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Background: Measurements of exclusive meson production are a useful tool in the study of hadronic structure...

Purpose: To study the transition between non-perturbative and perturbative Quantum Chromodyanmics...

Method: We have written a physics generator...

Results:

Conclusion:

I. INTRODUCTION

We have written a Deep Exclusive Meson Production
(DEMP) event generator, which is modular in form, so that
the variety of reactions it simulates can be expanded over
time. The motivation for the writing of the event generator
is to evaluate the feasibility of hadron structure studies with
polarized targets at Jefferson Lab, and with colliding beams
at the Electron-Ion Collider.

The process of interest is deep inelastic scattering of an
electron and proton. The value of Q2 is high enough to probe
the parton structure via deep inelastic scattering. Deep Ex-
clusive Meson Production is a kind of inelastic scattering in
which target nucleon is split in a meson and recoil neutron
and either we detect all three outgoing particles or detect
two of them with good enough resolution to construct the
missing mass and missing momentum. Fig. 1 shows the deep
exclusive meson production. DEMP has larger contributions
from higher twist at amplitude level, but these contributions
cancel out in some asymmetries.

FIG. 1. DEMP handbag diagram for the factorization regime at
large Q2

The physics event generator is written in a modular form,
so the different physics processes that can be generated can
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be easily expanded over time. At present, three physics pro-
cesses are available:

1. Exclusive 3He(e, e′π−)p(pp)sp events from the polar-
ized neutron in a polarized 3He target for Jefferson
Lab. The generator allows the neutron Fermi momen-
tum and other nuclear effects to be easily turned on
and off for various studies.

2. Exclusive p(e, e′π+n) events in colliding beam mode
for the EIC, where the π+ is emitted at small −t, at
forward angles in the center of mass frame.

3. u-channel exclusive p(e, e′pπ0) events in colliding beam
mode for the EIC. In the center of mass frame, the
π0 travels in the backward direction, with the forward
going proton taking most of the momentum.

This paper is divided into sections as follows. In Sec. II we
will briefly describe the scientific motivation for our studies,
so the structure and kinematic ranges of applicability of the
generator can be better understood. In Sec. III, we summa-
rize the coding structure of the generator, and the cross sec-
tion parameterization of the different physics processes. In
Sec. IV we present some results obtained with the generator,
to display some of the ways in which it can be used. Sec. V
presents a summary of our work to date, and an outlook of
some extensions to the generator that are being considered.

II. SCIENTIFIC MOTIVATION FOR OUR
STUDIES

A. Motivation for Jefferson Lab ~n(e, e′π−)p studies

The over-arching goal is to understand the structure of
hadrons in terms of partons. The process of interest is deep
inelastic scattering (DIS) and quantum chromodynamics is
the underlying theory of interaction. The purpose of our
studies is to obtain an improved picture of hadrons with the
help of Generalized Parton Distributions.

At leading twist, there are four GPDs H(x, ξ, t), E(x, ξ, t),

H̃(x, ξ, t) and Ẽ(x, ξ, t) associated with each quark flavor. H

and H̃ GPDs conserve helicity and the E and Ẽ GPDs are
associated with an helicity flip of the nucleon. Each GPD
depends upon three variables which are average longitudinal
momentum fraction of struck quark x and in high Q2 regime
x = xB , skewness ξ and four momentum transfer Q2. GPDs
also describe the correlation between partons in a nucleon.
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By Fourier transform we can access simultaneously the lon-
gitudinal momentum fraction of quarks and their position in
the transverse plane [1].

First moments of GPD are related to elastic form factors
of the nucleon. GPDs integral over x gives [2]:∫ 1

−1

dx Hq(x, ξ, t) = F q1 (t) (1)

∫ 1

−1

dx Eq(x, ξ, t) = F q2 (t) (2)

∫ 1

−1

dx H̃q(x, ξ, t) = gqA(t) (3)

∫ 1

−1

dx Ẽq(x, ξ, t) = hqA(t) (4)

where F1, F2, gA and hA are Dirac, Pauli, pseudoscaler and
vector form factors. The relation between one quark flavor
form factor and proton form factor is given by: [3]

Fu/p = 2F p1 + Fn + F s1 (5)

F d/p = 2Fn1 + F p + F s1 (6)

guA =
1

2
gA +

1

2
h0
A (7)

gdA = −1

2
gA +

1

2
gA (8)

GPDs give the information about the nucleon indepen-
dent of the reaction. We can measure GPDs via DEMP.
Virtual photon in DEMP has longitudinal component of po-
larization. The transverse component is suppressed by 1/Q2

compared to longitudinal component. I am quoting [3]:
“Because the quark helicity is conserved in the hard scatter-
ing process, the meson acts as a helicity filter. In particular,
the leading order perturbative QCD predicts [Col97] that the

longitudinally polarized vector meson channels (ρ0,±
L , ωL, φL)

are sensitive only to the unpolarized GPDs (H and E)
whereas the pseudo scalar channels (π0,±, η, ...) are sensi-

tive only to the polarized GPDs (H̃ and Ẽ). In comparison
to meson electroproduction reactions, we rec all that DVCS
depends at the same time on both the unpolarized (H and

E) and polarized (H̃ and Ẽ) GPDs. This property makes
the hard meson electroproduction reactions complementary
to the DVCS process, as it provides an additional tool to
disentangle the different GPDs”.

