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ABSTRACT

Within this work, the data analysis and experimental results on the measurement

of the double polarization observable (or beam-target asymmetry),
∑

2z, for real

Compton scattering off the proton is presented. The
∑

2z values are measured via

a circularly polarized photon beam incident upon a longitudinally polarized butanol

target in the resonance region, Eγ = 250− 310 MeV. This experiment was performed

at the MAMI-A2 tagged photon facility in Mainz, Germany, during two experimental

beamtimes in 2014 and 2015.

This work also involves the extraction of proton spin polarizabilities, which are

fundamental structure constants, similar to its charge and mass. These constants pro-

vide a measure of the global resistance of the nucleon’s spin axis against displacement

in an external electric or magnetic field, which makes them an excellent tool to study

the structure of the nucleon. While the spin-independent, or scalar, electric (αE1) and

magnetic (βM1) polarizabilities of the nucleon have been measured, little effort has

been made to extract the spin-dependent polarizabilities. These four leading order

spin dependent polarizabilities, γE1E1, γM1M1, γM1E2 and γE1M2, describe the spin re-

sponse of a proton to electric and magnetic dipole and quadrupole interactions. This

requires the precise measurement of the single and double polarization observables

which are sensitive to these polarizabilities.

Through this analysis, the spin polarizabilities have been extracted by performing

a global analysis with the aid of two QCD-based models. The extracted four spin po-

larizabilities are: γM1M1 = 3.25±0.40, γE1E1 = −4.24±0.39, γE1M2 = 0.76±0.83 and

γM1E2 = 1.24 ± 0.39, in units of 10−4 fm4. The uncertainties in γE1E1, γM1M1, γE1M2

were improved by a factor of two to four, but γM1E2 remained unchanged. These ex-

tracted spin polarizabilities are also in good agreement with dispersion, Heavy Baryon

chiral perturbation and K-matrix theory predictions.
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Chapter 1

Introduction

The scientific quest to understand what matter is made of is one of the oldest hu-

man undertakings. There was very little progress until the beginning of the 20th

century when J. J. Thompson discovered that cathode rays consist of fundamental

particles: the electrons. During the early 20th century, there was an unprecedented

development in both theoretical and experimental nuclear physics. In 1911, Ernest

Rutherford performed an experiment using helium nuclei on a gold foil and discovered

the experimental evidence of a positively charged core, the ‘nucleus’, and proposed

the famous Rutherford’s model of the atoms [1]. Two years later, Neils Bohr proposed

several improvements over Rutherford’s model [2]. He postulated that the electrons

orbit the nucleus of an atom in discrete radii defined by their angular momenta which

explained the emission lines in atomic spectra.

While theorists have long been capable of dreaming up possible explanations for

various phenomena, it has only been within the past half-century that experimen-

talists have had the tools necessary to put some of those theories to test. The de-

velopment in accelerator technology which started in the 1930s soon allowed intense,

focused beams of particles to be used in fixed-target and, later, collider experiments,
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opening the door for new experimental challenges. In the mid-1930s, just a few years

after the first observation of the neutron by James Chadwick in 1932 [3], Yukawa

[4] suggested that the attractive force between the nucleons was mediated via the

exchange of massive virtual particles called mesons. In 1947, the existence of such

particles was confirmed experimentally, stimulating work in the field of hadronic struc-

ture. Subsequently, Murray Gell-Mann [5] and George Zweig [6] each independently

proposed the Quark Model to describe the classification scheme for hadrons in 1964,

in which new elementary particles called quarks were introduced. According to this

model, the quarks together with their antiparticles combine to form hadrons. Hadrons

may be classified as baryons or mesons depending on the number of quarks/anti-

quarks that are combined. A baryon, such as a proton or neutron consists of three

valence quarks, while a meson such as the π meson consists of a quark and an anti-

quark.

The framework of the quantum mechanics is based on the significant achievements

like the wave-particle duality by Louis de Broglie in 1923 [7], the uncertainty principle

by Werner Heisenberg in 1925 [8] and the wave equation by Erwin Schrodinger in 1926

[9]. Now, the Standard Model of particle physics first formulated in the mid 1970s

has been established as an enormous success in classifying all the subatomic particles

known as well as in explaining and predicting several nuclear and particle physics

phenomena.

The Standard Model [11] of particle physics consists of three generations of quarks

and leptons and a family of force carriers as shown in Fig. 1.1. In addition to the

original proposed table, it includes a new scalar particle, the Higgs-boson, whose

observation at CERN was announced in 2012. The first generation of matter is the

visible building blocks of the universe which includes both quarks and leptons as

spin-1/2 fermions. Force carriers that mediate the fundamental interactions (strong,
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Figure 1.1: The Standard Model of particle physics showing three generations of
matter, gauge bosons and the Higgs boson [10].

electromagnetic and weak) are spin-1 gauge bosons. However, there exist four known

fundamental forces: gravity, the electromagnetic force, the weak force, and the strong

force; gravity still remains excluded from the Standard Model. The Standard Model is

based on the gauge groups SU(3) ⊗ SU(2) ⊗ U(1). U(1) denotes the symmetry group

of the electromagnetic interaction where the fermions act as singlets and interact

by exchanging one boson. SU(2) is for the weak interaction where the left handed

fermions act as pairs mediated by three bosons, and SU(3) for the strong interaction

where the fermions act as triplets mediated by eight bosons.

After the discovery of quarks as the fundamental building blocks of hadrons, the

theory of Quantum Chromodynamics (QCD) was developed [4]. QCD is a quantum

field theory describing the strong interaction; that is, the interaction between quarks

mediated by a massless particles called gluons. The concept of a massless force
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mediator is very similar to the mediator in Quantum Electrodynamics (QED), in

which photons act as a force mediator between charged particles.

In QCD, the quark-quark potential depends on the distance between the quarks

and the interaction energy. The strength of the interaction between quarks and gluons

is parametrized via the strong coupling constant, αs. In QCD, this coupling constant

is not in fact a constant but varies with the energy of the system as shown in Fig. 1.2.

At very large energy scale (≥ 1 GeV) corresponding to distances much smaller than

the typical hadron size (� 1 fm), the coupling between the quarks and gluons and

the coupling of gluons to themselves become very small such that the quarks inside

a proton are nearly free, not subject to any force. This feature of QCD is known

as asymptotic freedom. In this energy regime, the αs is much smaller than one,

meaning that it is possible to use perturbation theory [12] to describe precisely the

interactions because the perturbative expansion converges and is therefore solvable.

However, at lower interaction energy scale (≤ 1 GeV) and larger distance such

as those associated with the quarks inside the nucleon, the strength of αs becomes

very large. As the quarks move further apart, the binding between them increases,

eventually leading to a new quark-anti-quark pair being formed, and no matter how

much energy is injected into a nucleon, and it is therefore almost impossible to isolate

either a quark or a gluon. This feature of QCD is known as colour confinement.

In this energy regime, it is not possible to use perturbation theory to describe re-

liably the interactions because the perturbative expansion diverges and is therefore

not solvable. For this reason, the calculation of structure observables of the hadrons

like size, shape and polarizability is not possible. Therefore, other non-perturbative

methods like phenomenological models, or lattice based QCD calculations have been

used to describe the strong interaction in the low energy regime [14]. However, phe-

nomenological models have been successful and established as a bridge between the
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Figure 1.2: The strong coupling constant as a function of the momentum transfer Q
(GeV). The respective degree of QCD perturbation theory used in the extraction of αs
through diagrammatic expansion is indicated in brackets (NLO: next-to-leading order;
NNLO: next-to-next-to leading order; res. NNLO: NNLO matched with resummed
next-to-leading logs; N3LO: next-to-NNLO). Figure taken from [13].

mathematical models and experimental particle physics. Lattice QCD calculations

are much more challenging due to the need of very large computing resources to bear

on lattices of moderate size and the efficiency of algorithms. The most popular mod-

els for calculations involving few nucleon systems in the low-energy regime of QCD

are Dispersion Relation (DR) and Chiral Effective Field Theory (χEFT). In χEFT,

the symmetries of QCD are utilized such that the number of possible interactions is

restricted, so that the quark and gluon fields of QCD may be replaced by hadronic

degrees of freedom and the QCD Lagrangian density may be replaced by an effective

Lagrangian density. The details of this theory are beyond the scope of this thesis.

The reader is referred to [15] for further information.

A proton is a composite hadronic system which consists of three valence quarks,
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plus virtual sea quarks and gluons. This dissertation focuses on the structure ob-

servables of a composite system called the polarizabilities. These are fundamental

properties, similar to its charge and mass, and are benchmarks for our understanding

of the symmetries and strength of the constituent interactions with each other within

the proton.

At a classical level, polarizabilities reflect how much freedom charged constituents

have to rearrange under the application of external electromagnetic fields, while at

the quantum level, they indicate how easily the electromagnetic interactions induce

transitions to low-lying excited states of nucleons. The physical content of the nu-

cleon polarizabilities can be visualized best by effective multipole interactions for the

coupling of the electric and magnetic fields of a photon with the internal structure of

the nucleon. They are experimentally accessible by elastically scattering real photons

off of the nucleon γ + N → γ + N in what is known as nuclear Compton scattering

reaction. In the low-energy limit, when the wavelength of scattered photon is large

compared to the hadron size, the Compton scattering amplitude can be expanded

in terms of the incoming photon energy. The polarizabilities are dominated by the

lowest nucleonic states, namely by πN and ∆(1232) resonance dynamics, while sen-

sitivity to higher excitations is suppressed. This means that Compton scattering at

low energies (below the ∆) resonance , ≤ 300 MeV, is dominated by long-distance

properties of the nucleon. In particular, we note that the particles detected in the

experiments are photons, protons and pions. Therefore, it is not worthwhile to per-

form Compton scattering at these energies in terms of quark masses, such as in lattice

QCD or models of nucleon structure. Instead, we can perform experiments at low

energy in terms of pions and nucleons degree of freedom and such measurements can

be tested against the constraints extracted from the data using a theoretical approach

that includes the low-energy dynamics.
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Within this work, a brief overview of development and understanding of nuclear

physics theory and experiment, literature review of various nucleon polarizabilities are

presented in chapter 1 and 2. The experimental setup of the Crystal Ball experiment

and calibration of individual detector elements are discussed in chapters 3 and 4. In

chapter 5 and 6, the data analysis and experimental results on the measurement of

the beam-target asymmetry, the
∑

2z, for both π0 photoproduction and Compton

scattering channel are presented. The final results on the extraction of proton spin

polarizabilities from this work, and a global analysis including previous measurement

of the
∑

2x and
∑

3 asymmetry with the aid of two QCD-based models are summarized

in chapter 7.
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Chapter 2

Literature Review

This chapter outlines our current understanding of the structure of the nucleon. Of

particular interest is the study of the internal structure observables for the proton

called polarizabilities, which are not as well understood as other static nucleon prop-

erties such as charge, mass or magnetic moment. Sec. 2.1 and Sec. 2.2 describe nuclear

Compton scattering of off a proton and our understanding of single and double po-

larization observables.

2.1 Formalism for Nuclear Compton Scattering

Compton scattering, discovered by Arthur Holly Compton who was awarded the No-

bel Prize in 1927 [16] “for his discovery of the effect named after him”, generally

refers to the elastic scattering of a photon by a charged particle, usually an electron.

This process was first described using a quantum mechanical treatment of electro-

magnetic radiation and relativistic kinematics of the electron. Compton’s experiment

thus provided a unified demonstration of two of the great advances in physics in

the early 20th century: relativity and the particle-like nature of light. However, the

scattering process involved in this thesis is coherent elastic scattering of photons off



9

the nucleus, hence nuclear Compton scattering. In nuclear Compton scattering, the

external electromagnetic field of the photon attempts to deform the nucleon. In low-

energy nuclear physics, this process has been established as a well developed tool to

probe the internal structure observables of the nucleon.

2.1.1 Born Terms

The elastic scattering of a photon from a bound nuclei can be described as resulting

from the interaction of the nucleus with an electromangetic field. The complete field

consists of the electric field ~E and magnetic field ~H. The interaction between the

nucleus and the field is mediated by the four-potential (φ, ~A), where φ is the scalar

potential and ~A is the external vector potential of the photon. The most common way

to investigate this electromagnetic interaction is by performing a Compton scattering

of photons from nucleons. The interaction Hamiltonian can be expanded to different

orders of incoming photon energy (ω). This order can be determined by the number

of power of the photon energy. For example, electric field and magnetic field are

order one, because they are time and spatial derivatives of the vector potential field

respectively, while the vector potential field is defined to be order zero.

The most general field-theoretical Lagrangian for the nucleon field N with spin ~σ
2
,

where σ is the nucleon’s Pauli spin matrices, and two photons (incident and scattered)

of fixed and non-zero energy can be written interms of external and internal degrees

of freedom of nucleons as,

L = LB + LnB, (2.1)

where the Born terms (LB) correspond to the external degrees of fredom and the

non-Born term (LnB) correspond to the internal dynamics of a nucleon. The Born
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term can be writtern in terms of the Hamiltonian only up to first order as [17],

LB = N †[H
(0)
eff +H

(1)
eff ]N, (2.2)

where H
(0)
eff is the energy independent leading order Born term which coresponds to

the Thompson scattering amplitude of a point-like charged particle of mass m and

charge e given by

H
(0)
eff =

(
~p− e ~A

)2

2M
+ eφ, (2.3)

where e is the nucleon’s electric charge, M is the nucleon’s mass and ~p is the mo-

mentum. At incident energies far below the π-production threshold (∼ 140 MeV),

photon scattering from the proton can be explained by the proton’s static properties

like its mass and charge. With increasing photon energies, an additional Born term

arises due to the magnetic moment. This term, which is in the first-order effective

Hamiltonian H
(1)
eff of Eq. 2.2, has the form,

H
(1)
eff = −e (1 + κ)

2M
~σ. ~H − e (1 + 2κ)

8M2
~σ.
[
~E × ~p− ~p× ~E

]
, (2.4)

where κ is the anamalous magnetic moment of the proton.

2.1.2 Non-Born Terms and Nucleon Polarizabilities

The fundamental properties of the nucleon such as charge, mass and anamalous mag-

netic moment are well known at low energies. The leading order properties that

are sensitive to the internal quark dynamics of the nucleon are as-yet experimen-

tally poorly understood. The internal dynamics and binding forces introduce more

structure observables of a nucleon, because as soon as the internal excitation of the

nucleon enters, many multipoles are induced that interact with an electromagnetic
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field of frequency ν. Each multipole oscillates with that same frequency and thus

emits radiation with a characteristic angular distribution. The proportionality con-

stant between each photon field and the corresponding induced multipole moment is

called a polarizability. These are energy-dependent functions which parameterise the

stiffness of the internal degree of freedom with particular quantum numbers against

deformations of a given electric or magnetic multipolarity and energy. The polarizabil-

ities are therefore called fundamental properties just as charge radius and magnetic

moment which characterize the nucleon and can be understood as a response of an

object that has sub structure to an applied electric or magnetic field.

2.1.2.1 Scalar Polarizabilities and Sum Rules

For increased energies that are still below the π-production threshold, the incident

photons couple electromagnetically and undergo transitions of definite multipolarities

and hence many multipoles are induced which describe the interaction between a

nucleon field N with spin ~σ
2

and two photons of fixed and non-zero energy. The

non-Born terms of the Lagrangian is

LnB = 2πN †[H
(2)
eff +H

(3)
eff +H

(4)
eff + ...........]N. (2.5)

The second order terms in the scattering amplitude of Eq. 2.5 introduce scalar or

spin-independent polarizabilities as

H
(2)
eff = −4π

[
1

2
αE1

~E2 +
1

2
βM1

~H2

]
, (2.6)

where αE1 and βM1 are the electric and magnetic scalar polarizabilities. These scalar

dipole polarizabilities describe the response of internal structure of the nucleon to an

applied ~E and ~H. They can be visualized by considering the nucleon as a composite
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object that consists of a quark core sorrounded by a virtual charged pion cloud.

In presence of an electric field, induced current separates the positive pions from

negative pions, stretching the nucleon along the direction of the electric field and

hence it acquires an electric dipole moment. This induced electric dipole moment

is proportional to the electric field, i.e. ~pe = 4παE1
~E, where αE1 is often known as

“electric stretchability” constant, because it is a measure of the pion charge cloud

deformation within the electric field.

Similarly, in presence of a magnetic field, induced current in the pion cloud aligns

the overall magnetic dipole moment along the direction of the magnetic field. This

is because the quark core exhibits only a paramagnetic moment, whereas the pion

charge cloud exhibits both a paramagnetic as well as a diamagnetic moment, but

the paramagnetic moment dominates the diamagnetic moment and hence results in

an overall dipole moment along the direction of the magnetic field. This magnetic

dipole moment is proportional to the magnetic field, i.e. ~m = 4πβM1
~B, where βM1 is

also known as “magnetic align-ability” constant because it is a measure of the overall

magnetic moment with the magnetic field.

These scalar dipole polarizabilities have been extracted via differential cross sec-

tion results from low energy Compton scattering experiments. These experiments

were performed at the MAinz MIcrotron (MAMI) tagged photon facility for incident

photon energies of 55− 165 MeV using the old TAPS setup, which covered the polar

angular range of 59 − 155◦ [18]. In addition, there exist results from three previous

experiments: Federspiel, et al., for incident photon energy 32−72 MeV at 60 and 135◦

[19], MacGibbon, et al., for incident photon energy 70− 100 MeV at 90 and 135◦ [20]

and Zieger, et al., for incident photon energy 98−132 MeV at 180◦ [21] were combined

to perform a global analysis [18]. Their global analysis also utilized a constraint given

by the Baldin sum rule [22], which will be discussed in more detail in Sec. 2.1.2.2.
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The Particle Data Group (PDG 2016) [13] values for these polarizabilities, including

the global fit values by Olmos de Le’on, et al., are

αE1 = [11.2± 0.3 (stat)∓ 0.4 (syst)± 0.3 (model)]× 10−4 fm3, (2.7)

βM1 = [2.5± 0.4 (stat)± 0.4 (syst)± 0.4 (model)]× 10−4 fm3. (2.8)

2.1.2.2 Baldin Sum Rule

The Baldin sum rule, derived by A.M. Baldin in 1960 [22], establishes a relation be-

tween the low-energy nucleon structure quantities, the electric and magnetic scalar

polarizabilities, and the nucleon excitation spectrum, such that these polarizabilities

can be extracted from the measurement of the cross sections of real Compton scat-

tering. This sum rule [23] is derived via the Kramers-Kronig relation [24] from the

low-energy theorems and expansion of the forward-scattering amplitude in the photon

energy as

αE1 + βM1 =
1

2π2

∫ ∞
ωth

σtot(ω)

ω2
dω, (2.9)

where σtot(ω) is the total photo absorption cross section and ωth is the threshold

energy required to produce a lighest meson (pion in this case).

