation at lowQ2 is the
F15(1680). The relative strength of the other states is not well determined,
especially at increasingQ2. At low Q2 the excitations indicated in Figure 10
have been rather successfully described in terms of the constituent quark model.
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The current experimental situation is that exclusive (e, e′π ) and (e, e′η) data
exist only up toQ2 = 4 GeV2. Although there is a total absence of exclusive
data aboveQ2 = 3 GeV2, there are inclusive data in the resonance region ob-
tained mostly at SLAC (see references in 92). Although the statistical accuracy
becomes poor at highQ2, the three peaks nearW = 1232, 1535, and 1680 MeV
remain prominent, with the1(1232) obviously decreasing with increasingQ2

relative to the other two. After subtraction of phenomenological non-resonant
backgrounds the peaks were fit with resonance functions (92) to extract trans-
verse form factors,|GT (Q2)|2 ≡ (|G+|2 + |G−|2)/2τ , whereτ ≡ Q2/4M2

n .
The form factors are shown in Figure 11 relative to a dipole shape. Also

shown at lowerQ2 are form factors extracted from data obtained earlier from
exclusive (e, e′, p)π0 and (e, e′, p)η experiments.

Figure 11 shows that the form factors obtained for the second and third
resonance regions are consistent with aQ−4 dependence, although with large
statistical uncertainty. On the other hand, the1(1232) form factor is decreasing
relative to both the elastic as well as the second and third resonances. Since
this result is obtained from inclusive data, there are systematic uncertainties in
the extraction (94), and more recent analysis of the available data (95) indicates
the extent inQ2 of the decrease is yet resolved.

3.3.1 1(1232): TRANSITION MULTIPOLES. Since the1(1232) hasJ= 3/2, there
are three contributing multipoles,E1+, M1+, andS1+ whose relative contribu-
tions are model dependent. Thus, this is a favorable case for studying models of
baryon structure. At lowQ2 in a pureSU(6) nonrelativistic CQM, theN → 1

transition is purelyM1+ in character, involving a single-quark spin-flip with1 L
= 0. AnE1+ contribution is not permitted, since the1 andN are both inL = 0
states, which cannot be connected by an operator involvingL > 0. The addition
of a residual quark-quark color magnetic interaction adds higherL components
to the1 wave function, and thus introduces a smallE1+ component, of per-
haps a few percent. AtQ2 = 0 the experimental data supports the constituent
quark model prediction ofM1+ dominance extremely well. Recent data (96)
bear this out. The data from Mainz (96) report a ratioE1+/M1+ = −.025 ±
.002 ± .002. This ratio remains very small up toQ2 about 1 GeV2, beyond
which there is very little data. There exist some earlier data atQ2 = 3 GeV2

(97), which has been evaluated by (98), suggesting thatE1+/M1+ is increasing,
but with large errors: Re (E1+/M1+) = 0.06 ± 0.02 ± .03, and we must
conclude that the magnitude ofE1+/M1+ at Q2 = 3 GeV2 remains uncertain.
Recently (99) exclusive data were obtained at CEBAF atQ2 = 3 and 4 GeV2,
for the 1(1232) andS11(1535), but at the time of writing the analysis is not
complete.
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Figure 11 The quantityGT/GdipoleversusQ2 for the elastic form factor (a), and for transitions to
the first (b), second (c) and third (d) resonances respectively, withGdipole = 2.79

(1+Q2/.71 GeV2)−2 in

(a) and 3(1+ Q2/.71 GeV2)−2 in (b–d). The first resonance (b) is the1(1232) [theP33(1232)].
The second resonance (c) atQ2 above about 3 GeV2 is dominated by theS12(1535). The third
resonance at lowQ2 is dominated by the F15(1680). The fits forGT were based on inclusive data
referenced in (92, 93) and selected data from (95). The elastic proton form factorGMp is shown in
(a). Also shown at lowerQ2, denoted by (× ), are form factors derived from amplitudes obtained
from exclusive (e, e′, p)π0 and (e, e′, p)η data. The dashed curves are the result of the local duality
sum rule calculations of (43) and (44) for the elastic and1(1232) transitions respectively. The
solid curve in (a) is theGMp result of the PQCD sum rule calculation of (57) employingφCZ. The
solid lines at the lower right in (b) and (c) are the result of the PQCD calculation of (39) usingφCZ
for the1(1232) andS12(1535), respectively.
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At high Q2, valence PQCD predicts that only helicity-conserving amplitudes
should contribute. The multipole amplitudes for single pion production may
be expressed in terms of helicity-conserving and non-conserving amplitudes as
follows:

1λ = 0 : A1+ = (3/2) M1+ + (1/2) E1+

1λ = 2 : B1+ = E1+ − M1+

1λ = 1 : C1+ = (
2Q2/p∗

π

)
S1+ ,

44.

wherep∗
π is the c.m. pion momentum. Thus, helicity conservation impliesB1+

= 0, orE1+ = M1+. This is quite different from the lowQ2 situation.
QCD sum rule techniques were applied in (100), to calculate the distribution

functions for the1(1232) excitation. The CZ (31) proton wave function yields
a small transition form factor,Q4GT (Q2) ≈ 0.07 asymptotically. This can
be traced to a cancellation in the leading-order term of the matrix elements
connecting the symmetric1(1232) distribution amplitude, with the symmetric
and antisymmetric proton distribution amplitude respectively. Schematically,
|〈φ1|TH |φP

S 〉 + 〈φ1|TH |φP
A 〉| is much smaller than either alone.