GPD Ẽ not related to an already known parton distribu-
tion. Experimental information on Ẽ can provide new nu-
cleon structure info unlikely to be available from any other
source. The most sensitive observable to probe Ẽ is the
transverse single spin asymmetry in exclusive π production:

A⊥L =

∫ π
0
dβ

dσπL
dβ −

∫ 2π

π
dβ

dσπL
dβ∫ 2π

0
dβ

dσπL
dβ

(9)

where dσLπ is exclusive π cross section for longitudinal virtual
photons and β is angle between transversely polarized target
vector and the reaction plane.

Frankfurt et al. have shown A⊥L vanishes if Ẽ is zero [4].

If Ẽ 6= 0 the asymmetry will produce a sin(β) dependence.

B. Motivation for EIC π+ studies

The Electron-ion collider is the next generation collider
to study the structure of nucleon. An Electron ion collider
(EIC) is designated as the high priority new construction
project in the 2015 Nuclear Physics Long Range Plan by
NSAC, United States. According to EIC white paper [5] it
will answer these three questions:

• How are the sea quarks and gluons, and their spins, dis-
tributed in space and momentum inside the nucleon?

• Where does the saturation of gluon densities set in?

• How does the nuclear environment affect the distribu-
tion of quarks and gluons and their interactions in nu-
clei?

quoting [5]:
Answers to these questions are essential for understanding

the nature of visible matter. An EIC is the ultimate ma-
chine to provide answers to these questions for the following
reasons:

• A collider is needed to provide kinematic reach well
into the gluon-dominated regime.

• Electron beams are needed to bring to bear the un-
matched precision of the electromagnetic interaction
as a probe.

• Polarized nucleon beams are needed to determine the
correlations of sea quark and gluon distributions with
the nucleon spin.

• Heavy ion beams are needed to provide precocious ac-
cess to the regime of saturated gluon densities and of-
fer a precise dial in the study of propagation-length for
color charges in nuclear matter.

The Pion is the most simple hadronic system available to
study the structure of hadrons and provides various tests
for QCD. One of the experimentally feasible approaches is
the Electroproduction of Pion from a nucleon. The polar-
ized quark distribution in the proton can be examined by
hard electroproduction of pseudoscalar mesons like pion and
kaon. The Pion form factor Fπ(Q2) is measured in Hall C
via Electroproduction of Pions up to Q2 = 2.45 GeV 2 with
high precision [6]. Jlab experiment E12-06-101 is approved
with A rating to measure the Pion form factor at high Q2

value. This experiment will provide the information about
Fπ(Q2) in the “soft” and “hard” regions of QCD. Measure-
ment of pion form factor at EIC is continuation of this study
of the pion form factor at higher Q2 kinematics.

The elastic electromagnetic form factors of the charged
pion and kaon, Fπ(Q2) and FK(Q2), are a rich source of in-
sights into basic features of hadron structure, such as the
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roles played by confinement and Dynamical Chiral Symme-
try Breaking (DCSB) in fixing the hadron’s size, determin-
ing its mass, and defining the transition from the strong- to
perturbative-QCD domains. Studies during the last decade,
based on JLab 6-GeV measurements, have generated confi-
dence in the reliability of π+ electroproduction as a tool for
pion form factor extractions. Forthcoming measurements at
the 12-GeV JLab will deliver pion form factor data that are
anticipated to bridge the region where QCD transitions from
the strong (color confinement, long-distance) to perturbative
(asymptotic freedom, short-distance) domains.

At the EIC, pion form factor measurements can be ex-
tended to still larger Q2, by measuring ratios of positively-
and negatively-charged pions in quasi-elastic electron-pion
(off-shell) scattering via the p(e, e′π+)n and n(e, e′π−)p reac-
tions, accessed with proton and deuterium beams. The mea-
surements would be over a range of small −t = −(pp − pn)2,
and gauged with theoretical and phenomenological expecta-
tions, to again verify the reliability of the pion form factor
extraction at EIC kinematics.

The experimental determination of the π+ electric form
factor (Fπ) is challenging. The best way to determine Fπ
would be electron-pion elastic scattering. However, the life-
time of the π+ is only 26.0 ns. Since π+ targets are not
possible, and π+ beams with the required properties are not
yet available, one must employ high-energy exclusive elec-
troproduction, p(e, e′π+)n. This is best described as quasi-
elastic (t-channel) scattering of the electron from the virtual
π+ cloud of the proton, where t is the Mandelstam momen-
tum transfer t = (pp−pn)2 to the target nucleon. Scattering
from the π+ cloud dominates the longitudinal photon cross
section (dσL/dt), when |t|� m2

p [7]. To reduce background
contributions, normally one separates the components of the
cross section due to longitudinal (L) and transverse (T) vir-
tual photons (and the LT, TT interference contributions),
via a Rosenbluth separation. The value of Fπ(Q2) is deter-
mined by comparing the measured dσL/dt values at small
−t to the best available electroproduction model. The ob-
tained Fπ values are in principle dependent upon the model
used, but one anticipates this dependence to be reduced at
sufficiently small −t. Our JLab 6 GeV experiments were
instrumental in establishing the reliability of this technique
up to Q2 = 2.45 GeV2 [6], and extensive further tests are
planned as part of JLab E12-19-006 [8].