2.1.2.3 Gerasimov-Drell-Hearn γ0 Sum Rule

The Gerasimov-Drell-Hearn (GDH) sum rule [23, 25] relates the static properties of a

nucleon, like anomalous magnetic moment κ and mass M , to its dynamic observable,

like the total absorption cross sections of circularly polarized real photons on longitu-

dinally polarized nucleons in the two relative spin configurations, parallel (3/2) and
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antiparallel (1/2) as,

αeκ
2

2M2
=

1

4π2

∫ ∞
ωth

σ3/2(ω)− σ1/2(ω)

ω
dω, (2.10)

where αe = 1/137.04 is the fine structure contstant, σ3/2 is the total photo-absorption

cross section when the helicity of the beam and the polarization of the target are

parallel and σ1/2 is when the helicity of the beam and the polarization of the target

are antiparallel. In a similar way, the sum rule relates the forward spin polarizability,

γ0, to the total photoabsorption cross section as

γ0 = − 1

4π2

∫ ∞
ωth

σ3/2(ω)− σ1/2(ω)

ω3
dω. (2.11)

2.1.2.4 Spin Polarizabilities

The expansion of the effective Hamiltonian to the third order of photon energy can

be explained based on the fact that it must respect basic symmetries of charge con-

jugation (C), parity (P) and time reversal (T) as shown in Table 2.1.

Quantity C P T
~E - - +
~H - + -
~σ + + -
∂i + - +
∂t + + -

Table 2.1: Behavior of electric field, magnetic field, nucleon spin, spatial derivative
and time derivative under charge conjugation, C, parity, P, and time reversal, T [26].

To construct the third order Hamiltonian without breaking C, P and T, only four

scalars ~σ · ( ~E × ~̇E), ~σ · ( ~H × ~̇H), EijσiHj and HijσiEj can be used. The terms ~̇E,

~̇H, Eij and Hij are the partial derivatives with respect to time and space defined as

~̇E = ∂t ~E, ~̇H = ∂t ~H, Eij = 1
2
(∂iEj + ∂jEi) and Hij = 1

2
(∂iHj + ∂jHi), respectively.
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These terms are straightforward extensions to the effective Lagrangian of zero-energy

scattering, where the photons couple electrically or magnetically (X, Y = E,M) and

undergo transitions Xl → Y l′ of definite multipolarities l and l′ = l ± 1, 0. The

interactions are unique up to field redefinitions using the equations of motion. Dipole

couplings are proportional to the electric and magnetic field directly, or to their time

derivatives. Quadrupole interactions couple to the irreducible second-rank tensors

Eij and Hij [27]. Thus, with these scalars, the third order term in the scattering

amplitude of Eq. 2.5 can be parametrized as the following equation,

H
(3)
eff = −4π

[
1

2
γE1E1 ~σ·( ~E × ~̇E) +

1

2
γM1M1 ~σ·( ~H × ~̇H)− γM1E2EijσiHj + γE1M2HijσiEj

]
,

(2.12)

where γE1E1, γM1M1, γM1E2 and γE1M2 are the four spin polarizabilites of the proton.

Figure 2.1: Nuclear Compton Scattering below π-production threshold, where El and
Ml refer to the multipolarities of the incident and scattered photon, and N , N? and
∆ refer to the intermediate or excited state of the nucleon.

These four leading-order spin polarizabilities are low-energy manifestations of the
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spin structure of the nucleon, which parameterize the response of the nucleon spin

to an applied electric or magnetic field. The physics behind these spin polarizabil-

ities involve the excitation of the spin-1
2

nucleon target to some intermediate state

(∆ or N?) via an electric or magnetic (E1 or M1) dipole transition and a succes-

sive de-excitation back into a spin-1
2

nucleon final state via an electric or magnetic

dipole (E1 or M1) or quadrupole (E2 or M2) transition as in Fig. 2.1. Thus, the

nomenclature of these four terms is related to the multipole fields associated with

the electromagnetic radiation. For example, γE1M2 represents the spin polarizability

of a proton when it is excited to one of its possible intermediate states, 3
2

state (the

excitation of a ∆) by absorbing dipole radiation E1 and de-excited back to the 1
2

state by emitting quadrupole radiation M2. The two spin polarizabilities γE1E1 and

γM1M1 correspond to dipole-dipole transitions, analogous to the classical Faraday ef-

fect related to birefringence inside the nucleon [28]. They describe how an incoming

photon causes a dipole deformation in the nucleon spin, which in turn leads to dipole

radiation. The two mixed-spin polarizabilities, γE1M2 and γM1E2, represent scatter-

ing, where the angular momenta of the incident and outgoing photons differ by one

unit [28].

2.1.2.5 Forward spin polarizability

Although the two scalar polarizabilities have been measured for the proton, very

few experiments have attempted to extract these Spin Polarizabilities (SPs). Several

experiments have provided constraints on linear combinations of SPs. One of the

combinations that has been measured so far is the forward spin polarizability, γ0,

which comes from a set of two experiments of the GDH Collaboration [29] and is

defined as

γ0 = −γE1E1 − γE1M2 − γM1M1 − γM1E2. (2.13)
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Figure 2.2: The GDH experiments: Measurement of the GDH sum rule and the
forward spin polarizability making use of the difference between parallel and anti-
parallel photo-absorption cross sections for circularly polarized photons scattering
from a longitudinally polarized target [29].

The forward spin polarizability sum rule was evaluated from data taken at the

tagged photon facilities at MAMI and the electron stretcher ring ELSA. A frozen spin

target, similar to the one used in this dissertation’s experiment, provided the polarized

nucleon. The MAMI data set [30] covered a range of incident photon energies, ω, from

200 MeV to 800 MeV while the ELSA data set [31] covered energies from 700 MeV to

1800 MeV. DAPHNE at MAMI and the ‘GDH-Detector’ at ELSA [31] along with the

forward detectors were used with nearly 4π steradian (sr) coverage. The combined

results of the photoabsorption cross sections difference are shown in Fig. 2.2 [29]. The

GDH Collaboration determined the forward spin polarizability γ0 to be,

γ0 = (−1.00± 0.08stat ∓ 0.10sys)× 10−4 fm4. (2.14)
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2.1.2.6 Backward spin polarizability

The second linear combination that has been measured so far is the backward spin

polarizability, γπ, which comes from a back-angle Compton scattering experiment at

MAMI and is defined as

γπ = −γE1E1 − γE1M2 + γM1M1 + γM1E2. (2.15)

Figure 2.3: Experimental differential cross sections for Compton scattering measured
using the LARge Acceptance arrangement (LARA) and segmented recoil counter
SENECA at MAMI compared with data from experiments at Saskatoon and LEGS.
Backward spin polarizability −38.7, −27.2 and −23.3 in standard spin polarizabil-
ity units of 10−4 fm4 determined using a dispersive fitting to back-angle Compton
scattering data [32].

The back-angle Compton scattering experiment at MAMI [32] used a single large

NaI detector at 136◦, along with the forward wall Göttingen SENECA detector [30].

These data sets covered a range of incident photon energies, ω, from 200 MeV to

470 MeV. The differential cross sections at scattering angle of θc.m.γ = 135◦ were

measured. A dispersion relation analysis was applied to the MAMI data set, along

with the other data sets from Saskatoon [33], LEGS [34, 35] and LARA [36, 37]. The
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LEGS data set disagrees with all other previous measurements (see Fig. 2.3). Due to

this disagreement, γπ was determined only fitting to MAMI, LARA and Saskatoon

data sets as

γπ = (−38.7± 1.8)× 10−4 fm4. (2.16)

The large backward spin polarizability is dominated by a π0 pole term, the t-channel

emission of a virtual π0 (Sec. 2.1.3.1). This contribution of large π0 pole term was

evaluated by Schumacher [38] and found to be γπ
0−pole

π = −46.7 × 10−4 fm4. This

term was subtracted from backward spin polarizability to find only the dispersive

contribution (Sec. 2.2.1),

γdispπ = (8.0± 1.8)× 10−4 fm4. (2.17)

2.1.3 Theoretical Model Predictions

Compton scattering on the proton at low and intermediate energies has thus far been

studied mainly with unpolarized photons to produce unpolarized differential cross

sections both in the region below pion threshold and in the ∆(1232) region. With

the advent of new experimental tools such as highly polarized photon beams and

polarized targets, the experimental studies of the internal structure parameters of the

nucleon have been improved significantly in the last few years.

Although in principle the individual SPs can be determined from analysis of ex-

perimental data, in practice this is not feasible. It is therefore required to make an

experimental determination by indirect means, i.e., one can use theoretical models

(e.g., the subtracted fixed-t dispersion relation model, which will be discussed in detail

in Sec. 2.2.1) to provide a complete low-energy analysis of the Compton amplitude

and then to extract the SPs. There are various theoretical models for studying the

nucleon polarizabilities. However, one of the key reasons that attract the attention
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of experimental physicists is that none of the models agree on the results. Instead

they predict a wide range of SP values. Due to this disagreement, an extraction of

the SP from data would provide a useful tool in helping to validate (or invalidate)

one, or some, of these models and would also provide a common ground for people

working in theory and experiments. In this section, some of the theoretical models

and underlying physics behind them for studying SPs will be discussed.

2.1.3.1 Mandelstam Plane and Invariant Amplitudes

In a Real Compton Scattering (RCS), the incident real photon interacts electromag-

netically with a proton and scatters at some angle. The scattered photon emerges in

general through a two-step mechanism involving the whole internal dynamics of the

target nucleus through virtual excitations in the intermediate state. The conservation

of momentum and energy in nucleon Compton scattering

γ(k, λ) +N(p)→ γ(k′, λ′) +N(p′), (2.18)

is given by

k + p→ k′ + p′, (2.19)

kc+mpc
2 → k′c+ Ep′ , (2.20)

where k and k′ are the four-momenta and λ and λ′ are the helicities of the incom-

ing and outgoing photons, p and p′ are the four-momenta of initial and final state

protons and Ep′ is the total energy of the recoil proton respectively. We can solve

Equations 2.19 and 2.20 to obtain the energy of the recoil proton as,

Ep′ =
k2c(1− cos θ)

mpc+ k(1− cos θ)
+mpc

2. (2.21)
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We can define a set of Lorentz invariant Mandelstam variables [39] in centre of

mass frame as,

s = (k + p)2 = (k′ + p′)2, (2.22)

t = (k − k′)2 = (p′ − p)2, (2.23)

u = (k − p′)2 = (k′ − p)2. (2.24)

It is also possible to define the nucleon mass M and scattering angle θ in terms of

these Mandelstam variables as,

s+ u+ t = 2M2, (2.25)

sin2 θ

2
= −st(s−M2)−2. (2.26)

The typical electromagnetic interactions contributing to RCS are shown in Fig. 2.4.

Figs. 2.4a and 2.4b represent the s- and u-channel Compton scattering process where

the nucleon is taken as a structureless Dirac particle representing the Born contribu-

tion only from the nucleon pole term. Typical resonance excitation in the s-channel

and its crossed version are shown in Fig. 2.4c and Fig. 2.4d, and typical mesonic

contributions with photon scattering off an intermediate pion, the pion pole diagram

and a correlated two pion exchange such as the “σ meson” are shown in Figs. 2.4e-

2.4g respectively. Except for the diagrams 2.4a, 2.4b, and 2.4f, all other and higher

diagrams in Fig. 2.4 have no pole structure, but correspond to excited states in s-, u-

or t-channel processes.

The amplitude Tfi for the Compton scattering process is related to the S-matrix

of the reaction as, 〈f |S − 1|i〉 = i(2π)4δ4(k + p− k′ − p′)Tfi, and it can be expressed
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.4: Some typical intermediate states contributing to Compton scattering off
the nucleon.

in terms of six invariant amplitudes Ti, i = 1, ...6 as [39, 40]

(2.27)
Tfi = ū′(p′)e′∗µ

{
−
P ′µP

′
ν

P ′2
(T1 + (γ.K)T2)− NµNν

N2
(T3 + (γ.K)T4)

+ i
P ′µNν − P ′νNµ

P ′2K2
γ5T5 + i

P ′µNν + P ′νNµ

P ′2K2
γ5(γ.K)T6

}
eνu(p),

where P ′, K, Q and N are orthogonal four-vectors defined as P ′µ = Pµ−Kµ
P.K
K2 with

P = 1
2
(p + p′), K = 1

2
(k + k′), Q = 1

2
(p − p′) = 1

2
(k′ − k) and Nµ = εµαβγP

′αQβKγ

with antisymmetric tensor εµαβγ fixed by the condition ε0123 = 1. Also, u and u′ are

the bispinors of the nucleons defined as uū = 2M with M as a nucleon mass, e and e′

are the photon polarization vectors, and γ5 = −iγ0γ1γ2γ3 =

 0 1

1 0

 is the product

of Dirac matrices, respectively.

These six invariant amplitudes, Ti, are functions of the two variables ν = (s−u)
4M

and t. However, these functions Ti(ν, t) have no kinematical singularities, they are

subject to kinematical constraints that arise from the fact that these terms P ′
2
, N2

and P ′
2
K2 in the denominator of the (Eq. 2.27) vanish at certain values of ν and

t. We can introduce linear combinations of the amplitudes Ti(ν, t) to remove the
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kinematic constraint. Therefore, we define the amplitudes Ai(ν, t), i = 1, ...6 as linear

combinations of Ti as [41]

A1 =
1

t
[T1 + T3 + ν(T2 + T4)] , A2 =

1

t
[2T5 + ν(T2 + T4)] ,

A3 =
1

η

[
T1 − T3 −

t

4ν
(T2 − T4)

]
, A4 =

1

η

[
2MT6 −

t

4ν
(T2 − T4)

]
,

A5 =
1

4ν
[T2 + T4] , A6 =

1

4ν
[T2 − T4] ,

(2.28)

with

η =
M4 − su
M2

= 4ν2 + t− t

4M2
. (2.29)

(a) (b)

Figure 2.5: Singularities in the s and t planes. (a) shows the t-channel which includes
a pole at t = m2

π0 and a cut starting at tthr = 4m2
π0 . At t = m2

σ, there is also a pole-
like phase substructure defining a “mass”. (b) shows the s-plane which represents
the nucleon pole at s = M2 and a right hand cut corresponding to the s-channel and
a left-hand cut corresponding to the u-channel [38].
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The amplitudes, Ai(ν, t), are even functions of ν and have no kinematic singu-

larities or kinematic constraints. But there are physical singularities which are the

basis for constructing the amplitudes. Fig. 2.5a shows the main singularities in the

Compton t-plane, which are poles on the positive real t-axis corresponding to the

pseudoscalar mesons π0, η and η′, and a cut starting t = 4m2
π. This cut consists

of a ππ channel with a ππ phase substructure that may be interpreted in terms of

the σ particle. The t-channel singularities of interest in connection with Compton

scattering are positioned at t = m2
π0 and at 4M2 ≥ t ≥ 4m2

π, i.e. outside the physical

region of the t-channel for the reaction γγ → NN . For the t-channel, this means

that the two photon fusion process γγ → ππ leading to the |ππ〉 intermediate state or

some other resonant or nonresonant intermediate state |t〉 takes place as a real (on-

shell) process whereas the subsequent process ππ → NN̄ takes place virtually, i.e.

below threshold for NN̄ pair production. This corresponds to low-energy Compton

scattering processes proceeding through |π0〉, |ππ〉, etc., t-channel exchanges in the

intermediate state with no excitation of the constituent-quark meson structure of the

nucleon.

Whereas in the s-plane, as shown in Fig. 2.5b, the main singularities are on the

real axis, a pole at s = u = M2 and two cuts, representing the s- and t-channels.

The pole at s = u = M2 represents the Born term, i.e. Thomson scattering without

excitation of internal degrees of freedom of the nucleon. The boundary of the s-

channel physical region is defined through the threshold s0 = (M + mπ)2 for the

photo-absorption process.

The complex s- and t-planes can be merged into one plane called the Mandelstam

plane by replacing s by ν as in Fig. 2.6. The horizontally hatched region of the

Mandelstam plane in Fig. 2.6 represents the s, t and u channel physical region where

Compton scattering is possible. In the Mandelstam plane, the physical regions are
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Figure 2.6: The Mandelstam plane for Compton scattering [38]. The physical regions
are horizontally hatched and the spectral regions are vertically hatched.

given by the interval between θ = 0 and θ = π of the physical scattering angle. The

boundary θ = 0 is equivalent with t = 0. The vertically hatched area of Mandelstam

plane represents the nonvanishing double spectral functions, where two of the three

variables s, t and u take on the values that correspond with a physical intermediate

state.

2.1.3.2 Low Energy Expansion

The Compton scattering amplitudes, Ai(ν, t), can be expanded to different orders in

w to better understand the scattering dependencies. The expansion up to the order

w2 is called the Low Energy eXpansion (LEX). This expansion includes both the Born

and non-Born contributions to the scattering process. The Born term describes the

Compton scattering proces off a point-like particle, i.e. typical Thomson scattering
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without excitation of the internal degrees of freedom of the nucleon and the non-

Born term including fundamental structure observables like electric and magnetic

scalar polarizabilities. At photon energies above 20 MeV but still far below the π-

production threshold, the differential cross section is given by the LEX [42, 43] in

terms of electric and magnetic structure observables as,

(
dσ

dω

)
=

(
dσ

dω

)
B

− ωω′
(
ω′

ω

)2
e2

M

[
α + β

2
(1 + z)2 +

α− β
2

(1− z)2

]
+O(ω4),

(2.30)

where
(
dσ
dω

)
B

is the Born contribution of differential cross section, z = cos θ is the

photon scattering angle and ω′ is the energy of the scattered photon, given by,

ω′ = ω +
t

2M
= ω

[
1 +

ω

M
(1− z)

]−1

. (2.31)

2.1.3.3 HDPV: Fixed-t Dispersion Relation Approach

The spin polarizabilities of the proton are extracted (Sec. 7.1) using the once-subtracted

fixed-t dispersion relation approach of Holstein, Drechsel, Pasquini and Vander-

haeghen (HDPV). This is important because as ω increases (ω2 and above), degrees

of freedom related to the internal structure and spin of the nucleus will enter the scat-

tering amplitudes and hence the LEX cannot be applied. DRs, which are partially

constrained by experimental data, can provide a more powerful approach to study

the Compton scattering amplitudes in these higher energy regions (e.g. ∆-resonance

region). Within the framework of DRs, it is possible to fix either θ or Mandelstam

variable t. The DRs at fixed value of θ are called fixed-angle DRs, which cannot be

applied at all angles with equally good precision but are best applied at backward

angles. Due to this reason, DRs are extended to include larger angles at a fixed

value of Mandelstam variable t and are known as fixed-t DRs. The singularities in
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the two planes (discussed in Sec. 2.1.3.1) are taken into account by imaginary parts

of the amplitudes ImsAi(ν
′, t) for the s-plane, and ImtAi(ν

′, t) for the t-plane. The

fixed-t DRs relate the real parts of the scattering amplitudes to their imaginary parts

through dispersion relations at a fixed value of Mandelstam variable t as [44, 45]

ReAi(ν, t) = ABi (ν, t) +
2

π
P
∫ ∞
νthr

ImsAi(ν
′, t)

ν ′2 − ν2
dν ′, (2.32)

where P denotes the Cauchy principal value, ImsAi are discontinuties across the

s-channel cuts of the Compton scattering process evaluated using empirical photo-

production data and νthr = mπ + 2m2
π+t

4M
is the pion photoproduction threshold. Due

to the asymptotic behaviour of Ai as ν goes to∞, the integral term of the dispersion

relation in Eq. 2.32 does not converge for scattering amplitudes A1 and A2. To ensure

that all terms converge, dispersion relations are calculated at fixed-t, subtracting the

case at ν= 0. In this case, the subtracted dispersion relations are given by [45],

ReAi(ν, t) = ABi (ν, t) +
[
Ai(0, t)− ABi (0, t)

]
+

2

π
ν2P

∫ ∞
νthr

ImsAi(ν
′, t)

ν ′(ν ′2 − ν2)
dν ′. (2.33)

In addition to the subtraction constant at ν= 0, we can also set t = 0 and define

a set of low energy constants as

ai = Ai(0, 0)− ABi (0, 0). (2.34)

These low energy constants are directly related to the scalar and spin polarizabilities

by
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αE1 = − 1

4π
(a1 + a3 + a6), βM1 =

1

4π
(a1 − a3 − a6),

γE1E1 =
1

8πM
(a2 − a4 + 2a5 + a6), γE1M2 =

1

8πM
(a2 − a4 − a6),

γM1M1 = − 1

8πM
(a2 + a4 + 2a5 − a6), γM1E2 = − 1

8πM
(a2 + a4 + a6),

γ0 =
1

2πM
a4, γπ = − 1

2πM
(a2 + a5).

