

EIC Detector General Requirements

EIC physics measurements require a detector with unique capabilities

- □ Large rapidity at least -3.5 < η < 3.5 (YR) coverage; and far beyond in especially far-forward detector regions
- High precision low mass tracking
 - o small (vertex) and large radius tracking
- Electromagnetic and Hadronic Calorimetry
 - o equal coverage of tracking and EMCal
- \Box High performance PID to separate π , K, p at track level
 - also need good e/π separation for scattered electron

- Large acceptance for diffraction, tagging, neutrons from nuclear breakup: critical for physics program
 - Many ancillary detector integrated in the beam line: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter, ...
- □ High control of systematics
 - luminosity monitor, electron & hadron Polarimetry

Integration into Interaction Region is critical (done in common with EIC Project)

The ECCE Magnet

- The BaBar superconducting solenoid will be repurposed for the ECCE detector.
 - The BaBar magnet is already at BNL for use by the sPHENIX experiment (see photo).
- ECCE also plans to reuse the surrounding combined hadronic calorimeter and flux containment system for this magnet
- This provides the 1.4 T field that suffices to do the EIC science with an AI optimized detector

Central Induction	1.5 T* (1.4 T in ECCE flux return)
Conductor Peak Field	2.3 T
Winding structure	Two layers, graded current density
Uniformity in tracking region	$\pm 3\%$
Winding Length	3512 mm <i>at R.T.</i>
Winding mean radius	1530 mm <i>at R.T.</i>
Operating Current	4596 A (4650 A*)
Inductance	2.57 H (2.56 H*)
Stored Energy	27 MJ
Total Turns	1067
Total Length of Conductor	10,300 m

- □ The warm bore diameter of 2.84m and coil length of 3.512 m corresponds to a 39 deg angle, this covers the required region covered by the barrel detectors in the YR (~40 deg angle).
- Reuse of a magnet can induce risk, so we plan to mitigate this risk.

* Design Value

CE DPAP Panel Review

Table 2.3: Design parameters of the BaBar superconducting solenoid.

The ECCE Magnet Reuse Plan

- ECCE
- □ An engineering study and risk analysis in 2020 concluded that the *"magnet should be suitable for prolonged use as part of the detector system for the EIC project."*
- □ The study suggested the implementation of several proactive maintenance and improvement modifications.
- □ If the magnet continues to operate well throughout a high-field magnet test with the sPHENIX experiment, this refurbishment can be done without opening the cryostat.
- □ The scope of the reuse of the BaBar solenoid in ECCE includes a review by a panel of experts (following initial sPHENIX running), the disconnect of the magnet in IP-8 and move to IP-6, a new valve box, and assembly and magnet mapping in IP-6.

The ECCE Reference Detector

The ECCE detector size is determined by the reuse of the BaBar magnet and sPHENIX HCAL, and further EIC detector needs:

- Needs +5 m on proton/ion side.
- Needs less space (-3.5 m) on electron side.
- The detector radius is 2.7 meter, with the RCS beam at 3.35 meter.

- □ 25 mrad crossing angle (IP6 design)
- Detector rotated by 8 mrad in horizontal plane to account for e-beam angle

The ECCE Reference Technologies

For additional technical details if desired please see the ECCE technical notes:

https://www.ecceeic.org/ecce-internal-notes (PW: ECCEprop)

Backward Endcap Tracking:

- ITS3 MAPS Si discs (x4)
- AC-LGAD

PID:

- mRICH
- AC-LGAD TOF
- PbWO₄ EM Calorimeter (EEMC)

 \mathcal{L} (((

Barrel

Tracking:

- ITS3 MAPS Si (vertex x3; sagitta x2)
- µRWell outer layer (x2)
- AC-LGAD (before hpDIRC)
- µRWell (after hpDIRC)

h-PID:

- AC-LGAD TOF
- hpDIRC

Electron ID:

SciGlass EM Cal (BEMC)

Hadron calorimetry:

- Outer Fe/Sc Calorimeter (oHCAL)
- Instrumented frame (iHCAL)

Forward Endcap

Tracking:

- ITS3 MAPS Si discs (x5)
- AC-LGAD

PID:

- dRICH
- AC-LGAD TOF

Calorimetry:

- Pb/ScFi shashlik (FEMC)
- Longitudinally separated hadronic calorimeter (LHFCAL)

Al-Assisted Optimization during the ECCE Proposal CC

Momentum resolution of different pipelines corresponding to different possible combinations of technology optimized with AI. The AI-optimized configuration outperformed the original designs in all η bins.