The reliability of the electroproduction method to deter-
mine the K+ form factor is not yet established. JLab E12-
09-011 has acquired data for the p(e, e′K+)Λ, p(e, e′K+)Σ0

reactions at hadronic invariant mass W =
√

(pK + pΛ,Σ)2 >
2.5 GeV, to search for evidence of scattering from the pro-
ton’s “kaon cloud”. The data are still being analyzed, with
L/T-separated cross sections expected in the next ∼2 years.
If they confirm that the scattering from the virtual K+ in
the nucleon dominates at low four-momentum transfer to the
target |t|� m2

p, the experiment will yield the world’s first

quality data for FK above Q2 > 0.2 GeV2. This would then
open up the possibility of using the same exclusive reactions
to determine the kaon form factor over a wide range of Q2

at the EIC.

C. Motivation for backward region (π0 DEMP)

The collinear QCD factorization property, which ensures
the validity of the GPD-based description of near-forward
(t ∼ tmin) DVCS,TCS and DVMP, may be extended to
the complementary near-backward kinematics (u ∼ umin)
regime provided that the GPD is replaced by a baryon-to-
meson Transition Distribution Amplitude (TDA), as demon-
strated in Fig. 2 left plot. TDAs are opening a new window
on the study of the 3-dimensional structure of nucleons and
recent experimental analysis of backward exclusive electro-
production of π+ (CLAS 6) [9] and ω (JLab Hall C) [9, 10]
indicate that this concept may be applicable at moderate
values of Q2.

The recently approved JLab 12 GeV experiment E12-20-
007 aims to further study and validate TDA by probing ex-
clusive electroproduction interaction: 1H(e, e′p)π0, in the
kinematics range: 2 < Q2 < 6.25 GeV2 at fixed W =
3.1 GeV (s = 10 GeV2) and. The proposed measurement
will utilize the 12 GeV e beam on an unpolarized liquid hy-
drogen target (LH2), in combination with the high precision
spectrometers available at Hall C of Jefferson Lab. The key
observable involves detecting scattered electrons and fast re-
coiled protons, and resolving π0 events using the missing
mass reconstruction technique. The separated cross section:
σT , σL and σT /σL ratio at 2-5 GeV2, directly challenges
the two remarks postulated by the TDA model: σT = 1/Q8

and σT � σL in the u-channel kinematics. This will be an
important step forward in validating the existence of a back-
ward factorization scheme of the nucleon structure function
and establishing its applicable kinematics range.

FIG. 2. The π0 electroproduction through γ∗p→ pπ0, under the
(backward-angle) TDA colinear factorization regime (large Q2,
large s, fixed xB , u ∼ umin). The πN TDA (bottom grey oval) is
the transition distribution amplitude that transform a nucleon to
a vector meson. The fast froward-going nucleon is described by
the DA (top-right oval).

Fig. 2 right plot, illustrates the perspective of Q2 (10 <
Q2 < 10 GeV2) evolution combining backward (u ∼ umin)
exclusive π0 production data from JLAB, PANDA and EIC,
at fixed W = 10 GeV. Preliminary study has confirmed the
feasibility of studying the interaction: e+p→ e′+p′+π0, in
the range: 6.25 < Q2 < 10.0 GeV2. The EIC offers unique
opportunity to provide definitive test to TDA predictions be-
yond JLab 12 GeV kinematics. Furthermore, the EIC result
is anticipated to play a significant role in the extraction of
TDAs.
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III. DEMP EVENT GENERATOR

In this section, we will describe the structure of the gener-
ator, as well as the parametrization, kinematics ranges and
scattering cross section for each of the DEMP processes.

In EIC, we have proton beam up to 100 GeV and electron
beam up to 10 GeV. Both beams are crossing at an angle of
25 mrad. All the three outgoing particles, electron, pion and
neutron are detected. Proton beam is making an angle of 25
mrad with z axis and electron beam is going in −ẑ direction.

A. Structure

Fig. 3 demonstrates the flow of data in the event genera-
tor, starting from random number generators, leading to the
output file. The rounded boxes in this chart each indicate
the main named variables whose values are pointers to in-
stances of the indicated class. For example, “VertTargNeut”
is a pointer to an object of class “Particle”. These variables,
the classes, and their place in the structure of the event gen-
erator are discussed in the following subsections.

Instances of the particle class contain all of the pieces of
information about a single particle, in a single frame of refer-
ence, that are relevant to the event generator. This includes
the four-momentum, rest mass, charge, etc. The particle in-
herits from ROOT’s TLorentzVector class, which allows for
the creation and manipulation of general four-vectors. The
TLorentzVector class includes methods to calculate compo-
nents, angles, and magnitudes of a four-momentum, as well
as perform Lorentz boosts and rotations. It also defines alge-
braic operators for four-vectors. Implementation of this class
significantly simplifies calculations within the event genera-
tor, and eliminates a large number of messy algorithms that
were present in the original event generator.

Instances of the DEMPEvent class represent the event
viewed from a single reference frame. The class stores seven
particle objects: The incident electron, target neutron, vir-
tual photon, scattered electron, produced pion, and recoiled
proton. The class has methods to calculate Mandelstam vari-
ables s, t, u, and functions to perform coordinate transforma-
tions on the event. There are five DEMPEvent objects ini-
tialized in the event generator, as seen in Fig. 3. VertEvent
contains the particles as viewed at the vertex of the inter-
action, in the laboratory rest frame. Once the kinematics
calculations have been completed (see Section III B), this ob-
ject is no longer modified. All other DEMPEvent objects are
calculated from this object by copying and then transform-
ing them. CofMEvent is the event viewed at the vertex in
the center of momentum reference frame. RestEvent is the
event viewed at the vertex in the rest frame of the target
neutron. TConEvent is the event viewed at the vertex in the
coordinate system defined by the Trento Conventions [11].