(2.35)

Similarly the sum of scalar dipole polarizabilities is given by,

αE1 + βM1 = − 1

2π
(a3 + a6), αE1 − βM1 = − 1

2π
a1. (2.36)

2.1.3.4 BχPT: Baryon Chiral Perturbation Theory Approach

In addition to HDPV, a Baryon Chiral Perturbation Theory (BχPT) approach of

Lensky and Pascalutsa [46] that involves a systematic low-energy expansion around

the chiral limit is also used in this work to extract the spin polarizabilities. This

approach is based on the nucleon Compton scattering in the framework of BχPT

with pion, nucleon and ∆(1232) degrees of freedom, up to and including the Next-to-

Next-to-Leading Order (NNLO).

The chiral expansion for the Compton amplitude begins at the order of O(p2),

representing the Born contribution only from the nucleon pole term as in Figs. 2.4a

and its crossed counterpart in Figs. 2.4b. Therefore, O(p2) is known as leading order

(LO). Because the baryons are much heavier than the pions, low energy structure

constants do not enter until the next order in the BχPT Lagrangian. The Next-to-

Leading Order (NLO) that appear only in the order of O(p3) is shown in Fig. 2.4c

and Fig. 2.4f. In addition, at order of O(p3), there are contributions from a number

of loop graphs (Fig. 2.4e and Fig. 2.4g). The physics behind these NLO loop diagram
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is that the photon couples only minimally, i.e., to the electric charge of the pion and

nucleon. This means there will be no isovector term, γπNN , when the pion couples

to the nucleon via pseudoscalar coupling, therefore the number of one-loop graphs

can be reduced. This way the resulting expressions for amplitudes become simpler.

Furthermore, in the NNLO, the photons couple minimally to ∆-isobar propagator,

therefore other diagrams containing more than one ∆ should be suppressed by extra

powers of p/∆. At energies below the pion-production threshold, the NLO effects

are very small at backward angles but are significant at forward angles. However, in

the NNLO ∆-isobar contributions, the situation is quite the opposite. The NNLO

calculations are needed to describe the nucleon spin polarizabilities because they

appear only in the third order in the Compton scattering Hamiltonian. The BχPT

model is one of the χPT models expected to be sufficiently reliable for the nucleon

spin polarizability studies. The details of this model are beyond the scope of this

thesis and hence the reader is referred to [46, 47] for further detail.

2.2 Compton asymmetries for polarized beam and

target

The photon polarization properties can be described interms of the Stokes parameters

ξi (i = 1, 2, 3). We consider a reference frame with the z-axis along the direction of

the incoming photon (q̂), the x-axis in the scattering plane and in the half plane of

the outgoing photon, and the y-axis perpendicular to the scattering plane along the

direction (q̂ × q̂′). The Stokes parameter ξi in terms of photon-polarization density

matrix is defined as [17],
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〈eαe∗β〉 =
1

2
(1 + ~σ · ~ξ)αβ =

1

2

 1 + ξ3 ξ1 − iξ2

ξ1 + iξ2 1− ξ3

 , (2.37)

where eµ is the photon polarization vector chosen in the radiation gauge, ~e ·~q = 0, and

α, β = 1, 2 denote either of the two orthogonal directions x and y. The total degree

of photon polarization is given by ξ =
√
ξ2

1 + ξ2
2 + ξ2

3 ≤ 1. While this definition

of ξi is frame dependent, we can define Lorentz invariant quantities ξ2 and ξl =√
ξ2

1 + ξ2
3 which describe the degree of circular and linear polarization of a photon.

Furthermore, ξ2 = ±1 corresponds to the right and left helicity states. In the case of

linear polarization, the azimuthal angle φ between the electric field and the scattering

plane is defined by cos 2φ = ξ3/ξl and sin 2φ = ξ1/ξl. Thus, ξ3 = ±1 corresponds to

linearly polarized photons polarized parallel (φ = 0) and perpendicular (φ = π
2
) to

the scattering plane, and ξ1 = ±1 corresponds to linearly polarized photons polarized

with an angle φ = ±π
4
, respectively.

The spin polarizabilities of the proton can be extracted by measuring various

single and double polarization observables using both polarized beam and target.

These polarization observables are known as asymmetries and quantify the change

in the cross section due to specific polarization orientation. These observables are

traditionally represented by
∑

and defined as follows;

•
∑

j with subscripts j = (x, y, z), indicate the single polarization asymmetry

where the photon beam is unpolarized but the nucleon is polarized. For exam-

ple,
∑

y is a single polarization asymmetry where a photon beam is unpolarized

and the nucleon is polarized along the ±y axis.

•
∑

i with subscripts i = (1, 2, 3), indicates the single polarization asymmetry

where the photon beam is polarized but the nucleon is unpolarized. For exam-

ple,
∑

3 is a single polarization asymmetry where a photon beam is polarized
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in a direction given by Stokes parameter ξ3 = ±1, meaning that the photons

are linearly polarized in a direction parallel (φ = 0) or perpendicular (φ = π
2
)

to the scattering plane and the nucleon is unpolarized.

•
∑

ij with subscripts i = (1, 2, 3) and j = (x, y, z), indicate the double polar-

ization asymmetry where both the photon beam and the nucleon is polarized.

For example,
∑

2z is a double polarization asymmetry where a photon beam

is polarized in a direction given by Stokes parameter ξ2 = ±1, meaning that

the photons are circularly polarized with left and right helicity states and the

nucleon is polarized along the ±z axis.

2.2.1 Beam Target Asymmetry -
∑

2z

In a series of Compton scattering experiments approved at MAMI [48],
∑

2z experi-

ment is one of the experiment to measure double polarization observable and extract

all four spin polarizabilities by performing a global analysis. The beam-target asym-

metry
∑

2z is a double polarization asymmetry which is measured using a circularly

polarized photon beam (direction given by Stokes parameter ξ2 = ±1) on a longitu-

dinally polarized target (polarization along the ±z axis).

The helicity of the beam is flipped once per second so it is straightforward to show

beam-target asymmetry in terms of the polarized cross sections as

∑
2z =

σR+z − σL+z
σR+z + σL+z

=
σR−z − σL−z
σR−z + σL−z

, (2.38)

where σR±z and σL±z represent the cross sections for a positive and negative longitu-

dinally polarized target with a right and left helicity state of the beam, respectively.

These four Compton scattering cross sections can be visualized from four possible con-

figurations as in Fig. 2.7. Due to parity, as can be seen from Fig. 2.7 that σR+z = σL−z
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(a) (b)

(c) (d)

Figure 2.7: Different orientations for Compton scattering with a circularly polarized
photon beam on a longitudinally polarized target. (a), (b) show the right and left
helicity state of the beam with target polarization in +z direction (σR+z, σ

L
+z). (c) and

(d) show the right and left helicity state of the beam with target polarization in -z
direction (σR−z, σ

L
−z).

and σL+z = σR−z and applying this
∑

2z can be written as

∑
2z =

σL−z − σL+z
σL−z + σL+z

=
σR−z − σR+z
σR−z + σR+z

. (2.39)

2.2.2 Beam Target Asymmetry -
∑

2x

The beam-target asymmetry
∑

2x is defined as a double polarization asymmetry which

is measured using a circularly polarized photon beam (direction given by Stokes pa-

rameter ξ2 = ±1) on a transversely polarized target (polarization along the ±x axis).

In terms of of polarized cross sections including the right and left helicity states of

the beam,
∑

2x can be written as

∑
2x =

σR+x − σL+x
σR+x + σL+x

=
σR−x − σL−x
σR−x + σL−x

, (2.40)
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where σR±x and σL±x represent the cross sections for a positive and negative transversely

polarized target with a right and left helicity state of the beam, respectively.

Figure 2.8: Beam target asymmetry
∑

2x results at Eγ = 273− 303 MeV. The curves
are from a dispersion theory calculation [28] with α, β, γ0, and γπ held fixed at
their experimental values, and γM1M1 fixed at 2.9×10−4 fm4. From bottom to top,
the green, blue, brown, red, and magenta bands are for γE1E1 equal to 6.3, 5.3, 4.3,
3.3, and 2.3, in standard units of 10−4 fm4, respectively. The width of each band
represents the propagated errors from α, β, γ0 , and γπ combined in quadrature [49].

The data for
∑

2x experiment were collected in September 2010 and February

2011 with both the positive and negative target polarization configuration and the

data analysis was completed by P. Martel [50]. The spin polarizabilities of the proton

were extracted using the once-subtracted fixed-t dispersion approach of HDPV [28].

Fig. 2.8 shows the
∑

2x results for incident photon energies in the range Eγ = 273−

303 MeV along with the dispersion relation calculations for values of γE1E1 ranging

from −6.3 to 2.3×10−4 fm4, but with γM1M1 fixed at the HDPV value of 2.9×10−4

fm4 [28, 44]. Data were fit using HDPV calculations allowing γ0, γπ, αE1 + βM1 and

αE1 − βM1 to vary by their experimental errors. The curves clearly demonstrate the
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sensitivity of the asymmetries to γE1E1 showing a preferred solution as

γE1E1 = (−4.3± 1.5)× 10−4 fm4, (2.41)

where the uncertaintiy includes the fitting error of the model to the data.

The most recent analysis by Martel, et al., extracted the four leading order terms

of the proton’s spin polarizabilities, combining the published results from single-

polarization asymmetry [18] with linearly polarized photons
∑

3 from the LEGS col-

laboration [34] and Martel, et al.,
∑

2x results from the MAMI [49]. Only asymme-

try points obtained by the LEGS collaboration below double-pion photoproduction

threshold for the incident energies from Eγ = 213 − 333 MeV and angular range of

θγ′ = 70−130◦ were considered. As before, data were fit using the HDPV calculations

allowing γ0, γπ, αE1 +βM1, αE1−βM1 and γM1M1 (no longer fixed in this case) to vary

by their experimental errors. The extraction of four spin polarizabilities, combining

the LEGS data set and Martel, et al.,
∑

2x results are [49],

γE1E1 = (−3.5± 1.2)× 10−4 fm4,

γM1E1 = (3.16± 0.85)× 10−4 fm4,

γE1M2 = (−0.7± 1.2)× 10−4 fm4,

γM1E2 = (1.99± 0.29)× 10−4 fm4.

(2.42)

These results include the fitting error of the model to the data .

2.2.3 Beam Asymmetry -
∑

3

The beam asymmetry
∑

3 is defined as a single polarization asymmetry, which is

measured using a linearly polarized photon beam (direction given by Stokes parameter

ξ3 = ±1, i.e. polarized in a direction parallel (φ = 0) or perpendicular (φ = π
2
) to
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the scattering plane) on an unpolarized target. In terms of cross sections for an

unpolarized target including a linearly polarized beam parallel and perpendicular to

the scattering plane,
∑

3 can be written as

Σ3 =
σ‖ − σ⊥

σ‖ + σ⊥
, (2.43)

where σ‖ and σ⊥ represent the cross sections for an unpolarized target with a linearly

polarized beam parallel and perpendicular to the scattering plane, respectively.

Figure 2.9: Beam asymmetry
∑

3 at Eγ = 297± 10.1 MeV [51]. The curves are from
LEGS data [34], HDPV calculations [17, 28], and Lensky and Pascalutsa [46]. Only
statistical errors are shown.

The
∑

3 data were collected in December 2012 with unpolarized liquid hydrogen

target and the data analysis was completed by Collicott, et al [51]. Fig. 2.9 shows∑
3 results for incident photon energies in the range Eγ = 273± 10.1 MeV compared

with results from the LEGS collaboration. These results were also compared with

HDPV [44], and BχP) [46] calculation. The fitting routine varies γ0, γπ, αE1 + βM1
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and αE1− βM1 by their experimental errors. The extracted γM1M1 using results from

Collicott, et al.,
∑

3 experiment

γM1M1 = (3.16± 0.85)× 10−4 fm4. (2.44)

The same fitting routine used by Martel, et al. [49], extracted the four leading

order terms of the proton’s spin polarizabilities, combining Collicot
∑

3 and Martel∑
2x results from MAMI. Only asymmetry points obtained by Collicott, et al., below

double-pion photoproduction threshold for the incident energies of Eγ = 297.0 ±

10.1 MeV and angular range of θγ′ = 75 − 140◦ were considered. Similar to the

Martel, et al., analysis, data were fit using the fixed-t dispersion relation code of

Pasquini, et al. [44], using the constraint from γ0, γπ, αE1 + βM1, αE1 − βM1 and

γM1M1. The extraction of four spin polarizabilities, combining the data set from

Collicott, et al.,
∑

3 results and Martel, et al.,
∑

2x results, are

γE1E1 = (−5.0± 1.5)× 10−4 fm4,

γM1E1 = (3.13± 0.88)× 10−4 fm4,

γE1M2 = (1.7± 1.7)× 10−4 fm4,

γM1E2 = (1.26± 0.43)× 10−4 fm4.

(2.45)
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Chapter 3

Experimental Procedure

3.1 Experimental Detector Setup

In this Section, the experimental setup of the Crystal Ball (CB) at MAMI, located

on the campus of the Johannes Gutenberg University of Mainz, is described. The

experiment was carried out at the tagged photon beam facility in the A2 experimental

hall. The first set of data for this thesis work was collected during two experimental

run periods, one with the carbon target from April 9 to April 17, 2014 and the other

one with the butanol target from May 2 to May 18, 2014. Also, the second set of data

was taken during two experimental run periods, first with butanol target from June

23, 2015 to July 11, 2015 and the second one with carbon target from July 11, 2015 to

July 16, 2015. The MAMI electron accelerator provided a high quality electron beam

with an energy of 450 MeV. This electron beam was used to produce an energy-tagged

bremsstrahlung photon beam with the Glasgow-Mainz photon tagging spectrometer.

The photon beam was then directed to the frozen spin butanol target, located at the

center of the CB calorimeter, inducing the nuclear reactions of interest for the analysis.

The detector system consists of a plastic scintillation Particle Identification Detector



38

(PID), two layers of Multi-Wire Proportional Chambers (MWPCs), central detector

CB, and a forward detector, the Two Arms Photon Spectrometer (TAPS). The CB

provided the energy and angular information of the particles emitted into over 94% of

the solid angle around the target. The PID, a cylinder of 24 plastic scintillator strips,

was used to identify charged particles detected in the CB. The MWPCs were used

to obtain accurate information about the track of a charged particle from the target.

The TAPS system, including the plastic scintillator veto in front of every detector,

provided the identification of the particles in the forward region. The experimental

detector components are described in more detail in the following section.

3.1.1 MAMI Electron Accelerator

3.1.1.1 Polarized Electron Beam

MAMI is an electron accelerator facility that can provide unpolarized as well as po-

larized electron beams with energies up to 1.59 GeV [52]. It consists of four cascaded

microtrons, an injector linac, a thermal source for unpolarised electrons and a laser-

driven source for electrons with about 80% spin polarization. For an unpolarized

electron beam, the cathode of a simple 100 keV thermionic electron gun is heated to

high temperature and these heated electrons tend to break free of their atoms and

dwell near the surface of the cathode. The beam time structure is a continuous wave

sequence of electron pulses with 2.45 GHz repetition rate. This time structure is

indistinguishable (electron bunches have 0.4 ns spacing) for almost all particle detec-

tion systems since their signal bandwidth is much smaller than the pulse repetition

rate. Continuous wave machines are essential for coincidence experiments to reduce

the background from accidental coincidences.

In addition to an unpolarized electron beam, MAMI can provide longitudinally

polarized electron beam by irradiating a circularly polarized laser light with a wave-
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length of λ = 780 nm on a strained semiconductor crystal, GaAsP [53]. A 180◦ flip

of polarization, i.e. from spin up to spin down, and vice versa, is provided by re-

versing the helicity of the laser light with a Pockels cell at a rate of approximately

1 Hz, thereby reducing the systematic uncertainty that would result from a fixed

beam polarization [54]. This polarization technique involves: the source of electron

beam, beam transport system, the spin rotator and the polarimeter for the degree of

electron polarization measurement. After extraction of the longitudinally polarized

electrons from the source, the polarization vector can be rotated by a Wien filter

into the transverse direction, which is required for a Mott asymmetry measurement.

The beam is accelerated in three radio frequency sections, providing acceleration up

to 3.97 MeV at the end of the third section [55]. A schematic view of the Mott

polarimeter along with the injector part of MAMI is shown in Fig. 3.1a. The beam

energy can be changed by varying the phase using a phase (φ) in the wave-guide

between klystron and the third accelerating section as shown in Fig. 3.1a.