If the leading amplitude of thep → 1 transition is indeed small, the anoma-
lous shape of the transition form factor might be explained as follows. At
high Q2, the leading-order helicity-conserving amplitude dominates over the
helicity–non-conserving amplitude. That is,A1/2 � A3/2. A suppression of the
A1/2 amplitude at allQ2, due to the cancellation of the symmetric and antisym-
metric matrix elements, might then result in the dominance of theA3/2amplitude
over a larger range ofQ2 than otherwise expected, andQ4GT (Q2) would de-
crease as a function ofQ2. In fact, the evidence thatE1+/M1+ is still small for
Q2 up to 3 GeV2 is consistent with the dominance of non-leading processes.

Recently (44) the local duality procedure was applied to the1(1232) form
factor, and it was found, as in the pion case, that the form factor in the few
GeV2 region can be accounted for by purely soft processes (see Figure 10).
However, it then falls significantly below the experimental values at higherQ2,
which might be evidence that hard processes are playing an increasing role.

It will be interesting in the future to determine whetherQ4GT (Q2) does
indeed level off aboveQ2 = 10 GeV2, and where theE1+ amplitude becomes
comparable to theM1+. This would support the valence PQCD description.

3.3.2 THE SECOND RESONANCE. Figure 11 shows that at highQ2 the form
factor for the peak atW∼ 1535 MeV approaches theQ−4 dependence predicted
by valence PQCD. Although theD13(1520) is dominant atQ2 = 0, there is a
crossover and theS11(1535) dominates theD13(1520) atQ2 ∼ few GeV2 (97).
Another unique feature of theS11(1535) is that it is the only excited state with
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a largeη-decay branching ratio (∼ 50%), so that experimentally it is easily is
isolated.

Ref. 100 presents a calculation of the P→ S11 transition form factor in the
valence PQCD framework. The result is a behavior similar to the elastic form
factor. Although the results are about a factor of two lower than the data, the
authors remark that theoretical uncertainties in the distribution functions, and
higher order contributions toαs, are probably great enough to account for these
discrepancies.

3.3.3 THE THIRD RESONANCE. Figure 11 shows that at highQ2 the form factor
for the peak nearW = 1680 MeV is consistent with the predictedQ−4 behav-
ior. The errors are large, however, and it is not clear how many resonances
are contributing to this peak. The potential for obtaining separated resonance
amplitudes at highQ2 with exclusive reactions is very good. This is particularly
true since it has been demonstrated (101, 93, 102) that the nonresonant back-
ground diminishes withQ2 at approximately the same rate as the resonances.

3.3.4 DUALITY. A very interesting concept is that of duality between reso-
nances and the non-resonance continuum in theW region where they over-
lap. One observes (101) that the rate of decrease withQ2 of the resonance cross
sections approximately follows the extrapolation of deep-inelastic scaling into
the resonance region, suggesting that both processes are related by the same
underlying physics. Later, this was put on firmer ground, and it was shown that
leading logarithmic corrections extend the duality range inQ2 (103, 104). How-
ever, all of this is based on analyses of inclusive data, which cannot effectively
separate nonresonance from resonance contributions. In order to access this very
fundamental result one really needs to have a clean separation of resonance and
nonresonance data over a large range ofQ2, which can only be accomplished
by the measurement of exclusive reactions.

4. CONCLUSIONS

Much work remains in both experiment and theory. Valence PQCD and fac-
torization appear to be an attractive starting point for treating high-Q2 form
factors, although how highQ2 must be for valence PQCD to dominate remains
controversial, and most probably depends on the specific reaction. Opinions on
this matter vary strongly, from those who maintain that the requiredQ2 is much
higher than is likely to be experimentally accessible in the forseeable future,
to those who believe that valence PQCD is already applicable atQ2 as low as
a few GeV2. We suggest that the quality and extent of existing data do not
allow a definitive conclusion, but that soft non-perturbative processes probably
play an important role for much of the existing data. On the other hand, given

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 1
99

7.
47

:1
93

-2
33

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
R

eg
in

a 
on

 1
2/

26
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



          

P1: ARS/dat P2: ARK/vks QC: MBL/abe T1: MBL

September 29, 1997 16:41 Annual Reviews AR043-06

HADRONIC FORM FACTORS 231

the complexity of QCD, there is a need for further theoretical work, based on
fundamental principles of QCD, to deal with the soft or Feynman mechanism.
Indeed, it may be possible to express form factors in the transition region as
a sum over valence PQCD and Feynman mechanism contributions, with the
hard-scattering embedded in the latter treated with PQCD methods. For the
truly soft region, lattice calculations may play an increasing role in the future
(25, 26).

On the experimental side, one must push the frontiers toQ2 as high as tech-
nically feasible, to provide data that have the best chance of testing these ideas.
One should also go beyond the experiments that merely test constituent scaling
to those which test other central tenets of theory, such as helicity conservation.
Such work has now begun at TJNAF (CEBAF), and may be further extended by
a proposed European accelerator, ELFE (105). In summary, this area appears
to offer some of the most interesting theoretical and experimental challenges
for the next decade.
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