B. Kinematics

Calculation of of particle kinematics begins with random
generation of the energy and momentum of the target neu-
tron, if Fermi momentum is enabled. If Fermi momentum is
not enabled it is set to zero momentum, with energy equal
to the neutron rest mass. Next, the energy of the scattered

electron is selected from a uniform random distribution in a
configurable range (typically 0.1 to 0.9 times the energy of
the incident beam). The direction of the scattered electron
is selected using sphere point picking [12]. The azimuthal
angle (φ) may be selected from a uniform distribution form
0 to 2π, but selecting the polar angle (θ) uniformly results in
bunching near θ = 0. The distrubtion function for the polar
angle is instead 1

2 sin2(θ). The direction for the produced
pion is then selected, again using sphere point picking. The
energy of the pion is left to be solved for.

These variables provide all information necessary to
uniquely solve for the rest of the kinematic variables. Ap-
plying conservation of energy and momentum yields the fol-
lowing equation:

γ0 + n0 −
√
m2
π + |~π|2 −

√
m2
p + |~γ + ~n− ~π|2 = 0 (10)

where γ0 and n0 represent the 0th component of the four-
momentum (energy) of the virtual photon and neutron re-
spectively. The vectors represent the three-momentum of
their respective particles. The only unknown in this equa-
tion is the momentum vector of the pion. Since the direction
of the pion has already been specified, Equation 10 may be
futher reduced to a single-valued unknown: the momentum
magnitude of the pion.

The left hand side of the equation is defined in the event
generator as a function of |~π| in a ROOT TF1 (1-Dim func-
tion) object. The TF1 object incorporates a root finding
algorithm, using Brent’s method [13], which is used to find
values for |~π| which solve Equation 10. If more than one
solution is found, one is picked at random.

The energy and momentum of the proton can then be cal-
culated by a straightforward application of conservation of
four-momentum. The following checks are then made to ver-
ify that solution is within acceptable limits: The rest mass
of the proton is calculated from the solution and compared
against the known value, the value of Mandelstam variable
W for the initial state is compared to the final state, and
total energy and momentum for the initial state is compared
to final state. If any value deviates by more than 1 MeV(/c),
or a solution is not found, the event is discarded. In testing
over several million events, all events with solutions passed
these checks, however approximately a third of events did
not have a solution and were discarded.

C. Event Weighting

Three outgoing particles (e′, π and n)are generated in
collider frame. First we generate a scattered electron with
random direction and momentum. Range of θ , φ and
magnitude of momentum of scattered electron are defined
by phase space. Then we randomly generate θ and φ of pion
as defined by phase space. Then we use the method given in
SIMC [14] to find the momentum of pion analytically. Then
we generate the direction and momentum of neutron by
applying the law of conservation of energy and momentum.
Finally the cross section is given in collider frame.

When event generator asks you to input the number of
events it is the number of events it will try to generate.
Actual number of generated events will be different (smaller)
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FIG. 3. Flowchart describing the flow of data through the program, and the structure of the event generator. The rounded boxes
signify the most important named variables that appear in the main file of the program. Their values that are pointers to an instance
of the given class. Arrows indicate how data is moved between these objects. The four open boxes indicate static functions. The “FSI
Weights” node represents a simple collection of doubles. The “Output” box represents destination for data to be saved into the output
ROOT tree.

then the events tried. Generated evetns are normalize to
number of events tried. Event weight is calculated for each
event in the following way:

weight = cross section×Phase Space×Conversion×Luminosity/Total events tried
(11)

Conversion factor converts microbrans to cm2. Unit of
event weight is Hz. Output of event generator are a root file
and a lund file.

D. Exclusive p(e, e′π+)n Physics Model

This generator is based upon the Regge model of Tae Keun
Choi, Kook Jin Kong and Byung Geel Yu [15]. This model

provides an excellent description of the existing JLab data
up to −t=4.3 GeV2 [16] and is well-behaved over a wide kine-
matic range. We have performed simulations demonstrating
the feasibility of pion electric form factor measurements at
the EIC using this event generator. Depending on the suc-
cess of the K+ form factor experiment (JLab E12-09-011),
we can modify this generator for the exclusive K+Λ channel,
and investigate the feasibility of these measurements at EIC
in 2021–23.

Simulation study of this DEMP process requires differen-
tial cross section associated with each event. For our event
generator the ranges of different variables over which we gen-
erate the events are given in the table I.

The following three Lorentz invariants are used to define
the kinematics:
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Kinematic ranges for the reaction
θe′ from 175 to 60 degrees
Ee′ from 2.5 GeV (50% of Ee) to 12.5 GeV (250% of Ee)
φe′ 0 to 360 degrees
θπ from 0 to 50 degrees
φπ 0 to 360 degrees
Q2 from 5 GeV2 to 35 GeV2

−t up to 0.5 GeV2(FF), up to 1.3 GeV2(TSSA)[17]
W rom 2 to 10 GeV
xB up to 0.5
ξ up to 0.4

Luminosity 3.7× 1032/(cm.s)

TABLE I. Kinematics

FIG. 4. The scattering and reaction planes in exclusive π+ elec-
troproduction, and definitions of the relevant Lorentz invariant
quantities.