(a) (b)

Figure 3.1: (a) Schematic layout of Mott polarimeter at the 3.97 MeV injector of
the MAMI Race Track Microtron cascade [56]. (b) MAMI Mott polarimeter, where
electron beam enters from the left, and scattered electrons are bent by dipole magnet
into the detectors [57].
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3.1.1.2 Mott polarimeter

Since the experiments at MAMI require run times of several weeks, it is important to

monitor the long term drifts of the beam polarization. For this purpose, a standard

Mott polarimeter (Fig. 3.1b) at the 3.97 MeV injector of the MAMI accelerator cas-

cade is used [57]. For a polarization measurement, the polarized beam is first delivered

into the polarimeter with the help of two 15◦ bending dipole magnets. The beam is

focused onto the Mott target (gold nuclei, Z = 79) in the polarimeter by a second

quadruple doublet, as in Fig. 3.1a [56]. The process is based on Mott scattering. In

a Mott scattering, for example, a charged particle traveling in the ẑ direction with

polarization in the ±x̂ direction will have an asymmetry in the ±ŷ direction. In our

case, the polarization vector is in the horizontal plane and the scattering plane is cho-

sen to be vertical. Thus, two identical detection systems are used to detect electrons

that are scattered upward or downward with respect to the horizontal plane. The

elastic count rate is measured once per second, and after each measurement the beam

polarization is reversed. Since two detectors are used and the polarization is reversed

in every one second, an asymmetry can be calculated from the two subsequent mea-

surements. These asymmetry measurements are done after every tagging efficiency

run within the MAMI accelerator on a daily basis. The average value of electron

beam polarization for the first round of 2014 butanol beam-time was (86.78±0.03)%,

as in Fig. 3.2.

3.1.1.3 MAMI Floor Plan

The floor plan of the MAMI accelerator is shown in Fig. 3.3. In 2014 − 2015, the

MAMI facility consisted of four experimental halls, A1 hall for electron scattering

experiments, A2 hall for tagged photon experiments, A4 hall for parity violation ex-

periments and X1 hall for X-ray experiments. MAMI-A1 officially came into operation
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Figure 3.2: Electron Beam Polarization for the first round of 2014 butanol beam-time.

in 1979 using the first Race Track Microtron [52], RTM1 (discussed in Sec. 3.1.1.4),

and a Van-de-Graff injector, delivering an electron beam of 14 MeV. The MAMI ac-

celerator facility has been upgraded several times in the past 38 years. The major

upgrades in the facility were addition of RTM2 (MAMI-A2) in 1983, which increased

electron energy up to 183 MeV and addition of RTM3 (MAMI-B) in 1990 which

increased electron energy up to 855 MeV [58]. The current MAMI-C configuration,

which consists of cascades of three RTMs (RTM1, RTM2 and RTM3) and a Harmonic

Double Sided Microtron (HDSM), was set into operation in December 2006 producing

a continuous high quality electron beam of maximum energy 1.59 GeV. For energies

beyond 855 MeV, it was unrealistic to double the size of the dipole magnet compared

to the magnet used in RTM3 of MAMI-C and hence the HDSM, that has a similar

concept to the RTM were added. It uses four bending magnets which bend electrons

by 90◦ along with the two LINAC sections. For the
∑

2z Asymmetry experiment, the

HDSM stage of the MAMI was not used.
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Figure 3.3: An overview of the MAMI floor plan and four experimental halls. The∑
2z asymmetry experiment for this dissertation work was carried out in hall A2 [59].

This experiment was performed in A2 hall, and during the experimental run period

the electrons were accelerated through the series of three RTMs. The longitudinally

polarized electrons, with polarization up to 85%, were produced by using a polarized

laser light on a semi-conductor crystal as discussed in Sec. 3.1.1.1. These electrons

were preaccelerated to 511 keV and injected to the injector linear accelerator, in which

they are brought to an energy of 3.97 MeV.

3.1.1.4 Race Track Microtron

A RTM is an accelerator which recirculates electron beam through the same LINAC

several times. It consists of a linear accelerator with Radio Frequency (RF) cavities
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Figure 3.4: A schematic view of a RTM with two large dipole magnets on either side
and focusing magnets in between them [52].

of 2.45 GHz placed between two dipole magnets with uniform fields, which deflect

the electrons by 180 degrees at both sides of the apparatus, as illustrated in Fig. 3.4.

Electrons are injected into the LINAC and are accelerated by a series of standing

wave cavities powered by radio-frequency klystrons. As the energy of the electron is

step-wise increased, the radius of curvature of the path through the bending magnets

increases as well. The increase in energy of an electron through the LINAC per cycle

is ∆E = ecB/2πνrf , where e is the electron charge, B is the magnetic field, c is

the speed of light and νrf = c/λrf is the klystron frequency [52]. As a result, each

re-circulation orbit becomes larger and higher energies can be reached with relatively

modest accelerating gradients (≈ 1 MeV/m). As the accelerating gradient is small,

the RTM can run in a continuous wave mode, allowing a 100% duty factor beam.

The design also ensures excellent intrinsic energy resolutions, as electrons with too-

large beam energy have a slightly larger orbit radius and arrive at the LINAC out of

phase with the RF accelerating field and thus undergo smaller accelerations until this

phase difference vanishes. To ensure that the beam bunches see the same phase of the



44

alternating voltage in the accelerating section, the difference in time between each

successive re-circulation loop has to be an exact integer multiple of the period of the

RF supply to this accelerating section. After the electron beam has been accelerated

to a certain energy, a small ‘kicker’ magnet ejects it out of the RTM pathway into

the beam handling system.

RTM1 accelerates electrons up to 15.3 MeV in 18 re-circulations. These electrons

are first fed into RTM2, passing through the LINAC 52 times with an extraction

energy of 185.9 MeV, and then into RTM3 recirculating 90 times with an extraction

energy of 883.1 MeV. It is possible to select the energy of the beam by extracting the

electrons from the intermediate re-circulation trajectory in the RTM3. The output

energy of RTM is Eout = Einj + N · ∆E, where Einj is the LINAC injected energy

with β ≈ 1 (speed of a particle relative to the speed of light) for relativistic electrons,

N is the number of cycles of the electron beam and ∆E is the additional increase in

energy per cycle. The RTM parameters are summarized in Table 3.1.

Stages Injector RTM 1 RTM 2 RTM 3
Injection Energy (MeV) 511 3.97 15.3 185.9
Extraction Energy (MeV) 3.97 15.3 185.9 883.1
Magnetic Field (T) - 0.106 0.572 1.323
Weight of Magnets (t) - 4.2 90.3 911.6
Number of turns - 18 51 90
LINAC length (m) 4.93 0.80 3.55 8.87
∆E per cycle (MeV) - 0.62 3.35 7.75

Table 3.1: Main parameters of the MAMI accelerator stages [51].

3.1.2 Tagged Photon Beam Facility

3.1.2.1 Bremsstrahlung Photon Production and Tagging

The photon beam in the A2 experimental hall is derived from the production of

bremsstrahlung (braking radiation) photons during the passage of the MAMI electron
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beam through a Moeller radiator (alloy of cobalt and iron), as in Fig. 3.7a. These

bremsstrahlung photons are produced when an electron of mass me is deflected by a

much heavier nucleus in the radiator. In the bremsstrahlung process, the electrons

are decelerated by the electromagnetic field of the radiator’s nuclei and the emitted

photons produce a continuous energy spectrum that falls off with increasing photon

energy up to that of the incident electron energy. This process will happen for a small

fraction (about 0.1%) of the electrons incident on the Moeller radiator depanding on

thickness, and results in a decrease in the electron kinetic energy, so that a recoiling

post-bremsstrahlung electron has a kinetic energy E ′. The incident electron energy

Ee is well known and we can use conservation of energy to obtain the energy of the

bremsstrahlung photon Eγ as [54]

Eγ = Ee − E ′. (3.1)

The spectrum of bremsstrahlung photons from a Moeller radiator is continuous in the

range 0 ≤ Eγ ≤ Ee.

The knowledge ofEe in Equation 3.1 enables the determination of the bremsstrahlung

photon energy by measuring E ′. The path of an electron can be bent by using a large

dipole magnet and the system is referred to as the Glasgow tagged photon spectrom-

eter or tagger. This is a magnetic electron spectrometer consisting of a large dipole

magnet and a Focal Plane Detector (FPD) array and determines the bremsstrahlung

energy via the tagging technique [60]. Apart from measuring photon energies, the

tagger measures the total flux of scattered electrons, which can be used to determine

the number of photons impinging on the target from detection efficiency measure-

ments. For all absolute observables, such as total or differential cross sections, the

total number of photons is crucial. Fig. 3.5 shows the tagging process using a tagger

system.
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Figure 3.5: The Glasgow photon tagger spectrometer, where an electron beam enters
from the lower left and strikes the radiator. The bremsstrahlung photon passes to
the right through a collimator, while the electrons will see their trajectory deflected
to the FPD with a curvature radius proportional to their energy [51].

The physics behind this technique is very simple, because the photons are elec-

trically neutral, while electrons are not, so a magnetic field may be used to deflect

the post-bremsstrahlung electron without disrupting the path of the photon. To ac-

complish this, the tagger dipole creates a magnetic field in the vertical direction in

the lab perpendicular to the electron beam direction after the radiator. The Lorentz

force ~F exerted on an electron with charge e and velocity ~v when it passes through a

magnetic field with a magnetic flux density ~B is given by

~F = −e(~v × ~B). (3.2)

The magnetic field thus deflects the post-bremsstrahlung electrons from their orig-
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inal path, and the electrons that do not radiate passing through the radiator are bent

into the Faraday cup of the beam dump. The radius of curvature of a charged particle

within the magnetic field depends on the momentum of the electron when it reaches

the tagger. For a given field strength B, and a known radius of curvature R of the

particle, the momentum is obtained using the relation p = eR ·B. A low-energy elec-

tron (which corresponds to a high-energy bremsstrahlung photon) will be deflected

the most, while an electron that has passed through the radiator without interacting

will be deflected the least.

(a) (b)

Figure 3.6: (a) Tagger channel hit distribution. (b) The bremsstrahlung distribution
of photon energies for an incident electron beam energy of 450 MeV.

The tagger focal plane consists of 353 overlapping plastic scintillators, each 80 mm

long, 2 mm thick and variable widths ranging from 9 to 32 mm, and coupled to an

individual PMTs. The scintillator strips are partially overlapped and electronically

paired, so that an electron hit requires coincident signals in two adjacent detectors,

reducing accidental events. This leads then to 352 logical detectors. The scintilla-

tors are read out individually by Hamamatsu R1635 photomultiplier tubes that are

shielded from the tagger magnetic field by steel plates. A high beam intensity can

lead to a saturation of the tagger elements at the extreme high electron energies (low
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photon energies), due to the 1/Eγ distribution of the bremsstrahlung process. Addi-

tionally, the photomultipliers can get damaged by high currents. The high electron

energy channels that correspond to low photon energies were turned off to reduce the

trigger rate during both the 2014 and 2015 beamtimes. This then reduced the DAQ

deadtime, so a higher electron beam current could be used to maximize the photon

flux in the region of interest, Eγ = 200− 425 MeV. Only 270 tagger channels during

the 2014 beamtime, and 180 tagger channel during the 2015 beamtime, were used.

Figs. 3.6a-3.6b show the distribution of the tagger channel hits and the corresponding

bremsstrahlung distribution of photon energies for an incident electron beam energy

of 450 MeV.

3.1.2.2 Polarized Photon Beam

If the electron beam is longitudinally polarized, the electrons partially transfer their

polarization to the photons and the radiated photons will be circularly polarized. The

degree of circular polarization of the photon beam, obtained by the helicity transfer of

spin polarized electrons, is given in terms of photon energy and the incoming electron

energy [50],

Pγ = Pe
4EγEe − E2

γ

4E2
e − 4EγEe + 3E2

γ

, (3.3)

where Eγ is the energy of the photon, and Ee and Pe are the energy and polarization

of the electron beam, respectively. The degree of circular polarization of the photons

increases as the photon energy increases, as shown in Fig. 3.7b, and for the highest

values of photon beam energy the degree of photon polarization is approximately

equal to the electron’s polarization (Pγ ≈ Pe ). For the
∑

2z butanol beam-time,

three different photon energy ranges (265− 285, 285− 305 and 310− 330 MeV), have

been chosen and the corresponding average values of degree of photon polarization

are 68.12, 72.10 and 76.24%, respectively.



49

(a) (b)

Figure 3.7: (a) Moeller radiator inside the A2 Goniometer [61] with relative angle
between the Moeller foil and the direction of electron beam 25± 0.1◦. (b) The degree
of photon polarization as a function of the photon energy for a 450 MeV electron
beam. The average value of photon polarization in the range Eγ = 265 − 285 MeV
(blue line), Eγ = 285 − 305 MeV (black line) and Eγ = 310 − 330 MeV (magenta
line).

3.1.2.3 Photon Beam Collimation

In order to obtain a well defined beam spot within the target diameter, the photon

beam is collimated before leaving the tagger magnet. This is important, because the

bremsstrahlung photons are emitted in a cone centered about the direction of the

incident electron beam with an opening angle θ. This opening angle depends on the

Lorentz factor γ = Ee/mec
2, and is given by

θ ≈ 1

γ
=
mec

2

Ee
, (3.4)

where Ee is the electron beam energy, me is the electron mass and c is the speed

of light. The photon beam was collimated using a lead collimator (20 mm long and

2 mm diameter) located 2.5 m downstream of the radiator. This led to a beam spot

size of ∼ 1.3 cm diameter in the target.
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3.1.3 Photon Detectors

The detector setup for the experiment includes a central detector system, CB calorime-

ter combined with PID for particle identification and MWPC for charged particle

tracking, and TAPS in the forward wall. The schematic diagram of this setup is

shown in Fig. 3.8, and is described in the following sections.

Figure 3.8: A schematic picture of the detector setup in the A2 hall [62].

3.1.3.1 Crystal Ball

The CB detector was initially designed for colliding experiments jointly by SLAC

and Brookhaven national laboratory in 1970’s. It ran from 1974 until 1982 @ SLAC

and the very first measurement of J/ψ and its excited states [63, 64] were the great

achievements during the SLAC era of the CB. It was then moved to Deutsches Eleck-
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tronen Synchrotron (DESY) in Hamburg between 1982−1987 and contributed to the

study of bottom quarks. It was put in a storage at SLAC for a period of eight years

and later used to study strange and non-strange baryon resonances at Brookhaven

National Laboratory from 1995 to 2002 before moving into its current location in the

A2 hall of MAMI.

The Crystal Ball calorimeter is a sphere consisting of 672 optically insulated

NaI(Tl) crystals with truncated triangular pyramid shape. The crystals are arranged

in two hemispheres that cover about 94% of 4π and a polar angular range of 21◦ to

159◦. It provides an energy resolution of 3− 4% within the region of interest, a polar

angular resolution of 3◦, and an azimuthal resolution equal to the polar resolution di-

vided by sin θ [64]. Each hemisphere has inner and outer radii of 25.3 cm and 66.0 cm,

respectively [65]. It also has a spherical cavity in the center with radius of 25.3 cm.

The target and inner detectors, the PID and the MWPC are located in that cavity.

Since the CB was designed for a colliding beam experiment, it has two cone-shaped

tunnels which serve as the entrance and exit of the photon beam.

The geometry of NaI crystal is unique, with a 40.6 cm long truncated triangular

pyramid. The triangular sides at the top of the pyramid are 5.1 cm wide and at the

bottom of the pyramid are 12.7 cm wide [67]. A group of nine crystals is stacked to

form a minor triangle, a group of four minor triangles forms a major triangle, and

a group of twenty major triangles forms an icosahedron as in the left-hand side of

Fig. 3.9. Each crystal is optically coupled to a SRCL50B01 photomultiplier tube with

glass windows as shown in the right-hand side of Fig. 3.9.

3.1.3.2 Particle Identification Detector

In order to distinguish between neutral and charged particles detected by the Crystal

Ball, the system is equipped with a set of inner detectors between the target cell and
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Figure 3.9: Geometry of the Crystal Ball detector and the NaI crystals. The left
pannel shows the icosahedron shaped detector with 20 major and 80 minor triangles
and the right-hand pannel show the crystal geometry [66].

CB. The first inner detector surrounding the target is the PID, which consists of a

10 cm diameter cylindrical barrel of 24 EJ-204 plastic scintillators. Each element

is 500 mm long, 15.3 mm wide and 4 mm thick [50, 68]. The cross section of each

element is a right angled trapezoid to minimize the gaps between each other when

formed into the barrel. They are also individually wrapped in aluminum foil to ensure

optical isolation and the entire detector is covered in a black Tedlar to provide light

proofing. Scintillation light induced in each scintillator travels through a light guide

and is read out by separate Hamamatsu H3164-10 photomultipliers connected to one

end of PID as shown in Fig. 3.10a. The PID barrel covers from 15◦ < θ < 159◦.

The PID is a part of the inner detectors of the CB system which provides iden-

tification of particle species. By matching a hit in the PID with a corresponding hit

in the CB, it is possible to use the ∆E/E technique to identify the charged particle
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species. In this technique, a coincident deposited energy in the PID versus the cluster

energy in CB is used for the separation of charged pions, electrons and protons. As

for the lighter particles, like electrons and pions, the energy deposition is roughly

1 − 2 MeV. However, heavier particles like the proton deposit energy inversely pro-

portional to their total energy, with slower protons depositing a higher fractions of

their total energy. A two-dimensional histogram of the energy loss, 4E, measured

in the PID, and the energy, E, measured in the CB, results in two distinct bands

associated with different particle species is shown in Fig. 3.10b.

(a) (b)

Figure 3.10: (a) Cylindrical barrel of 24 EJ-204 plastic scintillators forming a PID
detector. (b) An example plot of differential energy loss 4E in the PID as a function
of the energy, E measured in CB which results in distinct bands associated with the
different charged particles [51, 68].

3.1.3.3 Multi Wire Proportional Chamber

The second inner detector surrounding the target is the two coaxial cylindrical MWPC,

which each consists of three layers: internal strips, wires and external strips. The in-

ner and outer layers act as cathodes for the proportional counter, and a set of thin,

equally spaced, anode wires are sandwiched between them as shown in Fig. 3.11a.
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The cathodes are made from 1-mm-thick cylindrical conductors covered by 25 µm

Kapton foil and 0.1-µm-thick aluminum coating on the external surfaces of the cham-

ber walls. Both interior surfaces are laminated with 4-mm-wide aluminum strips of

0.1 µm thickness with a 0.5 mm gap between adjacent strips [69]. The inner wire

chamber has 232 wires, 69 inner strips and 77 outer strips. The outer wire chamber

has 296 wires, 89 inner strips, and 99 outer strips. The cathode strips cross each

other twice along the length of the chamber, which is necessary to establish which

anode wires have fired to identify the correct intersection point.

(a) (b)

Figure 3.11: (a) MWPC schematic diagram showing the position of anode and cath-
odes and, (b) Reconstruction of the charged particle trajectory in MWPCs [70].