ECCE AI-Assisted Design Solutions

Tracking: technology choice, ordering of detectors,...

0

10

20

30 p [GeV] tracking resolution

PID: material choice, ordering of components,...

E. Cisbani, A. Del Dotto, <u>C. Fanelli</u>, M. Williams et al. *JINST* 15.05 (2020): P05009.

- Bayesian optimization of the dRICH Design
- Improvement of dRICH performance for ECCE expected from AI-based optimization completed
- Ongoing efforts on reconstruction algorithms

□ Calorimetry: using ML for pion rejection

ECCE Tracking System

- Hybrid tracking detector design: Monolithic Active Pixel Sensor (MAPS) based silicon vertex/tracking subsystem, the muRWELL tracking subsystem and the AC-LGAD outer tracker, which also serves as the ToF detector. Ordering and resolution optimization were driven by AI.
 - MAPS 3-layer silicon vertex, 2-layer silicon sagitta layers, five disks in the hadron endcap, four disks in the electron endcap for primary and secondary vertex reconstruction
 - muRWell 2 layers in the barrel following silicon and cylindrical muRWell gas trackers at large radii providing a tracking layer after the DIRC – integrated with PID/DIRC performance
 - AC-LGAD ToF layer provides precision space-time measurement on each track integrated with PID

MAPS Vertex

- □ For primary and secondary vertex reconstruction
- □ Low material budget: 0.05% X/X₀ per layer
- \Box High spatial resolution: 10 μ m pitch MAPS (Alice ITS3)
- □ TowerJazz 65nm technology (ongoing R&D Si Consortium)
- □ Configuration: Barrel + Disks for endcaps

ECCE achieves high precision primary and decay vertex determination, fine tracking momentum and distance of closest approach resolution in $|\eta|$ <3.5 with full azimuth coverage

ECCE DPAP Panel Review

muRWell

- □ The ECCE muRWell technology is based on the outcome of the EIC generic R&D (eRD6) and in line with the reference EIC detector concept in the Yellow Report.
- Geometries and ordering of layers were optimized with AI assistance to fit the ECCE baseline design while maintaining performance and also being integrated with PID
- The muRWell technology is expected to provide spatial resolution well below 100 um for curved geometry estimated based on recent beam tests (ongoing R&D eRD108)
- Large-area detectors possible cost efficient compared to silicon large surface detectors
 - Expertise in the ECCE consortium a Korean manufacturer (Mecaro) has demonstrated that they can produce high quality large MPGD foils for the CMS detector at the LHC

ECCE Material Budget

Low material budget

- Minimize bremsstrahlung and conversions for primary particles
- \Box Improve tracking performance at large $|\eta|$ by minimizing multiple Coulomb scattering
- □ Minimize the dead material in front of the high-resolution EM calorimeters

Charged Particle Identification

□ In general, need to separate:

- Electrons from photons
- Electrons from charged hadrons -> mostly provided by calorimetry
- Charged pions, kaons and protons from each other -> Cherenkov

- ECCE PID technologies are based on the outcome of the EIC generic R&D (eRD14) and in line with the reference EIC detector concept in the Yellow Report.
 - Backward: Short, modular RICH (mRICH)
 - Barrel: Radially compact with flexible design high-performance DIRC (hpDIRC)
 - Forward: Double-radiator RICH (dRICH)
 - AC-LGAD based time-of-flight (TOF) system for hadronic PID in momentum range below the thresholds of the Cherenkov detectors

Charged Particle Identification

- □ In general, need to separate:
 - Electrons from photons
 - Electrons from charged hadrons -> mostly provided by calorimetry
 - Charged pions, kaons and protons from each other -> Cherenkov
- □ Geometries were optimized to fit the ECCE baseline design while maintaining the required performance to assure wide momentum coverage across the full phase space.