−Q2 = (k − k′)2 (12)

W 2 = (pγ + pp)
2 = (pπ + pn)2 (13)

t = (pγ − pπ)2 = (pp − pn)2 (14)

The scattering cross section for DEMP in one-photon ex-
change is given by equation 15 with incoming and outgoing
electrons described as plane waves:

d5σ

dE′dΩe′dΩπ
= ΓV

d2σ

dΩπ
. (15)

The five fold cross section of equation 15 is then trans-
formed to lab(collider) frame with an additional Jacobian.
The virtual photon flux factor ΓV in equation 15 is the vir-
tual flux factor defined in the Hand convention:

Γv =
α

2π2

E′

E

K

Q2

1

1− ε
, (16)

where α is the fine structure constant, K is the energy of
real photon equal to the energy of photon energy required to
create a system with invariant mass equal to W and ε is the
polarization of the virtual photon.

K = (W 2 −M2
p )/(2Mp) (17)

The two-fold differential cross section in lab frame can be
expressed in terms of the invariant cross section in center of
mass frame of the photon and proton:

d2σ

dΩπ
= J

d2σ

dtdφ
, (18)

2π
d2σ

dtdφ
= ε

dσL

dt
+
dσT

dt
+
√

2ε(ε+ 1)
dσLT

dt
cosφ+ε

dσTT

dt
cos 2φ

(19)
where subscript L and T are for longitudinal and transverse
polarizations of virtual photon, φ is defined in Fig. 4, and J
is given below. The longitudinal photon polarization param-
eter, ε, is given by:

ε =

(
1 +

2|q|2

Q2
tan2 θe

2

)−1

(20)

In the study of DEMP at EIC, we ignore the cross terms
σLT and σTT , which arise from longitudinal transverse and
transverse transverse interference states of the virtual pho-
ton, as they are small, and even more highly uncertain than
σL and σT .

Finally, we transform the five fold cross section to the col-
lider frame with the help of following Jacobians.

J = A× Jcolrf (21)

Jcolrf =
|~pπ|2×W

|~pcmπ |(Mp + Eγ)|~pπ|−Eπ|~pγ |cos(θπ)|
(22)

A = Jcm
|~pcmπ |
π

(23)

Jcm =
~prfγ − βrfcmErfγ
γrfcm(1− (βrfcm)2)

(24)

1. Weiss model, VR Model and CKY model

Christian Weiss has provided us a model for DEMP
for high Q2[18]. Weiss model is valid for W 2 >> Q2,
W >> 2 GeV and small x. The Weiss model is base on
a Reggized Born term for high energy photoproduction,
including a vector dominance like Q2 of electroproduction
at Q2 ¡¡ 1 GeV2, and extrapolation to high Q2 assuming
pQCD scaling behavior. The VR model [19] by Tom Vrancx
and Jan Ryckebusch introduces a strong hadronic form
factor in the Reggeized background amplitudes. “Hadronic
models corrected for resonance/parton duality describe the
separated pion electroproduction cross sections above the
resonance region reasonably well at low -t”. VR model
is works very well for −t up to 0.9 GeV2. The CKY [15]
model is proposed by Tae Keun Choi, Kook Jin Kong and
Byung Geel Yu. It is also a Regge based model. The CKY
model take account of the importance of the roles of pion
and proton form factors in DEMP. There is an excellent
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agreement between VR model and CKY model. CKY model
works well for -t up to 1.5 GeV2

In order to make the event generator more efficient and
save CPU time, we applied some hard cuts. We ignored the
events with Q2 < 5 GeV2, W < 3 GeV, W > 10.6 GeV and
if its FF(Form Factor) generator then −t > 0.6 GeV2 or if
TSSA (Transverse Single Spin Asymmetry) generator then
−t > 1.3GeV 2. Please note that TSSA part of generator is
incomplete. I will explain later what is needed to be done.

For parametrization we have range of Q2 from 3 to 35
GeV2, range of W is from 2 to 10.2 GeV and range of -t is
up to 1.3 GeV2. We have 22 bins of W. Each W bin is 0.2
GeV wide. For each W bin we have 33 Q2 bins. Each Q2

bin 1 GeV2 wide. Finally in each unique bin of Q2 and W
we plotted σL (Fig. 5 ) and σT (Fig. 6) against −t.

2. Comparison of three models

For EIC kinematics for FF and TSSA we did a detailed
comparison of Weiss model, VR model and CKY model for
σL and σT . A typical graph of each sigma is shown in Figs. 5,
6. For the kinematics of interest the Weiss model is more
than the VR and CKY models by 2 or 3 times of magnitude.
The agreement in σL for low −t is much better but still Weiss
model is ate least 2 times greater than VR and CKY models.
Weiss model is valid for events which has W 2 � Q2 which
is the case most of the time in EIC kinematics but not true
all the time. For σT Weiss model is more than VR and CKY
models by 2 to 10 times of magnitude. We can see from the
figure that VR model and CKY model are in good agreement
with each other.

3. Parametrization of σL

We parameterized the CKY model for the calculation of
the π+ production cross section. Math library of ROOT
[13] is used to parameterized σL. In our parametrization
range of W is from 2 GeV to 10 GeV. This range is divided
in 41 bins of same with of 0.2 GeV. For reach W bin range
of Q2 goes from 5 to 35 GeV2 and width of each Q2 bin is 1
GeV2. For each unique bin of W and Q2 we parameterized
σL and σT against the values of −t from 0 to 1.3 GeV2.

When and event is generated with a value of Q2 gener-
ator looks for rounded up integer value and get the cross
section value. Same is done for W . This is done to keep a
conservative approch.