The MWPCs are filled with a mixture of 65.5% argon, 28% ethane, 0.5% freon

(CF4) and 6% alcohol [70, 71]. When a charged particle passes through a chamber,

it ionizes the gas mixture. The resulting electrons migrate towards the anode wire

due to the potential difference between the cathodes and the anodes. This creates

an avalanche of electron-ion pairs through secondary ionization, which are collected

in one or more of the wires, inducing positive ions on both cathodes and accelerated
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to the internal and external strips. Reconstruction of the tracks of charged particles

which hit the CB uses the coordinates of the charged particles interaction with two

coaxial cylindrical MWPCs cathode strip readouts. By knowing the center of the

charge distribution induced on the cathode strips, the azimuthal angle φ and the lon-

gitudinal coordinate z of the impact points are evaluated. The impact reconstruction

of a charged particle trajectory in the MWPCs is shown in Fig. 3.11b. Once φ and z

are known for each chamber, a straight line can be fitted through these coordinates

and the polar angle θ and the azimuthal angle φ of the track are obtained. The vertex

reconstruction for two or more charged tracks is done by finding the intersection point

of the trajectories. In the case of only one trajectory, the vertex position is defined

as the closest point to the z axis. These wire chambers have a coverage of 360◦ in

azimuthal angle φ with 3◦ resolution, and 21−159◦ in polar angle θ with 3◦ resolution

because of the opening at the front and rear of the cylinders, giving a coverage of

94% of 4π steradians.

3.1.3.4 Two Armed Photon Spectrometer

Due to the lack of acceptance at the forward angle of the CB, the TAPS was assembled

into a single forward wall and installed to detect photons and charged particles that

escape from the CB exit hole. The TAPS forward wall is very important because this

is a fixed target experiment and the reaction products are Lorentz boosted forward.

It is placed downstream of the CB and the distance from the target center to TAPS

detector center is about 1.8 m. The detector consists of an array of 366 BaF2 crystals

along with the 72 PbWO4 crystals in the two innermost rings, as shown in Fig. 3.12a-

3.12b. The crystals are arranged in a hexagon-like structure with eleven rings and

six logical sectors. To ensure that the BaF2 crystals are light tight, each crystal is

optically isolated by wrapping them in eight layers of 38 µm thick reflecting Teflon
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foil and one layer of 15 µm aluminum foil. Individual BaF2 elements are read out by

Hamamatsu R2059-01 photomultiplier tubes connected to the cylindrical ends of the

crystals. The distance of the TAPS detector downstream of the target cell from the

target center is ∼ 150 cm.

(a) (b)

Figure 3.12: (a) BaF2 crystal and BaF2 crystal connected to a PMT. (b) A complete
module of four PbWO4 [68].

The BaF2 crystals have a hexagonal shape with a 5.9 cm front-face diameter,

22.5 cm length and 2.5 cm long cylindrical end cap with a diameter of 5.4 cm. The

overall 25 cm BaF2 detector material is 12 radiation lengths in thickness and allows

stopping of photons up to 380 MeV and charged pions up to 185 MeV [72]. The BaF2

crystal has two special material properties which are considered very good for the

construction of scintillation detectors. First, BaF2 has a fast rise time of the scintil-

lation pulse, and because of this feature the intrinsic time resolution (about 200 ps)

of a single crystal is very good. This feature enables the accurate particle identifi-

cation using the time-of-flight information of the particle. Second, BaF2 produces

scintillation light with two components, a fast component and a slow component,

corresponding to the decay times of ≈ 0.9 ns and ≈ 650 ns [73]. These features are

essential to separate slower hadrons like protons and neutrons from the faster parti-

cles like photons, electrons and pions. The fast light component provides a very good

time resolution needed for time of flight measurements (up to t ≈ 170 ps for a single
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detector), whereas the slow light component provides a very good energy resolution

because of the high light yield. Due to the different mechanisms of energy deposition

of photons and, e.g., hadrons, these two light components lead to different signal

shapes for the corresponding particles. The relative contribution of the fast compo-

nent to the total light output is higher in the case of photons than for, e.g., protons

or neutrons. This can be used for particle identification by integrating the signal over

a short and a long time interval and comparing the two resulting calibrated energies.

Figure 3.13: Head-on view of 366 BaF2 and 72 PbWO4 stacked in TAPS setup.

The PbWO4 crystals were installed in the two innermost rings of TAPS in 2009,

as in Fig. 3.13. This was important to better handle the high intensity particle flux

and to improve the angular resolution at small forward angles. This is achieved by

the short signal decay time of around ≈ 10 ns [74]. In addition, the higher density

of PbWO4 compared to BaF2 allowed the installation of smaller crystals. The small

trapezoidal shape of every crystal allows a combination of four PbWO4 crystals to

integrate into the TAPS geometry of one BaF2 crystal. Each crystal is 20 cm in

length, which corresponds to 22.5 radiation lengths and has a 6 ns delay time [61].
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They are individually wrapped in 70 µm reflector foil VME 2000 with an additional

layer of 20 µm aluminum foil to insure that the light stays within the crystal, and are

coupled to photonis XP-1911 photomultiplier tubes.

3.1.3.5 TAPS Veto

The front face of every BaF2 crystal, and group of four PbWO4 crystals are covered

with a layer of thin plastic scintillators, as shown in Fig. 3.14b. Their function is

similar to the PID, to provide ∆E/E information, since the PID has the same forward

polar acceptance as the Crystal Ball, and cannot be used with the TAPS detector. The

individual plastic scintillators are assembled in a hexagonal frame that are made from

5 mm thick EJ-204 with a groove machined on one side for the WaveLength Shifting

fibers (WLS-fibers). These are composed of the same plastic material, as the PID

scintillators. They are connected via BCF-92 WLS-fiber to multi-anode Hamamatsu

H6568 photomultiplier tubes with 16 channels, which allows for a direct correlation

between a hit in a veto crystal and a hit in a BaF2/PbWO4 crystal. Fig. 3.14a shows

the WLS-fiber embedded in the groove of the veto module.

(a) (b)

Figure 3.14: (a) Veto plastic scintillator with the WLS-fiber embedded in a groove.
(b) A black foil which serves as a light isolation for the veto wall [61, 68].
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3.2 Principle of Frozen Spin Butanol Target

To obtain a highly polarized source of protons, our experiment utilizes the process of

Dynamic Nuclear Polarization (DNP) [75, 76]. Understanding the frozen spin target

polarization and finding the absolute value of polarization is crucial for asymmetry

experiments, so the theoretical background of the target polarization and the exper-

imental results are described in the following section.

3.2.1 Brute Force Polarization

The nucleon is a spin-1
2

fermion with two possible orientations commonly named as

spin: up (+1
2
) and down (−1

2
). In an unpolarized material, the spins of the nucleons

are distributed randomly, while in a polarized material there is a preferred direction in

the spin orientation. The nucleon polarization is defined in terms of the expectation

value of finding their spins oriented in a certain direction. If we consider a particle

of spin, S, and magnetic moment, µ, placed in a high magnetic field, B, and cooled

to low temperature, T , polarization occurs via the Zeeman interaction. At thermal

equilibrium, the populations of the Zeeman levels or magnetic sub-levels obey the

Boltzmann distribution as

N1 = N2. exp

(
−∆E

κT

)
, (3.5)

where κ is the Boltzman constant, and ∆E = E1 −E2 = µB is the energy difference

between the two Zeeman levels corresponding to the population number N1,2 [77].

The degree of polarization of spin-1
2

protons or electrons can be written as

P =
N+ −N−
N+ +N−

= tanh

(
µB

2κT

)
. (3.6)
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where N+ denotes the number of spins aligned with the external magnetic field while

N− denotes the number of spins not aligned with the field. A positive polarization

means that there are more spins aligned with the field, as is obvious from the Equa-

tion 3.6. The reverse is true for a negative polarization.

Figure 3.15: Brute Force Polarization as a function of temperature for electrons and
protons [78].

This method of polarizing a target via the Zeeman interaction is called Brute

Force Polarization (BFP). Because the electrons have smaller magnetic moment than

the proton, the energy gap 4E is smaller and the degree of polarization for electrons

is much higher than for protons. From Equation 3.5, it follows that in a magnetic

field of 2.5 T and a temperature of 1 K, electrons can be polarized up to 93%, as in

Fig. 3.15, while protons reach a value of only 0.25%. In the presence of a magnetic

field of 10 T at a temperature 25 mK, only 47% proton polarization can be achieved

after a long time. Achieving reasonable proton polarization using this method is very

difficult and expensive since a high magnetic field and very low temperatures are

necessary. In addition, it takes several weeks to obtain the final nuclear polarization
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under thermal equilibrium condition due to the weak spin-lattice interaction [77].

3.2.2 Dynamic Nuclear Polarization

To overcome the challenges of BFP, many polarized target experiments exploit the

process of DNP. The fundamental principle behind the DNP process is to consider

the electron-nucleon system and transfer the polarization from the electron to the

nucleon using optical pumping, i.e. by microwaves with appropriate frequency. In

this process, first of all, a hydrogenous compound is doped with a small concentration

of free radicals, i.e. unsaturated electron spins. In a large magnetic field and at low

temperatures, these electrons are polarized, since their occupation of the two different

magnetic substates follow the Boltzman distribution.

A high magnetic field can be achieved with commercial superconducting magnets

and low temperatures are reached by means of a 3He/4He dilution cryostat. The

free electron spin couples to neighboring protons to form atomic systems. Irradiating

the sample with microwaves of appropriate frequency induces transitions where both

the electron and the proton flip their spins. This leads to a preferred orientation

of the nuclear spin, i.e. nuclear polarization. The average lifetime of nuclei in the

higher state is called the relaxation time and it depends on the ratio of magnetic

moment to its angular momentum (gyromagnetic ratio) and the mobility of the lattice.

The relaxation time of the electrons in the higher energy state is short due to the

interaction of the electrons with the lattice. The electrons therefore flip back and are

available for further spin flip transitions with other protons. The relaxation time of

the nuclei, on the other hand, is long due to larger gyromagnetic ratio and mobility

of the lattice. This allows the nuclei to accumulate preferentially in a state selected

by the frequency of the microwaves, thus leading to a high polarization of the sample

in a reasonable time frame.
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An ideal proton target material would be molecular hydrogen; however, at low

temperatures the transition from the ortho to the para state makes it almost im-

possible to polarize. Therefore, other materials like butanol have been used for this

purpose. Butanol is superior to other materials because it has very high degree of

polarization, short polarization build up time, high dilution factor (ratio of the num-

ber of polarizable free nucleons to the total number of nucleons), long relaxation time

and simple preparation plus handling.

3.2.2.1 Mainz Frozen Spin Target

At MAMI, the Frozen Spin Target (FST) system consists of a beads of frozen bu-

tanol (C4H9OH) surrounded by a 3He/4He dilution refrigerator, microwaves and Nu-

clear Magnetic Resonance (NMR) system, polarizing magnet, internal holding mag-

net, pumping and circulation system and control systems, as shown in Fig. 3.16d.

The beads of TEMPO-doped butanol (C4H9OH) target material [79] are shown in

Fig. 3.16a. These are spherical in shape with 2 mm diameter, and are enclosed in the

target container (2 cm in length, 2 cm in diameter). The Mainz frozen spin target

dilution refrigerator operates by pumping helium at a temperature of 25 mK. In ad-

dition, these beads do not fill up the entire volume of the target cavity, and hence a

60.7± 2% [68] filling factor has been applied in the data analysis.

The complete polarization procedure has two important modes, called polarizing

mode and the Frozen Spin mode. First, in the so-called polarizing mode the target

is cooled down to about 200 mK and an external magnetic field of 2.5 Tesla is ap-

plied. The continuous operation of high cooling power 3He/4He dilution refrigerator,

developed in collaboration with the polarized target group of the Joint Institute for

Nuclear Research (JINR) Dubna, provides the low temperature. The superconduct-

ing magnet, which can produce a magnetic field up to 5 Tesla, provides an external
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(a) (b) (c)

(d) (e)

Figure 3.16: (a) Tempo doped butanol target material, (b) Target cell attached to
the target insert, (c) Carbon foam target material, (d) Schematic diagram showing
main components of a frozen spin target and (e) MAMI frozen spin target [50, 68].

magnetic field. At this point, microwave power is fed into the target in order to

increase the degree of polarization via the DNP method. When the microwaves with

a frequency of ν = νe − νp (Fig. 3.17) are pumped into the target, where νe and νp

are the Larmor frequencies of electrons and protons respectively, spin flips between

the electrons and protons will transfer the polarization to the protons over time. The

Larmor frequency of a proton and an electron at 2.5 Tesla are νp = µpB

πh̄
= 106 MHz

and νe = µeB
πh̄

= 70 GHz, respectively [80].

Once the maximum degree of polarization is reached, the microwaves are switched

off and the temperature is reduced to 25 mK by going into frozen spin mode (dilution

refrigration mode). At this moment, the degree of polarization is measured several
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times and the average value of initial degree of polarization, Pi, is calculated. The

external magnet is then removed and the superconducting internal holding magnet

(Fig. 3.16d) inside the cryostat of the target provides 0.4 Tesla to maintain the target

polarization in the frozen-spin mode. In this mode, the cryostat is very stable and

data taking can begin. Once the polarization drops below 50%, the target needs to be

repolarized. The polarization of the target can also be reversed by simply adjusting

the frequency to ν = νe + νp, as in Fig. 3.17, thereby populating the other level in

the hyperfine splitting without changing the holding field.

Figure 3.17: A schematic diagram of the energy levels of the coupled electron-nucleon
system showing the spin flip transition when exposed to microwaves with a frequency,
ν = νe ± νp. Irradiating the electrons with microwave frequency, νe − νp, result in
positive polarization (central pannel) and microwave frequency, νe + νp, result in
negative polarization (right pannel).
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3.2.2.2 NMR System and Polarization Measurement

The degree of polarization of the target material is measured via the NMR technique.

The resonance frequency for the NMR circuit is adjusted to the Larmor frequency of

the particle of interest and the probability of the transition (Fig. 3.17) is measured to

determine the degree of polarization. The degree of polarization is proportional to the

area under the NMR signal. Target polarization measurements are not possible dur-

ing data taking because the polarizing magnet and the Crystal Ball detector cannot

surround the target at the same time. In addition, the magnetic field strength and

homogeneity of the internal holding coil are not sufficient for a polarization measure-

ment. Therefore, the target polarization measurements are completed at the start

and end of the data taking period for separate target polarization orientations. The

average value of polarization at the start and end of the positive and negative tar-

get polarization orientation, Pi and Pf are listed in Fig. 3.18. The relaxation time,

∆t = tf − t0, for the target polarization can be calculated using Pf = Pie
−∆t
τ , where

Pf is the polarization after a period of time tf and Pi is the polarization at the start

of data taking at time t0. The uncertainty in the degree of target polarization is

basically the result of error in Pi and Pf , and it was determined to be ≈ 2.5% for the

2014 beamtime [68].

3.2.3 Carbon Target

The frozen spin butanol target contains carbon and oxygen in the butanol plus liquid

helium as a cryogen, and they contribute a major source of background in the exper-

iment. In addition to the competing background from pion photoproduction off of

the proton, this target allows for both coherent and incoherent Compton scattering

and pion photoproduction off of these additional nuclei. Therefore, a separate data

run was taken with a carbon target (Fig. 3.16c) by inserting it into the same cryostat
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Figure 3.18: A sample plot of positive and negative target polarization for 2014
beamtime.

to account for the background subtraction. It is very important to insert the carbon

target into the same target cell (Fig. 3.16b) because the subtraction removes any

contribution from the windows, and/or shells of the cryostat material. This carbon

target is very special because the density and length of the material is chosen in such

a way that its total number of nucleons is approximately the same as the total num-

ber of non-hydrogen nucleons (12C and 16O) in the butanol target plus the 3He/4He

cryogen. For example, butanol (C4H9OH) has four carbon atoms with 48 nucleons,

one oxygen atom with 16 nucleons and 10 hydrogen atoms with 10 nucleons. The

number density of non-hydrogen or heavy nucleons in the butanol target, including

the contribution from 1 helium atom with 4 nucleons is

ntotal = nbu + nHe =
Lbu × ρbu ×Nbu

Mbu

+
LHe × ρHe ×NHe

MHe

, (3.7)

where, Lbu and LHe is the effective length of the butanol target and the helium

in the refrigeration bath. The effective length of a butanol target is defined as,

Lbu = LT ×Ff , where, LT = 2 cm, is a length of the target cell, and Ff = 60.7± 2%,
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is a butanol filling factor. Also the effective length of helium is defined as, LHe =

(LT × (1−Ff )) + 0.2 cm, (with an extra 0.2 cm to account for the additional helium

in the cryostat downstream of the target cell) [50]. The total area number density of

the frozen spin target is then

ntotal =
1.2cm× 0.94 g

cm3 × 64

74.1 g
mol

+
1.0cm× 0.14 g

cm3 × 4

4.0 g
mol

= 1.11 mol cm−2. (3.8)

By using the density of the carbon foam as measured at MAMI, ρ = 0.53 gm cm−3,

and setting the number density of the carbon equal to the number density of butanol

as obtained in Equation 3.8, we can find the desired length of the carbon target as,

LC =
nC ××MC

NC × ρC
=

1.11mol
cm2 × 12.01 g

mol

0.53 g
cm3 × 12

= 2.10 cm, (3.9)

This shows that the choice of 2 cm target length of carbon target material is rea-

sonable to match the total number of nucleons but not sufficient. To address this

5% discrepancy as well as other factors related to the nuclear physics of C vs O, He

nuclei, an extra scaling factor can be determined to directly subtract carbon target

from the butanol target runs (Sec. 6.2.2).

3.3 A2 Data Acquisition and Trigger System

The analog signals that are produced in the PhotoMultiplier Tubes (PMTs) of all

detector systems are converted to useful information by digitizing the output signal

with the help of electronics. The digitization procedure involves the transformation

of time into a digital form via Time to Digital Converter (TDC), and amplitude of the

various signals via Analog to Digital Converter (ADC), and a discriminated input to
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a logic circuit which triggers the event readout. The Data AcQuisition (DAQ) system

collects information from the sub-systems like the tagger, CB, TAPS and stores them

to digital files. The DAQ system is always occupied when it is busy writing an event,

and during this time it cannot record another event (dead time). In order to reduce

the burden of the DAQ with unwanted events produced at very low thresholds, and to

keep the dead time of the detector system at a reasonable level, a multi-level trigger

system has been implemented. In general, the trigger system reduces the recording

of unwanted events to a minimum and acts as an online filter to decide whether an

event is accepted or rejected.

The A2 DAQ and trigger systems were upgraded in 2013 to allow for higher

data throughput. The upgrade included a complete integration of the TAPS forward

angle calorimeter into the general DAQ scheme. The main A2 experimental trigger

system, which consists of TAPS master, CB multiplicity and Moeller trigger, is shown

in Fig. 3.19. The CB experimental trigger and its sub-components are shown in

Appendix A. The A2 master consists of input section, Trigger Level Sections (TLS)

L1 and TLS L2, and end section. The first level signal (e.g., CB Esum) enters the

system at point “A”, as in Fig. A.1 and the second level signal (e.g., Multiplicity:

M0 and Coplanarity: CB, PID, TAPS, Veto) enters somewhat later at point “B”.

At point “C”, the decision will be made on which experiment will trigger the signal.