Magnetic field in ECCE provides a large safety margin in terms of the selected photosensors field tolerance!

 For ECCE we have alternate choices beyond SiPM sensors, which could be advantageous for single photon detection

^{mRCH} ^{m/K separation power (s.d)} ^{hpDRC} ^{m/K separation power (s.d)}

Cherenkov detectors, complemented by other technologies at lower momenta

Backward PID

Compact version of a conventional aerogel-based proximity focusing RICH

Barrel PID

- □ Radially compact (~ 5cm)
- hpDIRC with better optics and <100 ps timing (π/K up to ~6 GeV/c)

Forward PID & CCC

Use a combination of aerogel and $C_m F_n$ with indices of refraction matching EIC momentum range in the forward endcap. Similar to LHC-b, HERMES, JLAB/Hall-B, ...

Electromagnetic Calorimeters

- □ In general, calorimeters need to perform
 - Scattered electron kinematics measurement at large $|\eta|$ in the e-endcap most stringent
 - Photon detection and energy measurement
 - e/h separation (via E/p & cluster topology)
 - π^0/γ separation

- ECCE EMCAL technologies are based on the outcome of the EIC generic R&D (eRD1) and in line with the reference EIC detector concept in the Yellow Report.
- Geometries were optimized to fit the ECCE baseline design with focus on excellent electron detection with the broadest electron detection coverage across the full phase space.

	η	[-41.8]	[-1.7 1.3]	[1.3 4]
	Material	PbWO ₄	SciGlass	Pb/Sc
	X ₀ (mm)	8.9	24-28	16.4
	R _M (mm)	19.6	35	35
	Cell (mm)	20	40	40
	X/X ₀	22.5	17.5	19
ECCE DPAF	∆z (mm)	60	56	48

Backward ECAL (EEMC)

Homogeneous calorimeter based on high-resolution PbWO₄ crystals

Consortium design report

*Based on prototype beam tests and earlier experiments

Homogeneous, projective calorimeter based on SciGlass, cost-effective alternative to crystals

Highly-granular shashlik sampling calorimeter based on Pb/SC

8M Tower

*Based on prototype beam tests and earlier experiments

n

 $\sigma_{\rm F}/{\rm E}$

ECCE EM calorimeters provide the required coverage, meet the physics energy resolution, and pion suppression in all three regions (endcaps, barrel) 17

Homogeneous materials: Crystals and Glass

- High-resolution PbWO₄ (PWO) crystals are available from two vendors
- SciGlass 20cm has been produced reliably; We tested a 3x3 20 cm SciGlass prototype detector in beam and measured its performance as per simulation (ongoing R&D EEEMCAL consortium, eRD105)
- Received the first polished 40 cm SciGlass with more on the way
- We have an SBIR phase-II to start large-scale production (40+ cm, rectangular and projective shapes) **Example: G4 glass**

Hadronic Calorimeters

- □ Main purpose: jet energy measurement
 - Particle Flow Algorithm usage anticipated (where HCal role is identification and energy measurements of the neutral hadrons, namely neutrons and K_L)

- ECCE HCAL technologies are based on existing hadronic calorimeters with components optimized to fit the ECCE baseline design and providing the required performance and coverage
- The barrel HCAL is a re-use of the hadronic calorimeter from sPHENIX it has two components
 - Outer HCAL (OHCAL): uniform sampling in azimuth and also serves as barrel flux return
 - Inner HCAL (IHCAL): provides additional longitudinal segment and aids overall calibration of the calorimeter system
- The forward calorimeter is an integrated ECAL+HCAL with longitudinal segmentation and reducing dead material
- The ECCE reference detector includes a flux return in the electron endcap, as no NAS or White Paper EIC science process was found to benefit from a backward hadronic calorimeter within the first years of data taking.

