Diffractive and Tagging Process in EIC Collider Experiment - ECCE

Wenliang 'Bill' Li

W&M and JLab EIC Center Axel Schmidt George Washington University

18/11/2021

Talk Outline

- Short intro to EIC and EIC Users Community
- EIC Timeline and latest news
- What is the ECCE Consortium
- ECCE detector stack
- Diffractive and Tagging Working Group
- Current activities at the ECCE Diffractive and Tagging working group

Electron Ion Collider (EIC) @ BNL

The Electron-Ion Collider (EIC) is the next generation "Dream Machine" for Nuclear Physics Research.

- Extend current measurement on studying nucleon structure.
- Project Location: Brookhaven National Laboratory (BNL), NY. (site selection was completed in early 2020)
- The project was approved for ~\$2 B to construct one project detector
- Physics starts in 2031

EIC Users Group

• EIC Users Group (EICUG)

- 1297 Members
- 264 Institutions
- 36 Countries

• EIC Users Community

- Chair: Prof. R. Fatemi (UKY)
- Annual meeting: July-Aug
- Helping young scientists to gain exposure has become part of the culture
 - 2nd EIC Early Career Workshop in Warsaw
 - Funding is available to help student and postdoc travel!

2nd Annual 2022 EIC UG Meeting Early Career Workshop

July 25-26, 2022 Warsaw, Poland

We are pleased to announce the 2nd Annual 2022 EIC UG Meeting Early Career workshop. This event, dedicated to students and postdocs but open to everyone, will be held on July 25-26, 2022, the Monday and Tuesday before the annual EIC User Group meeting. Aims of the workshop:

Increase the visibility of EIC-related contributions from students and postdocs.

- Offer a platform to students and postdocs to connect and exchange knowledge.
- 🌔 Provide a venue to present and discuss EIC physics; detector, and accelerator science ahead of the User group meeting.
- Jefferson Lab Brookhaven Center for Final States EIC²

https://indico.jlab.org/event/485/

EIC Luminosity and Kinematics

• EIC Luminosity: 100 GeV p on 5 GeV e: 10 x10³³ cm⁻²s⁻¹ mi

EIC (US) EICC Jlab 12 GeV

EIC Timeline and Schedule

CD-0: Dec 2019

- CD-1: June 2021
- Project detector design proposal: Dec 1, 2021 (explained in the next few slides)
- CD-2 in Jan 2023
- CD-3 in March 2024
- Physics by 2031
 ElcC timeline is similar

Detector Design and Competition

Project detector competition at IP6:

VS

- 2nd IR effort or IP8:
 - CORE Collaboration: 0

- EIC@IR2: not a detector proposal 0
- Deadline for detector proposal submission: Dec 1st, 2021!

ECCE Consortium

- EIC Comprehensive Chromodynamics Experiment (ECCE) Consortium
 - <u>https://www.ecce-eic.org/</u>
- 81 member institutions (across 19 countries)
- Consortium objective: Develop a low risk, lower cost, effective project detector @IP6 which satisfies physics requirements of the yellow report
 - Re-using the BaBar magnet (sPhenix) at 1.4T
 - ATHENA propose to build a brand new 3T magnet

Information courtesy to O. Hen

ECCE Consortium Structure

EIC (ECCE) Detector Concept @ IP6

Main Features:

- Utilize BaBar magnet (1.4T)
- Estimated cost: ~200M
- Collaboration from ANL, ONL, JLab, LANL, LBL and other member institutions

More on Central ECCE Detector Design

ELECTRON ENDCAP

Tracking: MPGD (mRWell) h-PID: mRICH & TOF (AC-LGAD) Electron ID: PbWO4 crystals HCAL: Fe/Sc (STAR re-use)

HADRON ENDCAP

Tracking: MPGD (mRWELL) PID: dual-RICH & TOF (AC-LGAD) Calorimetry: Pb/ScFi shashlik (EMCal) Long. separated HCAL

CENTRAL BARREL

Tracking: Monolithic Active Pixel Sensors (MAPS) and mRWell h-PID: hpDIRC & TOF (AC-LGAD) Electron ID: SciGlass HCAL: Fe/Sc (sPHENIX re-use)

How does the central detector slots together?

https://physdiv.jlab.org/EIC/Menagerie/docs/Animations/20210115-IP-6.mp4

The Far Forward Region @ IP6

Off Momentum detector

Far Forward Detector Systems: ZDC

Far Forward Detector Systems: B0

Far Forward Detector Systems: RP

Bopf Diople

ECCE Diff & Tagg Working Group

- **Convenors:** R. Reed (Lehigh U.), C. Camacho (IJCLAB-Orsay)
- Co-Convenors: A. Schmidt (GW), W. Li (W&M)
- Different studies groups:

Studies	Group Member	Institution
π and K Form Factor	<u>M,Ali,</u> G. Huber <u>, S. Kay</u>	UofR (Canada)
π and K Structure Function	R. Trotta	CUA
A1n through e+He3	<u>D. Nguyen, J. Pybus</u>	JLab, MIT
SRC e+A	<u>F. Hauenstein</u>	ODU, MIT
u-Channel pi0	<u>W. Li</u>	W&M
eA Diffractive Study	M. Baker, <u>D. Gangadharan</u> , A. Schmidt, P. Steinberg	BNL, UH
u-Channel omega	Z. Sweger	UC Davis
Upsilon Production	<u>D. Bhattacharyya,</u> D. Das, <u>A. Jahan</u>	SAHA Inst.
XYZ Meson	D. Glazier, J. Stevens	Glascow, W&M

Underlined names: students and postdocs (majority of our group members)

WG Philosophy: we support anyone and everyone who would like to do work under ECCE; Delivering the high priority physics products/plots for the proposal (decided by the Editorial/Steering committee).