The reader is referred to [82] for detailed information. During the 2014 beamtime,

CB Esum was used as a first level trigger (L1 trigger), accepting events with any

multiplicity in second level (L2 trigger). While, duirng the 2015 beamtime in addition

to CB Esum, TAPS pulser was used as a first level trigger.
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Figure 3.19: A schematic diagram for A2 trigger (after October 2012) [81].
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3.3.1 Data Acquisition Software:AcquDAQ

AcquDAQ is a C++ based data acquisition software, developed by John Anand [83]

using the software libraries available in the CERN ROOT and used within the Mainz

A2 collaboration. The DAQ system provides slow-control and event-by-event readout

of the photon tagger, the CB electromagnetic calorimeter, central MWPC tracker,

plastic-scintillator PID systems and the TAPS forward-angle calorimeter. A variety

of front-end controllers are supported, reading data from VMEbus (Versa Module

Europa bus) , FASTBUS and Computer-Aided Measurement And Control (CAMAC)

systems. AcquDAQ also provides an interface to configure and control the Mainz

programmable trigger system, which uses Field Programmable Gate Array (FPGA)

hardware.

3.3.2 CB Esum Trigger System

The CB Esum trigger is based on the the total energy deposited in the Crystal Ball el-

ements. It is formed by summing up all analog signals from the photomultiplier tubes

coupled to each NaI crystal. The summed analog signal is split into two parts and

passed through the first discriminator with a low threshold and the second discrim-

inator with a high threshold. The low threshold forms a first level trigger condition

which initiates a CB trigger signal and inhibits the system from accepting more sig-

nals. The high threshold forms the final Esum experimental trigger. If the energy

sum signal passes both thresholds, the information from all CB ADCs and TDCs are

read out and stored, after which the system is un-inhibited. If the energy sum signal

passes the low threshold but not the high threshold, a “fast clear” signal is passed

to all CB ADCs and TDCs. This resets the hardware and un-inhibits the system.

For the 2014 beamtime, the trigger was set for Esum > 40 MeV, thereby rejecting

any event that did not deposit at least 40 MeV into the NaI and for 2015 beamtime,
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the trigger was set for Esum > 90 MeV, thereby rejecting any event that did not

deposit at least 90 MeV into the NaI. An overview of the experimental trigger and

its components is given in Appendix A with further details provided in [84, 85, 86].

3.3.3 Multiplicity Trigger

The multiplicity trigger contains information on the total number of detected particles

in the CB and TAPS sectors and feeds it to the TLS L2 stage (Fig. A.1). It was done

by summing individual NaI signals into groups of sixteen and individual BaF2 signals

into group of six, and requiring that one or more such groups pass a threshold of

around 40 MeV in CB and 15 MeV in TAPS. For this experiment, during both the

2014 and 2015 beamtime, it was decided to run with the simple Esum trigger accepting

events with any multiplicity.

3.3.4 Tagger Trigger

The analog signal from each PMT of the tagger FPD is fed into the main rack of the

tagger electronics featuring an amplifier/discriminator and a coincidence unit, which

produces an AND signal between neighbouring scintillators. The logic OR of all 352

channels is suplied to the main experimental trigger logic unit. Unlike in the old

setup (before October 2013), the separate trigger system has been removed and the

tagger trigger is now implemented in the central experimental trigger.

3.3.5 Readout

When the required L2 trigger conditions are met, ADC and TDC information from all

the detector elements are read out by AcquDAQ. The readout for various detectors

systems will be discussed in the following section.
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3.3.5.1 Tagger Readout

The tagger readout is based entirely on whether individual focal plane scintillator

elements are hit or not. When scintillation occurs in a focal plane element and the

signal is above a preset discriminator threshold for that particular channel, the logic

pulse output from the discriminator is delayed and then fed to multi-hit CATCH

(Compass, Accumulation, Transfer and Control Hardware) TDCs, which were orig-

inally designed for use in the COMPASS experiment to record the timing for that

event. Unlike standard TDCs which have a start or stop signal, CATCH TDCs have

a free running continuous clock which oscillates at a frequency of 10 GHz with a

117 ps/channel conversion rate [84]. All of the CATCH TDCs have their oscillators

synchronized through a Trigger Control System (TCS) module, designed at CERN.

This allows an entire batch of these modules to have one reference TDC that the

trigger is read into, providing a reference count of the oscillator. When an event

passes the experimental trigger conditions, the oscillator value of the reference TDC

is recorded. If any of the other TDCs record a hit, the relevant oscillator value is

stored. To obtain the timing information for each hit, the reference TDC value is then

subtracted from the oscillator value, and converted to a time using the 117 ps/channel

conversion rate. The CATCH TDCs are able to record the oscillator values of sev-

eral hits, with a timing resolution between two pulses of 20 ns, before the event is

read out. The ability to handle multiple hits therefore reduces the dead-time of the

system. Additionally, the split signal coming from the tagger PMTs is also sent to a

FASTBUS scaler unit, which then counts the total number of tagged electrons.

3.3.5.2 CB, PID and MWPC Readout

The NaI, PID, and MWPC use CATCH TDCs to digitize the timing signal. In

the CB, 16 adjacent NaI crystals form a logical group and their signals are handled
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groupwise. In a first step, the signals from the PMTs are led to a splitter, which

produces two parts of the signals. While the PID is read out into traditional ADCs,

the NaI and MWPC detectors are read into Sampling ADCs (SADCs). These SADCs

sample the inputs at a rate of 40 MHz and maintain a buffer of these samples for

2 µs period [82, 84]. Here, the time intervals corresponding to the three different

regions of each sample: a section before a pulse, the majority of the pulse itself, and

a section of the pulse tail were integrated. The combination of the first two provides

automatic pedestal suppression, by removing the baseline from the peak and requiring

the remaining signal to be above threshold. Since the pedestal is subtracted online

event-by-event, a calibration of the pedestal position is not necessary in the afterward

offline calibration for the CB ADCs.

The second of the split signals is sent to a Leading-Edge Discriminator (LED)

and the signals are checked against the two thresholds. If the signal passes the lower

threshold, the corresponding time information is converted by a CATCH TDC. The

high threshold discriminator information is used to check the particle multiplicity in a

later step. The signals from the 24 PID elements are also split and one part is delayed

and then integrated by ADCs, whereas the second part is sent to a discriminator and

then to CATCH TDCs for the time digitization.

3.3.5.3 TAPS and Veto Readout

The TAPS trigger system was upgraded to use the VME Universal Logic Modules

(VUPROM) in a manner similar to the main experimental trigger. VUPROM con-

trol classes in AcquDAQ have been extended to account for the TAPS trigger. TAPS

ADC/TDC modules are configured and readout by AcquDAQ. The analog signal from

the BaF2 crystals is sent to two discriminators, a lower Constant Fraction Discrimi-

nator (CFD) and a higher threshold Leading Edge Discriminator (LED). The signals
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which are above the CFD threshold of 3 MeV (just above the noise level) and LED

threshold of 30 MeV provide a signature of a hit in the crystal. It gives the the start

signal for energy integration in both long and short gate ADCs to take into account

the two scintillation light components of the BaF2 crystals, and for the time measure-

ment in the TDC. Two LEDs, LED1 and LED2 per channel can be used for trigger

purposes. If the signal is above the LED threshold, it is sent to the main trigger

system and can contribute to the multiplicity trigger. On a positive trigger decision,

the digitized energy and time informations are sent to the storage computers.

3.3.5.4 Scalers

As discussed in Sec. 3.1.2.1, the analog signal from the FPD PMTs is fed to the

tagger electronics via a discriminator and a coincidence unit. If the signal passes

the discriminators, a logical pulse is sent to TDC which records the timing of the

multiple hits per event. In addition, the signals are sent to the FASTBUS scalers

which count the total number of hits in the FPD elements and are read out once

in every 1000 events. During the experiment, the photon flux is derived from these

tagger electron scalers. These scalers are in principle free-running, but are gated

with an inhibit signal from the tagger DAQ busy signals. This means the system

remains inhibited until either a fast clear signal is delivered or the trigger passes the

experimental trigger threshold and the event is read out. The inhibit-gated scaler

counts are not automatically corrected for the live time of the tagger DAQ system

because the dead time effects in the DAQ systems are canceled as the tagger scalers

are disabled while the system is busy.
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Chapter 4

Analysis Software and Detector

Calibration

In this chapter, the various data analysis software packages: AcquRoot [83], Calib [66],

GoAT [51] and A2Geant [87], along with the different stages involved in extraction

of events of specific reaction channel and calibration of individual detector elements

are described. The raw signals from the detectors are converted into real physical

units, i.e. time in nanoseconds, energy in MeV, and azimuthal (φ) and polar (θ)

angles in radians via calibration. These calibrated values, in combination with a

clustering-pattern recognition algorithm, were used in the analysis package AcquRoot

to decode raw Time-to-Digital Converter (TDC) and Analog-to-Digital Converter

(ADC) information into particle tracks, and a user-specific physics reconstruction

code GoAT to perform particle identification and data sorting.
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4.1 Analysis Software

4.1.1 AcquRoot

AcquRoot is an object oriented data analysis framework written in the C++ pro-

gramming language using the software libraries available in the ROOT toolkit. It

comprises two parts: AcquDAQ for data acquisition, and AcquRoot for online and

offline data analysis. AcquRoot processes the raw ADC and TDC data produced by

AcquDAQ for each detector system, converting it into meaningful kinematic informa-

tion of the detected particles. It also contains a hierarchy of classes that first decode

the ADC and TDC information of the CB-TAPS detector system and then provides

energy and timing information associated with an element of the detector system.

A user-specific physics reconstruction code is then used to perform analyses relating

to specific reaction channels, such as the event selection techniques described in the

following section.

4.1.2 CaLib

The offline calibration of all detector elements is done using the CaLib software de-

signed by the University of Basel group, which uses the AcquRoot physics class called

TA2MyCaLib to analyze actual data files with a rough set of calibration parameters.

The root files produced by this physics class are examined in CaLib with a Graph-

ical User Interface (GUI) macro resulting in new calibration parameters like gains,

thresholds, etc. and written to the SQL database in Mainz. This SQL database was

accessed from Regina via Virtual Private Network (VPN) during the data analysis.

The calibration information is stored in the setup files, which are loaded by AcquRoot

on start-up. The data can be either divided into various sets, depending on the time

frame and experimental conditions, to calibrate independently or merge and calibrate
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together to obtain the best result. For some detectors, calibration parameters are de-

termined from the analysis of a combination of several detector elements at once.

Because of this, in some cases only a single pass through the data is required, but in

others, the process is iterated several times producing new calibration parameters to

re-analyze the data each time. As the calibrations for many detectors depend on each

other, it has to be completed in a specific order. The calibration task was distributed

between the author and a colleague Ali Rajabi from the University of Massachusetts.

The calibrations performed specifically by the author on the 2014 carbon beamtime

and on both the 2015 butanol and carbon beamtimes are given in more detail in

Sec. 4.3.

4.1.3 GoAT

The GoAT (Generation of Analysis Trees) software designed by C. Collicott is a

C++ based analysis framework that uses a AcquRoot physics class called TA2GoAT

to produce ROOT trees with all detector information. The TA2GoAT physics class is

linked to the CaLib database via a SQL access class, which makes it possible to access

and include calibration information from the CaLib database to the output ROOT

trees. GoAT actually collects particle track information from Crystal Ball and TAPS,

and stores the energy, time and angular information of the particle. Additionally, it

also stores the trigger, detector hits, and photon polarization information. The output

ROOT trees from AcquRoot, containing full event-by-event information, is fed as an

input and run in GoAT, which then provides the method for particle identification

and data sorting. Within GoAT, once the particle tracks are identified, they can be

combined to reconstruct mesons. Finally, after the sorting of the required reaction

channel, data analysis was completed using a user physics class called MYPHYSICS

written by the author, which was incorporated in GoAT.
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4.1.4 A2Geant

The Monte Carlo event generator named ‘EventGen’, written by P. Martel [50], based

on theoretical Compton and π0 cross sections was used to generate a large number

of pseudo-events which serve as an input for A2Geant. EventGen simply generates

pseudo events based on theoretical cross sections, for example, it utilizes the disper-

sion code of Pasquini et al. [17, 45] to generate Compton scattering cross sections.

EventGen does not take into account interactions between the particles and the ex-

perimental setup resulting in energy loss and/or multiple scattering in the Frozen

Spin Target cryostat, as well as the electromagnetic showers and energy smearing in

the detectors themselves. To study these effects, A2Geant software was developed

by colleagues from the University of Edinburgh, which is written in C++ using the

CERN Geant4 simulation library [88] where all features of the detector setup and

target are modeled in a virtual detector setup. The A2Geant program tracks the

reaction products through the virtual detector setup, where they interact with the

detector materials. The energy deposition in the detector components is registered

and stored in binary files, which are then analyzed with AcquRoot. These files were

analyzed using the exact same physics class used for analyzing experimental data to

test the reconstruction efficiency.

4.2 Detector Cluster Algorithm

When a particle hits the detector, it produces an electromagnetic shower. Depending

on the particle and its energy, the shower then induces a signal, not just in one crystal,

but in a group of adjacent crystals. In order to reconstruct the energy and direction

of the detected particle, the detector signals originating from the same shower have to

be found and grouped into a so-called cluster. Clusters were identified as photons in
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the Crystal Ball detector with the aid of the PID and similarly in TAPS with the aid

of the TAPS Veto. In addition to the conventional ∆E/E (energy deposition in the

PID/CB) separation, the azimuthal angle of the Crystal Ball cluster was compared

with the φ-angle of a hit in a PID element. If the difference between the angles of

the cluster and the PID hit was less than about 15◦, the cluster was identified as

a charged particle based on detector resolution. All other clusters were taken to be

photons. This angular limit was determined by taking into account the number of

PID elements and the reaction vertex distribution due to the finite beam spot size on

the target.

Clusters in either CB or TAPS are formed by an iterative algorithm called the

clustering algorithm. The cluster search process starts by finding the list of detector

hits that passed the LED cluster threshold (2 MeV) in CB and the CFD cluster

threshold (3 MeV) in TAPS, and sorted then according to their energy. The element

with maximum energy was marked as the center of a cluster and its TDC information

was taken as the corresponding particle time. Afterwards, hits within the surrounding

crystals were marked as neighbours. If their energies were above the threshold, the

corresponding elements were added to the cluster and removed from the list of hits.

This was very important to avoid the contribution of one crystal in more than one

cluster. This process continued until all hits in the crystals were assigned to a cluster.

The topology of a NaI crystal in a cluster of the Crystal Ball has 12 defined neighbours

(Fig. 4.1a), and BaF2 crystal in a cluster of the TAPS has six defined neighbours

(Fig. 4.1b).

The total energy of the cluster is determined by summing the energies of the

central element and the energy of all neighbouring elements, and the position of the
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(a) (b)

Figure 4.1: (a) 12 NaI nearest neighbors of an element for clustering algorithm. (b)
six BaF2 nearest neighbors of an element for clustering algorithm.

cluster is obtained via a
√
E weighted average of the crystal positions as shown here:

Etot =
∑
i

Ei and ~rtot =

∑
i ~ri
√
Ei∑

i

√
Ei

. (4.1)

Once a cluster has been determined, a cluster energy threshold is applied such that

any clusters that fall below a minimum energy deposition are discarded. For both

the Crystal Ball and TAPS, a 15-MeV cluster threshold has been applied.

4.3 Calibration of the detectors

In order to perform a data analysis, the detector systems and their components must

be calibrated to output useful and meaningful physics information from the raw data

taken at the experimental facility. While the analog signal from each photomultiplier

tube coupled to each detector element is fed into an ADC and a TDC, the aim of

the calibration process is to digitize ADCs and TDCs in terms of energy and time.

The physical positions of detectors do not change unless a detector is found to be

defective (there were no issues during either the 2014 or 2015 beamtimes). However,
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some changes are made on purpose to improve the experimental conditions, and

change in temperature in the experimental hall can sometimes not be avoided and

might influence the detectors. The calibration procedure has to take into account all

instabilities of the most important quantities like the neutral pion peak position in

the invariant mass of the two detected photons.

4.3.1 Calibration Run-Sets

The time dependence of calibrations need to be checked for each data run to investi-

gate the stability of data. The time of hit for all detector elements is summed together

and a Gaussian function is fit to establish the overall peak position for a given run

number. The variation in reconstructed peak time position for each detector, CB,

PID, TAPS is minimal (less than 0.1 ns), and therefore only one data set was created

for time calibration during both the 2014 and 2015 beamtimes. A sample CB time

with respect to run number from the 2015 butanol beamtime is shown in Fig. 4.2a.

However, the variation in invariant mass peak position for the CB was significant.

Therefore, distinct run sets for positively and negatively polarized butanol as well as

carbon target beamtime are made for both 2014 and 2015 beamtime (a sample π0

invariant mass peak position with respect to run number is shown in Fig. 4.2b) and

the calibration for each is completed separately.

4.3.2 Time Calibration

The main principle of the time calibration is that the time difference between either

of the two decay photons from π0 photoproduction or a photon and a proton for the

Compton scattering should be zero. This time information for every detector hit can

be measured by using TDCs. The different detectors used in this experiment have

different time measurement procedures based on where the start and stop signals
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(a) (b)

Figure 4.2: (a) A sample run-set of CB time with respect to run number from the
2015 butanol beamtime. (b) A sample π0 invariant mass peak position with respect
to run number from the 2015 butanol beamtime.

come from. For CB, Tagger and PID detectors, TDCs are started by the trigger and

are stopped by the signal coming from individual detectors, i.e. t = ttrigger − tdetector,

whereas for TAPS and Veto detectors, the reverse is true, i.e. t = tdetector − ttrigger.

When these start and stop signals are provided, TDCs map the time spread to a

discrete channel value. The relation between the physical time (t), conversion gain

(g ns/channel), channel number (c) and channel offset o is given by t = g(c − o)

[89]. Therefore, the primary goal of the time calibration is to find the values g and

o for a given set of runs. Since the TDCs have an intrinsic conversion gain, only the

offsets are determined on an element by element basis. To determine these offsets,

the timing spectrum of each detector element is fitted with a Gaussian and from the

resulting mean values, the new individual offsets are calculated using the relation

onew = oold
Mean
Gain

[50],

4.3.3 Energy Calibration

The energy calibration has two stages. First, we match the PMT gains to low energy

photons via the potentiometer of the PMT voltage. Second, apply an iteration method

reconstructing π0 from two measured photons. This section summarizes the iterative
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method that involves reconstruction of invariant mass of the two photons from π0 →

γγ decay. As the mass of the π0 is well known, its decay into two photons provides

a very good technique to calibrate the detector energy. The energy information for

every detector hit can be obtained by using ADC channels. In principle, the ADC

measures the amount of charge in a given PMT pulse by integrating the electronic

signals from the photo-multipliers, and returning a digital channel number, c. The

amount of charge is almost directly proportional to the deposited energy, Edep, of

the measured particle. The relation between the deposited energy, Edep, in MeV,

conversion gain, g in MeV/channel, channel number, c, and pedestal position (zero

energy), p, is given by Edep = g(c− p) [66].