Pb/ScTile shashlyk

- □ Well-established technology
 - ALICE, sPHENIX
- Medium energy resolution
- Compact (X₀~7mm or less), cost efficient

Barrel HCAL (OHCAL+IHCAL)

Sampling calorimeter based on Fe/SC tiles

Forward HCAL CCC

Integrated ECAL+HCAL longitudinally segmented sampling calorimeter based on Fe/SC, W/Sc and last segment W (tailcatcher)

*Based on prototype beam tests and earlier experiments

ECCE HCALs provide the required coverage, information on hadronic shower development, and energy resolution

12/13/2021

Far-Forward Region

The **BO system** measures charged particles in the forward direction and

- particles in the forward direction and tags neutral particles.
- The off-momentum detectors measure charged particles with different rigidity than the beam, e.g., those following decay and fission.
- The roman pot detectors measure charged particles close to the beam envelope.
- The zero-degree calorimeter measures neutral particles at small

angles.

Detector	(x,z) Position [m]	Dimensions	θ [mrad]	Notes
ZDC	(-0.96, 37.5)	(60cm, 60cm, 1.62m)	$\theta < 5.5$	${\sim}4.0$ mrad at $\phi=\pi$
Roman Pots (2 stations)	(-0.83, 26.0) (-0.92, 28.0)	(30cm, 10cm)	$0.0 < \theta < 5.5$	10σ cut.
Off-Momentum Detector	(-1.62, 34.5), (-1.71, 36.5)	(50cm, 35cm)	$0.0 < \theta < 5.0$	$0.4 < x_L < 0.6$
B0 Trackers and Calorimeter	(x = -0.15, 5.8 < z < 7.0)	(32cm, 38m)	$6.0 < \theta < 22.5$	$\sim 20 \mathrm{mrad}$ at $\phi {=} 0$

Far-Forward Detectors

B0-spectrometer

- Warm space for detector package insert located inside a vacuum vessel to isolate from insulating vacuum.
- ECCE: 4 AC-LGAD trackers with 30 cm spacing between each layer providing charged particle detection for 6 < θ < 22.5 mrad.
- □ Add a PbWO₄ (11.2 R.L.) calorimeter behind the 4th tracking layer to obtain 100% acceptance for $\gamma+\gamma$ from π^0 to cleanly isolate u-channel DVCS

Roman-Pots and Off-momentum detectors $0.0^* (10\sigma cut) < \theta < 5.0 \text{ mrad}$

- Roman Pots: detect protons with high energy and small pT (< 1.3 GeV) particles with with small separation from the hadron</p>
 - beam. They will consist of two double-layer 25x12 cm² AC-LGAD stations, located **inside the beam line** and 10σ from the main beam.

BO

7DC

Off-momentum detectors measure charged particles that have a smaller magnetic rigidity than the main hadron beam. Such particles will be bent outside the beam pipe. The detectors consist of tracking planes based on AC-LGAD sensors.
Fast Timing to take into account crab crossing

Far-Forward/Backward Detectors

Zero Degree Calorimeter

 □ ECCE ZDC has dimensions of 60cm x 60cm x 162cm for the needed acceptance (YR) and consists of PbWO₄ crystal, W/Si layer, Pb/Si, and Pb/Scintillator layers
□ ECCE ZDC provides detection for photons and neutrons (0<0<5.5 mrad) with the required performance

This area is designed to measure scattered electrons at small, far-backward angles

□ Low Q²-tagger:

- Double-layer AC-LGAD tracker, of 40.5cmx40.5 cm at 24m and 30cm x 21cm at 37m from IP
- PbWO₄ EMCAL (20cm x 2cm² crystals)

Luminosity Monitor:

AC-LGAD and PbWO4 to provide accuracy of the order of 1% or relative luminosity determination exceeding 10⁻⁴ precision.

Summary

- □ The ECCE detector is a physics-driven balance of
 - the reuse of equipment
 - the use of mature detector technologies where possible, and
 - the use of detector technologies that are at the near-end of an extensive R&D effort and were judged absolutely essential for the EIC science.
- The ECCE detector is complex due to the high demand on detector/interaction region integration and the many different detector technologies.
 - This led to several detector technologies with multi-purpose use, and use of AI to optimize detector choices, locations, and materials.
 - \circ The integration of detector with electronics and computing \rightarrow next talk by D. Lawrence
- □ The ECCE detector can be ready at an *early CD-4A*!
- The ECCE detector can do the EIC white paper and NAS science, and more! 12/13/2021 ECCE DPAP Panel Review