Studies and Priorities

Studies

Detector used

π and K Form Factor	ZDC, Off Mom, ECap, HCap
π and K Structure Function	ZDC, Off Mom, ECap, HCap
A1n via e+He3	ZDC, Off Mom, B0, RP, ECap, HCap
eA Diffractive Study	ZDC, Off Mom, B0, RP, 2nd RP, ECap, HCap
SRC e+A	ZDC, Off Mom, B0, ECap, HCap
<i>u</i> -Channel pi0	ZDC, ECap, HCap
u-Channel omega	ZDC, Off Mom, B0, Far back.
Upsilon Production	ZDC, ECap, HCap, Barrel
XYZ Meson	HCap, RP, ECap, Far Back., Barrel

Red: High priority range Blue: Far forward detector stack

NAS Objectives

- 1) Tomographic Imaging of Quarks and Gluons
- 1) Tomographic Imaging of Quarks and Gluons
- 7) Properties of Nuclei in QCD
- 8) Diffraction
- 7) Properties of Nuclei in QCD
- 1) Tomographic Imaging of Quarks and Gluons
- 1) Tomographic Imaging of Quarks and Gluons
- 2) Heavy-quarkonia exclusive production at threshold
- 2) Heavy-quarkonia exclusive production at threshold

Simulation tools

- Fun4all Full simulation package
 - Standard simulation and reconstruction of sPHENIX experiment
 - https://github.com/ECCE-EIC/macros
 - Fun4all takes generated events in head-on collision in HEPMC or other formats

Example (by J. Huang) on crossing angle handling

Physics Results Highlights: Pion Form Factor

Money Plot on Pion Form Factor

Extrapolated form factor $Q^2 F_{\pi}$ vs Q^2 , NAS topic 1. Person in charge: S. Kay, G. Huber

A1n through e-³He Observable

x local [cm]

eA Diffractive Studies

- Most challenging measurement
 - $e+A \rightarrow e'+(A-1)+J/\psi$ through diffractive process
 - \circ e+Zr, e+Pb and e+Au were studied
 - $e + {}^{208}Pb \rightarrow e' + {}^{208}Pb + J/\psi + \gamma + X$
 - $e + {}^{90}Zr \rightarrow e' + {}^{90}Pb + J/\psi + \gamma + X$
 - $e^{+197}Au \rightarrow e'^{+197}Au + J/\psi + \gamma + X$
 - Objective: observe/resolve the coherent diffractive background with the incoherent background, link to the nucleon PDF.
- Strict Measurements are required to ensure no nuclear break-up or fragment of events (rejection of incoherent background).

22

Summary and invitation to join us!

- Short Introduction to the ECCE consortium
- Show cased the Physics results from the ECCE Diffractive and Tagging
- One winner for the detector competition
 - Everyone will be working together on one project detector design.
- EIC project is developing fast. Now is the best time to get involved! Join us!
 - My contact info: <u>wenliang.billlee@gmail.com</u>

EIC Milestone

Event	Date
DOE Mission Need Statement Approved	January 22, 2019
DOE Independent Cost Review	July 2019
DOE Electron Ion Collider Site Assessment	October 2019
Critical Decision - 0 (CD-0) Approved	December 19, 2019
DOE Site Selection Announced	January 9, 2020
BNL TJNAF Partnership Agreement	May 7, 2020
DOE Office of Science Status Review	September 9-11, 2020
Independent EIC Conceptual Design Review	November 16-18, 2020
DOE Office of Science CD-1 Review	January 26-29, 2021
DOE Independent Cost Review	January - February 2021
CD-1 Approval Target Date*	June 2021
Project Detector Proposal Deadline	Dec 1, 2021

u-Channel Meson Production Setup

Pion Structure Function (Through Sullivan Process)

• Catching to form factor study

27

Extract measure A1n

$$\begin{split} A_{||} &= \frac{\sigma_{\downarrow\uparrow} - \sigma_{\uparrow\uparrow\uparrow}}{\sigma_{\downarrow\uparrow} + \sigma_{\uparrow\uparrow\uparrow}} \quad \text{and} \quad A_{\perp} = \frac{\sigma_{\downarrow\Rightarrow} - \sigma_{\uparrow\Rightarrow}}{\sigma_{\downarrow\Rightarrow} + \sigma_{\uparrow\Rightarrow}}.\\ A_1 &= \frac{A_{||}}{D(1+\eta\xi)} - \frac{\eta A_{\perp}}{d(1+\eta\xi)} \end{split}$$

Review of the A1n prediction at large x: https://arxiv.org/pdf/nucl-ex/0405006.pdf