Cross terms σLT and σTT are small so they are ignored.
σL is parameterized with a Landau function LLandau and

two exponential functions as described below:

σL(Q2
bin,−t,Wbin) =

 LLandau, 0 ≥ −t < 0.15
exp(c1 + c2|−t|), 0.15 ≥ −t < 0.5
exp(c3 + c4|−t|), 0.5 ≥ −t < 1.3

(25)
For analytic expression of LLandau please see ROOT doc-

umentation.

4. Parametrization of σT

σT is parameterized with a second order polynomial func-
tion of −t up to 0.2 GeV2 and then with an exponential
function of -t for 0.2 < −t < 1.3 for each bin of Q2 and W .

σT (Q2
bin,−t,Wbin) =

{
c0 + c1|−t|+c2|−t|2, 0 ≥ −t < 0.2
exp(c3 + c4|−t|), 0.2 ≥ −t < 1.3

(26)

E. Exclusive 3He(e, e′π−)p(pp)sp Physics Model

1. Parameterization of σUU

The unpolarized cross section, dσUU , shorthanded as σUU ,
and its components are parameterized from the phenomeno-
logical Vrancx-Ryckebusch (VR) model [19]. Model data are
generated in the kinematic region of Q2 from 4.0 to 7.5 GeV2,
−t from −tmin to −1.0 GeV2, and at W = 3.0 GeV [19] [20]
[21]. The W dependence is then taken as (W 2 − M2

p )−2,
where Mp is the proton mass [22].

These data were parameterized to fit the following func-
tions:

σL = exp (P1(Q2) + |t|∗P ′1(Q2))+exp (P2(Q2) + |t|∗P ′2(Q2)),
(27)

σT =
exp (P1(Q2) + |t|∗P ′1(Q2))

P1(|t|)
, (28)

σLT = P5(t(Q2)), (29)

σTT = P5(t(Q2)). (30)

The results of this parameterization were hard-coded into
functions for use in the original event generator. These func-
tions are incorporated into the new event generator and ac-
cessed by the SigmaCalc class.

2. Parameterization of Azimuthal Modulations

S. V. Goloskokov and P. Kroll have provided model data
for the k = 1−5 asymmetry amplitudes [23]. These data are
at discrete values of Q2 from 4.107 to 7.167 GeV2, W from
2.362 to 3.191 GeV, and t′ = t− tmin from 0 to 0.5 GeV2. t
is the momentum transfer t = (q − pπ−)2 (where q and pπ−
are the four momenta of the virtual photon and produced
pion, respectively) and tmin is the minimum value of t for a
constant Q2 and W . The raw GK model data are shown in
Fig. 9. The sixth asymmetry amplitude is expected to be
much smaller and is taken to be zero.

The fit functions were initially chosen only to closely match
the shape of the model data, and were not based on any
physical principle. They are as follows:

A
sin(µφ+λφs)k
UT =

{
aebt

′ − (a+ c)edt
′
+ c, k = 1

aebt
′
+ c, k = 2, 3, 4, 5

(31)
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FIG. 5. Comparison of Weiss model, VR model CKY model for σL at W =5.2 (left) and 9.1 (right).
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FIG. 6. Comparison of Weiss model, VR model CKY model for σT at W =5.2 (left) and 9.1 (right).

where a, b, c, and d are fit parameters. These fits are done
independently for each Q2,W pair. The parameterized func-
tions are displayed alongside the model data in Fig. 9. The
k = 1 fit function originally had an additional, independent
parameter in place of (a+c), but the fit did not converge reli-
ably. As such, it was constrained to pass through the origin,
justified by the requirement that all asymmetries dependent
on φ must vanish at t = tmin, as φ is undefined in parallel

kinematics. This also applies to all but the k = 3 asymme-
try, however, the fits were satisfactory, and the additional
constraint was not deemed necessary.

The main physics goal of the DEMP experiment is to mea-

sure the k = 1 asymmetry amplitude, A
sin(φ−φs)
UT . In addi-

tion, the k = 3 asymmetry amplitude, A
sin(φs)
UT , may also be

accessible through this experiment, and gives information on
higher order GPDs.
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FIG. 7. Parametrization of CKY σL. CKY model values are green circles. Landau function shown in blue. Red and black are two
exponentials.
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FIG. 8. Parametrization of CKY σT . CKY model values are green circles. Second order polynomial is shown in blue and Red is
exponential function.
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FIG. 9. Asymmetry amplitudes vs t′ for different values of Q2 and W . Data points are the raw model data provided by Goloskokov
and Kroll [23]. The lines are the parameterized fit for each Q2,W pair.
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The parameters are saved to a file and read at runtime into
instances of the Asymmetry class. Each Asymmetry object
corresponds to one of the five asymmetries and contains each
of the parameterized functions for that asymmetry, one for
each Q2, W pair. The Asymmetry class implements a func-
tion to retrieve the asymmetry amplitude given Q2 and t′

as arguments. The value is calculated by selecting the two
functions with the associated values of Q2 closest to the in-
put. These two functions are each evaluated at the input t′

value, resulting in two data points, (Q2
1, A1) and (Q2

2, A2).
A line is then drawn between these two points to interpolate
a value for the asymmetry amplitude at the input Q2 value.

The asymmetries are accessed by the SigmaCalc class and
used to calculate the cross section component σUT according
to Equation 33.