Thus, the goal of the energy calibration is to find correct values for these constants

g and p. The pedestal, p, corresponds to the channel that has zero energy value and

was set properly before the experiment so the only task is to adjust the conversion

gains. To determine these gains, g, the invariant mass, Mγγ, of the π0 meson is

reconstructed from the decay into two photons and a Gaussian function is fitted.

The mean value of the π0 peak position in the invariant mass spectrum is used to

determine the new gain factor out of old gain using the relation gnew = gold
m2
π0

mean2 [50].

This process is iterated several times until the invariant mass is aligned at the mass

of neutral pion for all of the crystals.

4.3.4 CB Time Calibration

The conversion gain g of the TDCs used in the NaI detectors have a fixed value of

117 ps/channel [50]. Therefore, only the offset o has to be determined. We need to

identify the cluster pair in the NaI detectors of the CB and then, for each identified

pair, the NaI element is plotted versus the difference in the cluster time between the

two hits in the central element of each cluster, as in Fig. 4.3a. A projection of the
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individual NaI time is shown in Fig. 4.3b. After 15 iterations, the time difference

between crystal pairs is aligned to zero.

(a) (b)

Figure 4.3: (a) The spectrum of the time difference between two neutral hits identified
as a cluster pair for all 672 CB elements. (b) The projection for a single element.

4.3.5 CB Time-walk Correction Calibration

The TDCs that are used with the CB are started by the trigger. Due to the variation

of pulse size in the crystals, the time of the event which causes the triggering, depends

on the energy of the particle that is triggered. The energy of the particle is converted

via an ADC, and the time taken for the ADC signal to pass the experimental threshold

depends on the signal amplitude. NaI crystals have typical characteristic features of

relatively slow rise times of signals, and thus a strong energy dependence of the time

measurement. Thus, hits with higher energies have a steeper rise in the electronic

signal and consequently a smaller time difference 4T between the rise of the signal to

the crossing of the threshold and this effect is called “time-walk effect”. A schematic

of this effect is shown in Fig. 4.4. A correction has to be applied to account for this

time difference between the signals reaching the discriminator level.

The main principle to establish the time-walk correction is to plot the time versus

the energy for every detector element and the slices of the two dimensional spectra
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Figure 4.4: Schematic CB Time Walk. Two signals with the same peak value but
reaching the discriminator level at different times.

are then fitted with a Gaussian. So, we first identify two cluster events in the NaI

detectors and the time difference between the NaI detector time and Tagger detector

time is calculated. In order to have a cleaner signal, only π0 events are selected and

additional cuts on the invariant mass and missing mass of the π0 have been applied.

For those cluster events that pass these invariant mass and timing conditions, the

energy and the time difference are filled into a histogram, as in Fig. 4.5a, and then

fitted with a Gaussian function. The peak positions for different energies are plotted

as blue dots and the resulting behavior can then be again fitted by using the function

from t(Edep) = a + b
(Edep+c)d

, as in Fig. 4.5b. These parameters a, b, c and d are

individually determined for all detector elements [90].

4.3.6 CB Energy Calibration

The CB energy calibration aligns the 2γ invariant mass peak at the mass of π0 meson.

We identify the cluster pair in the NaI detectors and then, for each identified pair,

the invariant mass of the two photon candidates from π0 photo-production in the

CB is plotted against the central element of each of the cluster, as in Fig. 4.6a. A

projection of the individual NaI energies is shown in Fig. 4.6b. After several iterations,

the reconstructed invariant mass peak position for three sets of positively polarized
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(a) (b)

Figure 4.5: (a) CB time depending on deposited energy showing the time-walk ef-
fect. (b) The peak position for different energy slices plotted as a blue dots and the
behaviors is fitted with the function defined above.

target and one set of negatively polarized target data sets are aligned at the π0 mass.

(a) (b)

Figure 4.6: (a) The invariant mass spectrum for two neutral hits identified as a cluster
pair for all 672 CB elements. (b) The projection for a single element.
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4.3.7 TAPS Time Calibration

The conversion gain g of the TDCs used in BaF2 detectors have a fixed value of 50

ps/channel [50]. Therefore, only the offset o has to be determined. The TDC offsets

are determined in an identical way to the CB where we identify the cluster pair in

the BaF2 detectors of the TAPS and then, for each identified pair of BaF2 element,

the time difference is plotted between the two hits in central element of each cluster

as in Fig. 4.7a. A projection of the individual TAPS time is shown in Fig. 4.7b.

(a) (b)

Figure 4.7: (a) The spectrum of the time difference between two neutral hits identified
as a cluster pair for all 366 TAPS elements. (b) The projection for a single element.

4.3.8 TAPS Long-Gate Energy Calibration

The BaF2 analog signal has two different ADCs, one with a long and the other with

a short integration gate and hence are called Long Gate (LG), and Short Gate (SG).

The LG integrates the entire analog signal similar to NaI ADCs and gives the correct

gains for all the TAPS crystals. For LG Energy calibration, events with two neutral

clusters in the BaF2 are selected and the neutrality of the cluster is determined by

examining the hits in the veto detectors in front of them. For each identified neutral

cluster, the BaF2 hit versus the invariant mass is plotted for the central element. The
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histogram of invariant mass peak position for all BaF2 elements is shown in Fig. 4.8a

and an example fit to a single element is shown in Fig. 4.8b.

(a) (b)

Figure 4.8: (a) The invariant mass spectrum for one neutral hit in NaI and one for
all 366 TAPS elements. (b) The projection for a single element.

4.3.9 TAPS Short-Gate Energy Calibration

A typical characteristic feature of a BaF2 crystal is that it has two scintillation light

components. In order to account for these two scintillation components, we per-

form a separate SG energy calibration. The main principle of the SG energy is the

discrimination of nucleons and photons in the TAPS detector. Since nucleons and

photons deposit their energies through different mechanisms, the portions of the two

scintillation light components vary. Furthermore, the timing response of the BaF2

crystals is significantly different for photons and nucleons. The SG energy calibration

uses Pulse Shape Analysis (PSA) techniques, where only a part from nucleon and

most from photon analog signal will be integrated to account for the two scintillation

light components. The PSA angle and radius can then be calculated from the two

components φPSA = tan−1 ESG
ELG

and rPSA =
√
E2
SG + E2

LG [90].

The PSA radius vs PSA angle plot has characteristic band-like structures and thus

allows the discrimination of the photons and nucleons, as in Fig. 4.9a. Nucleons are
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located below φPSA=45 degrees, while the photons are distributed around 45 degrees

for all radii. For the photon, whose response in BaF2 is relatively fast, the energy

from the SG ADC will be very close to the energy from the LG ADC, therefore the

PSA angle should be 45 degrees. The SG energy calibration aims to shift the photons

to φPSA = 45◦.

For the calibration process, we identify the central elements of the cluster in BaF2

and, for each cluster detected, a pulse shape analysis is reconstructed for a narrow

and wide integration window, producing a PSA radius and PSA angle as in Fig. 4.9a.

The two different PSA radius intervals have been chosen, one at high and the other at

the low radii. For both intervals, the projections onto the φPSA axis were fitted with

a Gaussian and based on the two mean PSA-radii and the two PSA-angles, new gains

are calculated using the condition Eshort = Elong. An example PSA fit for a single

BaF2 element with wide integration window is shown in Fig. 4.9b. For PSA angle

and PSA radius, there are two equations and two unknown variables so we expect

one analytic solution, but due to systematic errors in the fitting procedure, several

iterations had to be performed until convergence was reached.

(a) (b)

Figure 4.9: (a) TAPS PSA radius vs angle. Nucleons are located in below 45 degrees,
while photons are distributed around 45 degrees for all radii. (b) Sample fit to the
PSA angle for channel 306 with wide integration window.
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4.3.10 Tagger Time Calibration

The conversion gain g of the TDCs used in the Tagger detectors also have a fixed value

of 117 ps/channel [50], so only the TDC offsets are determined in the same way as for

the NaI detectors of the CB. For all combinations of neutral particles in TAPS and

hits in the Tagger, the time differences between the Tagger and the TAPS elements

were plotted for all the activated Tagger elements, as in Fig. 4.10a. The coincidence

time peak was fitted with a Gaussian in order to determine the peak positions and

new offsets were calculated. A projection of the individual Tagger time is shown in

Fig. 4.10b. The upper sections of focal plane detectors (above Tagger channel 220

during the 2014 beamtime and above Tagger channel 180 during the 2015 beamtimes)

which corresponds to lowest photon energies, were turned off to allow higher DAQ

livetime at high rates.

(a) (b)

Figure 4.10: (a) The spectrum of the time difference between a hit in Tagger and a
hit in TAPS for all the combinations of neutral particles. (b) The projection for a
single element.

4.3.11 Target Position

The position of the target with respect to the NaI is calibrated by identifying each

pair of neutral events that hit the detectors. For each pair of neutral events, the
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invariant mass is calculated for various positions of the target center, as in Fig. 4.11a.

The target position can be determined by adjusting those various positions of the

target to minimize the width of invariant mass peak and the projections of this for

each target position bin are fitted with a Gaussian, as in Fig. 4.11b. The sigma of the

Gaussian fit has its minimum value at the actual center and these values are obtained

separately for different data sets. The reconstructed target center values were used

in the simulation.

(a) (b)

Figure 4.11: (a) The spectrum of the all the hit positions in target, (b) The projection
for a single element.

4.3.12 PID Azimuthal Angle Calibration

The PIDs are used for detection and identification of charged particles, so the proper

alignment with respect to the hit in the NaI detector needs to be determined. Events

which have one hit in CB and one hit in PID are selected and then the azimuthal

angle of a NaI cluster hit as a function of the PID element is plotted as shown in

Fig. 4.12a. The final azimuthal position of each PID element is then extracted by

fitting a Gaussian to the projection for each element, as in Fig. 4.12b, and then fitting

a line to the centroids of each Gaussian as a function of PID element across all 24
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channels. A linear fit is performed plotting the φ angles versus the PID element and

from the fitting function the corresponding azimuthal angles of all PID elements can

be extracted.

(a) (b)

Figure 4.12: (a) The spectrum for one hit in CB and one hit in PID aligned at different
angles for all 24 PID elements. (b) The projection for a single element.

4.3.13 PID Time Calibration

The conversion gain g of the TDCs used in PID detectors also have a fixed value of

117 ps/channel [50], so only the TDC offsets are determined in the same way as for

the NaI detectors of CB. The two different charged hits in PID are identified as a

pair and then the time difference between them is plotted as a function of the PID

elements, as in Fig. 4.13a. We fit the time peak for all 24 channels and calculate the

new gain out of the old and also new peak position. A projection of the individual

PID element times is shown in Fig. 4.13b. The reconstructed peak position varies by

less than 0.1 ns over all 24 PID elements.
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(a) (b)

Figure 4.13: (a) shows the spectrum of the time difference between two charged hit
identified as a pair in PID for all 24 PID elements, (a) shows the projection for a
single element.

4.3.14 PID Energy Calibration

The PID detectors are used to distinguish charged particles from neutral particles.

Due to different masses and energies of charged particles, their different energy depo-

sitions will lead to distinct band structures. Since the PID elements are only 4 mm

thick, charged particles will typically not deposit all of their energy, so the energy

deposited in the PID can be compared to the energy deposited in NaI. The basic idea

is to determine the correct pedestal and conversion gains for all 24 PID elements such

that the deposited energy of a proton agrees with the simulated value. Thus, this

procedure requires a simulation of energy deposition in both the PID and NaI for a

range of proton energies, which allows for a comparison between simulation and real

data. For the experimental data, the PID ADC channel is plotted as a function of

NaI cluster energy, as in Fig. 4.14a. These histograms are projected onto the y-axis

for different NaI cluster energies, as in Fig. 4.14b, and the proton peak positions were

fitted both for simulated and experimental data. During the 2014 beamtime, PID

ADCs were not working, but the problem was fixed during the 2015 beamtime. So

that, the PID energy calibration was therefore performed only for the 2015 beamtime.
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(a) (b)

Figure 4.14: (a) PID energy vs NaI cluster energy. (b) Sample projection onto the
y-axis for one slice of NaI cluster energy.

4.3.15 TAPS Veto Time Calibration

The conversion gain g of the TDCs used in the Veto detectors also have a fixed value

of 50 ps/channel [73], so only the TDC offsets are determined in the same way as for

the PID. We identify the cluster pair in Veto detectors and then for each identified

pair of veto element, the time difference is plotted between the two hits in the central

element of each cluster, as in Fig. 4.15a. A projection of the individual Tagger time

is shown in Fig. 4.15b.

4.3.16 TAPS Veto Energy Calibration

The Veto detectors are used in the same way as the PID detectors to identify charged

particles. Due to different masses and energies of charged particles, their different

energy depositions will lead to distinct band structures. Every BaF2 detector has a

single Veto module mounted in front, a charged particle will fire the veto element and

the corresponding BaF2 elements. For each non-neutral cluster detected in TAPS, the
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(a) (b)

Figure 4.15: (a)The time difference between two neutral hits identified as a cluster
pair in Veto for all 366 Veto elements. (b) Projection of a single element.

energy deposited in BaF2 is compared to the energy deposited in the veto detectors

as in Fig. 4.16a. A fit is then performed on the veto energy to extract an energy for

the proton peak as in Fig. 4.16b. This proton peak is then used to calculate a veto

energy gain correction.

(a) (b)

Figure 4.16: (a)Veto energy vs BaF2 energy. (b) Projection of a single element.
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Chapter 5

Data Analysis I : π0 Asymmetry

Exclusive π0 photo-production is not only a significant source of “physics background”

to Compton scattering experiments, but also a useful reaction for systematic tests of

experimental systems. Our experimental setup is such that we can reconstruct the

π0 decay photons, requiring that the invariant mass of the two photon system is close

to the π0 mass. A, a detailed study of π0 photo-production asymmetry is completed

and presented in this section.

5.1 Event Selection and Particle Reconstruction

5.1.1 Tagger Random Background Subtraction

During the experiment, some electron hits in the tagger that correspond to photons

in CB/TAPS participate in a reaction with the target. This is due to the fact that

some photons pass through without interacting, while many others are lost due to

collimation of the beam. The event, in the tagger, which are in timing coincidence

with the photons interacting with the target, are called “prompt” events while those

without any timing coincidences are “random” events. These uncorrelated events,
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which are normally referred to as background events, are numerous and hence need

to be subtracted during the analysis.

(a) (b)

Figure 5.1: (a) Difference between the tagger and π0 time; the prompt and random
windows are shown in red and blue respectively. (a) Zoomed in on the prompt peak.

Fig. 5.1a shows the prompt and random timing windows for event hits in the tag-

ger, which are in timing coincidence with the reconstructed π0. The prompt electrons

have a peak around 0 ns for detector element hits corresponding to photons that in-

teracted with the target and the random electrons on either side of the prompt peak

are a flat background. The timing coincidence of 30 ns, as in Fig 5.1b, is used to

identify prompt electrons denoted by p, and two large windows, 480 ns wide on the

left of the prompt peak denoted r1, and 580 ns wide on the right of the prompt peak

denoted r2, are used to identify the random/accidental contribution. The subtrac-

tion of random/accidental coincidences was performed by filling the same histograms

with different weights for events from the prompt and the two random intervals as

Ntrue−events = Np − wrNr, where Np and Nr is the number of events in prompt and

random regions of Fig. 5.1a, and wr is the prompt to random normalization factor of

the time interval given by wr = p
r1+r2

. In fact, this subtraction of weighted events of

the random window removes the random events under the prompt peak. The statisti-
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cal error is calculated as the square root of the sum of the weights. This error can be

improved when wr is minimized by using large intervals for the random coincidences.

Because coincidence time peaks of some tagger channels were slightly asymmetric,

safe limits of ±4σ (gap between red and blue on either side of Fig 5.1b) were applied.

The ratio of prompt peak to the random background is roughly 4.5:1 for the 2014

beamtime and 5:1 for the 2015 beamtime due to different beam current and trigger

conditions.

5.1.2 π0 Event Selection

AcquRoot has been used to store the full event-by-event information in a ROOT tree.

These output trees from AcquRoot were then run in the GoAT analysis framework

where particle and meson reconstruction was performed. This was achieved through

different detector and particle reconstruction classes. A global configuration file was

used to set up all the reconstruction and sorting choices of different decay channels.

After sorting of the required reaction channel, analysis was completed using a user

physics class written by the author, which was incorporated in GoAT. This section

summarizes the fundamental steps applied for the identification and reconstruction

of particles directly observed in the Crystal Ball and TAPS detector systems.

The flow chart shown in Fig. 5.2 summarizes the order of event selection and

different data cuts applied to clean up the π0 photoproduction channel. The neutral

pion is the lightest meson with a mass of (134.9766± 0.0006) MeV/c2 and a lifetime

of (8.52 ± 0.18) × 10−17 s [91]. Due to its very short lifetime, it is not possible to

detect directly within the calorimeters. Therefore, its presence is inferred from the

reconstruction of two decay photons that are combined to obtain its mass. Thus,

for the reaction channel γp → π0p → γγp, two neutral particles (π0 → γγ) with

no recoil proton track in the final state were identified. While the PID TDCs were
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Figure 5.2: Flow chart for π0 meson selection.

working fine for the 2014 beamtime, the PID ADCs had some firmware issues , so

the conventional ∆E/E charged particle separation method was turned off for the

entire 2014 data analysis. Instead, the MWPCs and the TAPS-Veto detectors were

used for tracking and identification of any charged hits, as was done also in Ref. [51].

Because there were no issues with the PID ADC during 2015 beamtime, the data

analysis was completed with and without the conventional ∆E/E charged particle

separation method. In order to make sure that the detected photons were consistent

with the reconstruction of a π0, a cut on the number of hits in the calorimeter (cluster

multiplicity) was applied. A cut in cluster multiplicity reduces the event sample into
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the most probable events for the reaction. This was done by requiring an event with

a maximum of three clusters in the calorimeters. To eliminate false clusters due to

split-off within the crystals and remove other competing processes (about 1%), events

with more than three clusters in the calorimeters were rejected.

The events were classified as charged or neutral, based on whether the hit has a

track in the MWPC and deposited some energy in the veto or not. For example, events

with two neutral hits in the CB were selected, where the neutrality of the charged

particle is determined if there is no correlation in the PID or MWPC. The various

kinematic cuts, including π0 coplanarity cut, invariant mass cut, tagged photon energy

cut and missing mass cut are presented in the following section.

5.1.2.1 π0 Coplanarity Angle

Even though the π0 photoproduction cross section is about hundred times larger

than that of Compton scattering, background from other competing reactions has

to identified and suppressed with several analyses of the reaction kinematics. The

azimuthal angle of the reconstructed neutral pion and a recoil proton can be used to

check whether these particles are in the same reaction plane spanned by the incoming

photon, or not. The π0 coplanarity angle is the difference in the azimuthal angle

of the π0 and recoil proton. The coplanarity condition is ∆φ = |φπ0 − φp|= 180◦.