Σk = dσUU (φ)A
sin(µφ+λφs)k
UT (32)

dσUT = − PT√
1− sin2 θ sin2 φs

6∑
k=1

sin(µφ+ λφs)kΣk. (33)

3. σ and Event Weight

The cross section components σUU and σUT are summed
to give the overall cross section σ, as shown by Equation 34.

dσ = dσUU + dσUT (34)

Explicitly, this cross section is a two-fold differential scatter-
ing cross section in the center of mass frame. In order to
calculate the event weight, the five-fold differential cross sec-
tion in the lab frame is needed. This is calculated as follows

d5σ =
d5σ

dE′dΩe′dΩπ
= ΓV J

d2σ

dtdφ
(35)

where J is the Jacobian transformation from the center of
mass frame to the lab frame. ΓV is the virtual photon flux
factor, defined as

ΓV =
α

2π

E′

E

(W 2 −M2
n)

2MnQ2

1

1− ε
, (36)

where α is the fine structure constant, W is the invariant
mass of the final state, and ε is the virtual photon polariza-
tion, as given by Equation 37.

ε =

(
1 +

2|~q|2

Q2
tan2 θe

2

)−1

, (37)

The event weight is then given by the following expression:

w =
d2σ

dΩπ

(phase-space-factor)(luminosity)(target-factors)

Ngen
(38)

The phase-space-factor is the fraction of the total kinemat-
ically accessible phase space that is covered by the event
generator. The luminosity for the SIDIS experiment is 1036

cm−2s−1 [24]. The target-factors include the 60% target po-
larization and the 85.6% effective polarized neutron of the
Jefferson Lab polarized 3He target. Ngen is the total number
of generated events, including those that were discarded due
to either falling outside of acceptable parameters, or having
no valid solutions in the kinematics solver.

F. u-channel Exclusive p(e, e′pπ0) Physics Model

IV. RESULTS

A. Exclusive p(e, e′π+)n Projections for EIC

We have performed simulations demonstrating the feasi-
bility of pion electric form factor measurements at the EIC
using this event generator. DEMP event kinematic distribu-
tions are shown in Fig. 10. The neutrons take nearly all of
the proton beam momentum and are detected at very for-
ward angles (ZDC). The scattered electrons and pions have
similar momenta, except that the electrons are distributed
over a wider range of angles, e.g. for 5×100 beam energies,
the 5-6 GeV/c electrons are primarily scattered 25-45o from
the electron beam, while the 5-12 GeV/c π+ are 7-30o from
the proton beam.

The EIC can allow a pion form factor measurement up to
Q2=35 GeV2, as shown in Fig. 11. The pion form factor
projections assume an integrated luminosity of 20 fb−1 with
a 5 GeV electron beam colliding with a 100 GeV proton
beam. We assume:

• Integrated luminosity of 20 fb−1 for the 5×100 GeV
measurement.

• Clean identification of exclusive p(e, e′π+n) events by
tagging the high energy, forward going neutron in the
ZDC.

• Systematic uncertainty of 2.5% point-to-point, and
12% scale

• R = σL/σT = 0.013− 0.14 at the lowest −t, and δR =
R systematic uncertainty in the model [19] subtraction
to isolate σL.

• Pion pole channel dominance at small −t confirmed in
exclusive π−/π+ ratios obtained from e + d collision
data.

A consistent and robust EIC pion form factor data set will
probe deep into the region where Fπ(Q2) exhibits strong sen-
sitivity to both emergent mass generation via DCSB and the
evolution of this effect with distance scale.

B. Exclusive ~3He(e, e′π+)p Projections for SoLID at
Jefferson Lab

The current studies with the event generator are run using
the following configuration:

• Beam energy: 11 GeV.

• Scattered electron energy: 1.1 to 9.9 GeV.

• Scattered electron θ: 5◦ to 27◦.

• Pion θ: 6◦ to 18◦.

In addition, any events meeting the following criteria are
discarded due to being outside the accurate range for the
cross section model:

• t < −1.2 GeV2
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FIG. 10. Exclusive p(e, e′π+n) kinematic distributions for e′ (left), π+ (center), n (right) at 5×41 (top), 5×100 (middle) and 10×100
(bottom) GeV beam energy combinations. The radial component is momentum, and the polar coordinate is the scattering angle with
the proton beam direction to the right and the electron beam direction to the left.

• Q2 < 4 GeV2

• W < 2 GeV

Fig. 12 shows the weighted momentum and polar angle
distribution of particles generated in this configuration.

Depending on the quality of data on the recoiled proton
provided by SoLID, missing mass and momentum cuts may
be necessary in analysis of the data. The missing momentum
is also useful in identifying events which have undergone final
state interaction (Section IV B 2). The missing mass and

momentum are defined in DEMP as follows:

~pmiss = ~pbeam − ~pe′ − ~pπ (39)

Emiss = Ebeam +mn − Ee′ − Eπ (40)

m2
miss = E2

miss − p2
miss (41)

m2
miss = (Ebeam +mn − Ee′ − Eπ)

2 − |~pbeam − ~pe′ − ~pπ|2
(42)

1. Fermi Momentum Effects

The target neutron in the DEMP experiment is contained
within a 3He nucleus. As such, the neutron has a non-zero
momentum in the lab frame, known as Fermi momentum.
Fermi monentum is incorporated into the event generator in
the TargetGen class, which generates the target neutron’s
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FIG. 11. Existing data (blue, black, yellow, green) and pro-
jected uncertainties for future data on the pion form factor from
JLab (cyan, red) and EIC (black), in comparison to a variety of
hadronic structure models. The EIC projections clearly cover a
much larger Q2 range than the JLab measurements, providing
access to the emergent mass scale in QCD.

momentum before the main kinematics calculation is per-
formed. The direction of the neutron’s Fermi momentum is
chosen uniformly using sphere point picking [12].

The magnitude of the Fermi momentum follows the distri-
bution shown in Fig. 13. This spectral function was produced
by a Monte Carlo routine according to the Argonne Nuclear
Potential [25].

The data was originally generated with the following nor-
malization:

4π

∫
p2 dF

d~p
dp sin θdθdφ = 2. (43)

The distribution was normalized to two in order to describe
the two protons in 3He nucleus. For the single neutron, the
distribution needs to be normalized to one, as such the data
have simply been divided by two and reused in this project.

The resulting momentum distribution is given by a set of
1000 discrete data points, providing the probability density
from 0 to 1 GeV/c. As there is no clear, theoretically moti-
vated, functional form for this distribution, the momentum is
selected in the generator by a simple Monte Carlo procedure:
A point, (x ∈ [0, 300], y ∈ [0, 6.03]), is randomly selected. If
this point lies within the shaded area on Fig. 13, then it is
used, otherwise the procedure repeats until a point in the
shaded area is found. In order to cut down on computation
time, the data is truncated at 300 MeV/c beyond which the
probabilities are negligible.

Fig. 14 demonstrates the effect of Fermi momentum on the
generated data. The effect of Fermi momentum on the miss-
ing mass and momentum distributions is shown in Fig. 15.
These plots indicate that the effect of Fermi momentum is
minimal.

2. Final State Interaction Effects

When the target nucleon emits the charged pion, it is pos-
sible for the pion to scatter off of one of the other nucleons
in the 3He nucleus as it passes through the nuclear volume.
This secondary reaction is known as the Final State Interac-
tion (FSI). A more thorough study on the effects of FSI on
DEMP is planned for the future. For the time being however,
the effects have been estimated by calculating the kinemat-
ics using elastic scattering and the scattering cross section
using phase-shift parameterizations by Rowe, Solomon and
Landau [26].

FSI is implemented in the event generator using another
instance of the TargetGen class to generate a target proton
with Fermi Momentum as described in Sec. IV B 1. A ran-
dom direction is selected with sphere point picking [12] to
determine the direction of the scattered pion in the pion-
nucleon center of mass frame. In the center of mass frame,
the total momentum is zero, so:

|pπ| = |pp|= p (44)

|p′π| = |p′p|= p′ (45)

The conservation of energy equation then may be expressed
as:

Eπ + Ep = E′π + E′p (46)√
p2 +m2

π +
√
p2 +m2

p =

√
p′2 +m2

π +
√
p′2 +m2

p (47)

The only solution to this equation is p = p′, and so the
kinematics of the outgoing particles are trivial.

The implementation of the cross section calculation was
written by A. Shinozaki [27], and further modified by us.
This code is included in the event generator unmodified in
order to calculate the π−N differential scattering cross sec-
tion.

This differential cross section is given in the center of mass
frame, and must be transformed via a Jacobian into a Lab
frame value which may be used as a correcting factor to
the overall event weight. Three different formulations of the
Jacobian are made available.

The “William’s Weight” uses the following Jacobian [28]:

JWilliams =
|pπ,lab|2

γ|pπ,com|(|pπ,lab|−βEπ,labθπ,lab)
(48)

γ =
Eπ,lab + Ep,lab
|pπ,lab + pp,lab|

(49)

β =
|pπ,lab|+|pp,lab|
Eπ,lab + Ep,lab

(50)

The “Dedrick Weight” uses the following Jacobian [29]:

JDedrick =

(
(g + cos2(θπ,com) + (1− β2)(1− cos2(θπ,com))

)3/2
(1− β2)|(1 + g cos(θπ,com))|

(51)

g =
βEπ,com
pπ,com

(52)

where β is the same as in the William’s Weight.
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FIG. 12. Weighted kinematic coverage of the three final state particles produced by the DEMP event generator. The color axis
represents the rate for each bin.
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FIG. 13. 3He spectral function generated according to the Ar-
gonne Nuclear Potential [25].

Finally, the “Catchen Weight” uses the following Jacobian
[30]:

JCatchen =
|pπ,lab|2Eπ,com
|pπ,com|2Eπ,lab

(53)

The effects of FSI on the missing momentum distributions
are shown in Fig. 16, using Catchen Weight in weighting the
FSI-enabled data. The figure shows that a secondary inter-
action has a much more significant effect on the data than
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FIG. 14. Comparison of Q2 (left) and t (right) weighted distribu-
tion with Fermi momentum disabled (blue) and enabled (red).

the other corrective effects. However they also indicate that
events which undergo FSI occur at a much smaller rate than
those that do not. Furthermore, Fig. 16 indicates that the
majority of FSI events can be eliminated by cutting events
with |~pmiss|> 1.2 GeV/c. Remaining FSI events constitute
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only 4% of events.

C. Exclusive u-channel p(e, e′π0p) Projections for EIC

V. SUMMARY AND OUTLOOK
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FIG. 16. Weighted missing momentum distribution in each t bin, with FSI and Fermi momentum enabled, compared to the distribution
with only Fermi momentum enabled, and with no effects enabled. The FSI distribution uses the Catchen weight in its weighting.
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