A Monte Carlo simulation, where π0 events were generated, passed through the A2

Geant4 simulation and then analyzed with the same A2 GoAT physics class, followed

by the same users physics class as the data, was used to check the peak of the ∆φ

distribution. Thus by comparing the experimental distribution to simulation, a fixed

coplanarity cut of ∆φ = 180± 15◦ was applied on the reconstructed events.
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5.1.2.2 Reconstruction of π0 invariant mass

The energy and momentum information of two decay photons are used to define the

invariant mass of the π0,

Mγγ =
√
E2
γγ − ~p2

γγ =

√
(Eγ1 + Eγ2)2 − (~pγ1 + ~pγ2)2, (5.1)

where Eγ1 , Eγ2 , ~pγ1 and ~pγ2 are the energy and the momentum vectors of the two

photons, respectively. This relation can further be simplified in terms of the opening

angle φ between the two photons,

Mγγ =
√

2Eγ1Eγ2 (1− cosφ), (5.2)

Figure 5.3: An example invariant mass distribution for reconstructed π0 photopro-
duction events at tagged photon energy, 285 − 305 MeV from the 2014 beamtime.
The two black vertical lines show a cut applied on the weighted invariant mass. The
error bars are shown but too small to be visible in this scale.

The π0 reconstruction is performed to identify particles belonging only to its

decay. A photon pair resulting from a π0 decay should have an invariant mass of
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134.98 MeV/c2 within experimental resolution. In this analysis, a two particle in-

variant mass Mij is computed for all possible i, j pairs. A weighted invariant mass

is computed using a unique weighting factor, defined as Wfactor =
|Mij−Mπ0 |

wπ0
, i 6= j,

where Mij is the reconstructed invariant mass from γi and γj, Mπ0 is the exact mass of

π0 (Mπ0 = 134.98 MeV) and wπ0 is the width of the invariant mass cut, as shown in

Fig. 5.3. This width is important, because it ensures that the Mij is within Mπ0±wπ0 .

For both the 2014 and 2015 beamtimes, an invariant mass width wπ0 = 20 MeV/c2

was applied. Also, the photon combinations with Wfactor ≤ 1 were considered. The

invariant mass spectrum agrees well with the Monte Carlo simulation, as shown in

Fig. 5.3.

5.1.2.3 Missing Mass

The missing mass method is very useful to account for an undetected final state

particle, because during the experiment not all the produced protons are fully detected

in the calorimeters. This is due the fact that high energy protons go through the

calorimeter crystals without fully depositing their energy, while some low energy

protons do not reach the calorimeters due to energy loss in the target and PID .

Therefore, the recoil particle can be reconstructed using a method called the missing

particle method. In this method, we use four-vector information of the reconstructed

π0, the initial state (incoming photon and a proton at rest) and the detect a part of

the final state (two decay photons from π0). The four-momentum conservation rules

can then be applied to determine the missing particle. The missing mass in this case

should be the mass of the proton as,

mmiss =

√
(Eγi +mp − Eπ0)2 −

(−→p γi
−−→p π0

)2
. (5.3)

The missing mass spectrum is asymmetric, as shown in Fig. 5.4. This is because
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Figure 5.4: A sample missing mass distribution for reconstructed π0 for tagged photon
energy at 285 − 305 MeV over all π0 angle. The two black vertical lines show a cut
applied on the reconstructed missing mass. The error bars are shown but too small
to be visible in this scale.

of the fact that the target is not a pure hydrogen target. The background is due to

the photo-production process from the nucleons, such as carbon and oxygen in the

butanol target, as well as the liquid He coolant. Thus, understanding and accurately

subtracting of the background is very important to get a clean signal from only the

free proton. It is observed from Fig. 5.4 that the reconstructed proton missing mass

is in agreement with the Monte Carlo simulation, except on the tails of the peak.

This remaining background on the left and right of the peak can be eliminated by

applying cuts on the missing proton mass. The backgrounds for the three tagged

photon energy ranges are different, so much tighter cuts in missing proton mass have

been applied in cases where background contamination was significant.

5.2 Carbon Scaling Factor

The butanol target contains other non-hydrogen nuclei, like carbon and oxygen, which

also participate in final state interactions, so their contributions need to be subtracted.
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This was done by selecting a pure carbon target containing the same number of

nucleons as the carbon and oxygen in the butanol [50]. In order to scale the carbon

data set, a scaling factor was determined based on the the ratio of live-time corrected

tagger scalers, and the ratio of butanol and carbon target yield.

5.2.1 Base Scaling Factor

The
∑

2z asymmetry experimental runs were broken into two main parallel and anti-

parallel data sets (Sec. 2.2.1), as well as subsets for positive and negative butanol

target polarization runs. Apart from the butanol target, separate dedicated data sets

were taken with the carbon target. This was required to remove any contribution

from the non-hydrogen elements in the butanol target. While the target is not a pure

proton target, several other variables play an important role in subtracting out the

carbon contribution to the missing mass spectra. Two variables playing an important

role in subtracting out the carbon contribution to the missing mass spectra are the

photon beam polarization and the carbon scaling factor. The scaling factor basically

scales the separate experimental runs on a carbon target to each of the runs on the

polarized butanol target.

In order to scale the carbon data set, the ratio of the overall butanol target inte-

grated luminosity to the overall carbon target integrated luminosity was determined,

termed the “base scaling factor”. This was done by adding live-time corrected indi-

vidual tagger scaler histograms for the entire data set (one for positive and one for

negative target polarization and one for the carbon background target) and dividing

the butanol by the carbon data subset. The base scaling factor is different for different

subsets, as well as for different regions of the tagger. The positively polarized butanol

(blue) and carbon target total histograms (red color) are shown in Fig. 5.5a and the

ratio between them for each tagger channel is shown in Fig. 5.5b. Similarly, the neg-
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(a) (b)

(c) (d)

Figure 5.5: (a)Tagger scaler distribution for positively polarized butanol target and
carbon target runs. (b) Ratio of positive to carbon tagger scalers. (c) Tagger scaler
distribution for negatively polarized butanol target and carbon target. (d) Ratio of
negative to carbon tagger scalers. The fluctuations represent missing tagger channels
not the statistical fluctuations.

atively polarized butanol (blue) and carbon target total histograms (red color) are

shown in Fig. 5.5c and the ratio between them corresponding to each tagger channel

is shown in Fig. 5.5d.
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5.2.2 Extra and Corrected Scaling Factors

The base carbon scaling factor obtained from a ratio of tagger scalers is insufficient

to account for the nuclear π0 photo-production background due to additional nuclear

effects and hence the missing mass ratio method was used to find the extra correc-

tion needed to properly scale the carbon runs [68]. The missing mass and invariant

mass distributions from neutral pion photo-production simulations were used to ex-

amine the energy and angular dependence of the scaling factor. These simulations

suggested that π0 photo-production is the most dominant background for the Comp-

ton scattering process, that varies significantly across both energy and angle. For

this reason, each of the data sets are further subdivided into three separate energy

bins: Eγ = 265 − 285 MeV, 285 − 305 MeV and 310 − 330 MeV and five different

angular bins: θ = 80− 95◦, 95− 110◦, 110− 125◦, 125− 140◦ and 140− 150◦, respec-

tively. Hence, the carbon scaling results outlined in this section are also presented

for three different energy ranges, two of them below, and one of them just above the

γp → π0π0p threshold (308.85 MeV/c2). The same analysis code was used for both

butanol and carbon targets, meaning that the code passed through the same loops,

applied the same event selection criteria and kinematic cuts as in the π0 data analysis

section.

Initially, the missing mass spectra for carbon target were scaled by the base scal-

ing factor and then the missing mass spectra obtained with the butanol target for the

three energy and five angular bins (separately for parallel and anti-parallel configura-

tions) were divided by the missing mass spectra obtained with the carbon target for

the π0 photo-production channel. A combination of a Gaussian and a constant was

fitted to the resulting spectra, as shown in Fig. 5.6a and Fig. 5.6b. The Gaussian de-

scribed the peak position, while the magnitude of the constant describes the baseline.

The fitting parameter of the constant is named as an ‘extra scaling factor’, which
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(a) (b)

Figure 5.6: An example spectrum of the ratio of missing proton mass for butanol
and carbon targets in the energy range Eγ = 285 − 305 MeV at photon angles θ =
125 − 140◦ for (a) the parallel data set and (b) the anti-parallel data set. The red
line is the combined fit of a Gaussian plus a constant term. The fit parameter of the
constant defines the extra scaling factor.

(a) (b)

Figure 5.7: Corrected carbon scaling factor in the energy range (a) Eγ = 265 −
285 MeV and (b) Eγ = 285− 305 MeV.

is a function of π0 angle for those three energy bins. The summary of these extra

carbon scaling factors is shown in Appendix B.1. These corrected scaling factors were

obtained by multiplying the extra scaling factor for all three energy and five angular
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(a) (b)

Figure 5.8: Missing mass distribution in the energy range Eγ = 285 − 305 MeV at
θπ0 = 125− 140◦ for the parallel configuration. (a) carbon is scaled by a base scaling
factor and (b) is scaled by a corrected scaling factor.

Figure 5.9: An example distribution of missing mass for reconstructed π0 at tagged
photon energy Eγ = 285− 305 MeV, θπ0 = 125− 140◦ compared with the simulation
at the same energy and θπ0 angle. The two black vertical lines indicate the missing
mass cut applied on the reconstructed events.

bins by the base scaling factor. Fig. 5.7a and Fig. 5.7b show the corrected scaling

factor as function of π0 angle at Eγ = 265− 285 MeV and Eγ = 285− 305 MeV. The
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summary table of the corrected carbon scaling factors for both the 2014 and 2015

beamtime is presented in Appendix B.3.

The carbon missing mass distributions were scaled with these corrected scaling

factor. These scaled carbon missing mass distributions were subtracted from the bu-

tanol missing mass distributions. Fig. 5.8a and Fig. 5.8b show the carbon-subtracted

missing mass distributions using the base and the corrected scaling factors. From

Fig. 5.8a, it is clear that the base scaling factor (discussed in Sec. 5.2.1) is not suf-

ficient to describe the background in the missing mass spectrum. This indicates the

importance of the missing mass ratio method and corrected scaling factor determi-

nation to ideally match the background. The missing mass distribution after scaling

a carbon target with the corrected scaling factor is shown in Fig. 5.8b. In this case,

the background in the missing mass spectrum is well-described by the scaled carbon

missing mass. However, the carbon target missing mass spectra were scaled by the

corrected scaling factor at all five π0 angles and the missing mass subtraction was

completed for both the parallel and anti-parallel configurations. A sample missing

mass distributions for Eγ = 285 − 305 MeV at θπ0 = 125 − 140◦ for the parallel

configuration is shown in Fig. 5.9. As can be seen that the subtracted missing mass

after scaling carbon by the corrected scaling factor is in good agreement with the

simulation.

5.3 Charged Particle Detection

The detection of the recoil nucleons is necessary for the reliable isolation of the ex-

clusive Compton final state from other competing reactions. Although the detection

efficiency term in the double polarization observable measurement formula cancels

out, it is important to understand the dominant source of background for Compton
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scattering. This large background introduces a significant challenge when studying

Compton scattering. In addition, a correct normalization has to be performed and

many different factors play a role into the final results. Since our detector system is

not perfect, particles, and hence events, are lost and have to be corrected by their

detection efficiencies.

For a better understanding of the various effects, it is important to reduce the

complexity of the data analysis. This was done by selecting neutral pion photo-

production data and the ratio method that requires the detection of both the charged

and neutral particles in the final state. The 2014 and 2015 beamtimes for π0 photo

production events were analyzed separately to obtain the proton (any charged particle

which could be proton or positive pion, etc.) detection efficiency by requiring only

the neutral pion events for the channel γp→ π0p and recoil charged track in the final

state, where π0 → γγ.

In this section, the final yields for recoil charged particle detected within the

specified opening angle are compared with the final yields for any recoil particle

identified as a charged and missed recoil charged particle. The proton detection

efficiency is measured for the whole tagged photon energy range in terms of proton

kinetic energy at various angles. These efficiencies are then applied to better identify

the π0 background and maximum upper missing mass cut for each energy and angular

bin in the simulation.

5.3.1 Rootino Detection Efficiency

The nature of the detected particle is determined with a combination of information

obtained by the Pulse Shape Analysis (PSA) of Vetos from the TAPS system and

∆E/E charge particle separation of PID/CB from the CB system. A discrimination

between photons, electrons, protons and neutrons is possible. All of the particles were
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categorized as charged or neutral. A particle was marked as a charged particle based

on the energy deposition in any of the charged particle detectors, PID, MWPC, or

TAPS Veto. The charged track was labeled as a pseudo-particle, known as rootino,

and stored as a charged particle. All other tracks, those without any energy deposi-

tion in the charged particle detectors, were marked as neutral and stored as photons.

Due to the PID ADC issues as discussed in Sec. 5.1.2, the conventional ∆E/E charge

particle separation technique was not applied for rootino detection efficiency studies.

Instead, the MWPC and the TAPS-Veto detectors were used for tracking and identi-

fication of any charged hit as was done in the π0 photo production asymmetry studies

and also in Ref. [51]. To estimate the efficiency of the rootino detection process, we

compared the number of events where the final state recoil particle was detected as

charged, to the sum of the events where a recoil particle was detected as a charged

particle and the events where recoil particle was completely missed.

The detectors that are used for particle detection have a different response to a

charged particle, like a proton, as opposed to a photon, so the choice of the reaction

γp → π0p for the recoil charged particle detection calculation was obvious because

its analysis is important in understanding the dominant background of the Compton

scattering process. Therefore, the A2 Geant simulation is key to investigate whether

the recoil charged particle is actually detected or not and also to determine the energy

loss by the particle traveling from the event center to a detector. When particles travel

from the event vertex to a detector, they have to traverse through the target material,

the 3He/4He refrigeration bath, the cryostat shells, the transverse holding coil, air, and

various detectors, as well as their structural shells. This causes the charged particle

to undergo interactions with the various types of material losing energy along the

way,
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Etot
loss = Ebutanol

loss + EHe
loss + Ecryo

loss + Ecoil
loss + Eair

loss + Estr
loss. (5.4)

However, the requirement of a detected charged particle limits the energy and angle

ranges that can be reconstructed. A minimum energy, which is known as a threshold

energy, is required for the charged particle to exit the butanol target and be detected

in the Crystal Ball or TAPS detectors. This requirement places a threshold on the

proton kinetic energy of roughly 60 MeV.

The proton detection efficiencies were calculated as a function of kinetic energy

and polar angle in the lab frame. These quantities were calculated from the π0

kinematics, independent of the fact that the nucleons were detected or not. Due

to the gap between the Crystal Ball hemispheres, only specific polar ranges where

the likelihood of detecting possible charged particle is maximal are included in this

analysis.

The Rootino detection efficiencies can be defined as

εr(Eγ, θ) =
NC

NC +NM

, (5.5)

where NC represents the number of counts where a possible recoil particle is detected,

identified as any charged particle (protons, positive pions etc) and NM represents the

number of counts where a possible recoil particle goes undetected or missed by the

detector.

However, because the proton typically suffers from significant energy losses, under-

standing the direction of the charged particle is important for this efficiency analysis.

This is done by determining the angle between the missing momentum vector and the

detected charged particle opening angle. Thus, the final state recoil particle that has

been detected and identified as a charged particle should be within a cone of specified
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opening angle. The opening angle cut, dictated by the simulation as discussed in

Section 5.1, has been applied for the nucleon detection efficiency calculations. In

terms of opening angle, the detection efficiency formula is,

εr(Eγ, θ) =
N ′C(θOA)

NC +NM

, (5.6)

where N ′C(θOA) is the number of counts where a possible recoil particle is detected,

identified as any charged particle which satisfies the 10◦ opening angle cut.

5.3.2 Rootino Detection Efficiency Fitting Function

The detection efficiency plots were fitted with a function called the “logistic function”,

given by

f(x) =
L

1 + e−k(x−x0)
, (5.7)

where x0 is the x-value of the half maximum (Threshold Energy) logistic curve (red

curve in Fig 5.10 and Fig 5.11), e is the natural logarithm base, L is the curve’s

maximum value (Maximum Detection Efficiency), and k is the steepness of the curve.

The fitting parameters for ‘parallel’ and ‘anti-parallel’ data sets are presented in

Tables B.5 and B.6, respectively. These fitting parameters were applied to the

simulation to gain a better understanding of background and find the upper limit in

the integration of the missing mass.

The detection efficiencies have been measured separately for the positively and

negatively polarized data sets at different polar angles. The data set for positively

polarized target with right helicity state of the beam and negatively polarized target

with left helicity state of the beam have been named as the ‘parallel’ data-set, and for

positively polarized target with left helicity state of the beam and negatively polarized

target with right helicity state of the beam have been named as the ‘anti-parallel’ data-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: An example rootino detection efficiency using photo-production events
for parallel data set from the 2014 beamtime. The efficiency distributions were fitted
with a logistic function (red curve). The recoil particle detected at polar range of (a)
20− 25◦, (b) 25− 30◦, (c) 30− 35◦, (d) 35− 40◦, (e) 40− 45◦, and (f) 45− 50◦.



115

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: An example rootino detection efficiency using photo-production events
for anti-parallel data set from the 2014 beamtime. The efficiency distributions were
fitted with a logistic function (red curve). The recoil particle detected at polar range
of (a) 20− 25◦, (b) 25− 30◦, (c) 30− 35◦, (d) 35− 40◦, (e) 40− 45◦, and (f) 45− 50◦.
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set. The yields for carbon target data were scaled with the corrected scaling factor, as

discussed in Section 5.2.2, and subtracted from the yield of the butanol target to get

the detection efficiency results. These detection efficiencies were normalized with the

correct target polarization values, as discussed in Section 2.2. The example detection

efficiency plots, along with the maximum value of detection efficiency and threshold

to detect a charged particle, at six different polar angles 20− 25◦, 25− 30◦, 30− 35◦,

35−40◦, 40−45◦ and 45−50◦ for the both ‘parallel’ and ‘anti-parallel’ data sets from

the 2014 beamtime are shown in Fig 5.10 and Fig 5.11, respectively. Other angular

ranges are not included due to the kinematic ranges for the π0 photoproduction with

a 450 MeV endpoint energy.

5.4 π0 Photo-production Asymmetry

The π0 photo-production asymmetry is measured at two different tagged photon

energy ranges, Eγ = 265 − 285 MeV and Eγ = 285 − 305 MeV by using the
∑

2z

formula defined in Sec. 2.5a. For each π0 tagger hit pair which passes the event

selection criteria outlined in Sec. 5.1, the π0 angle is filled separately for prompt

and random events. The random subtraction is performed using the accidental factor

discussed in Sec. 5.1.1. Beyond a prompt-random subtraction, fiducial cuts (discussed

in Sec. 6.1.1), coplanarity cut (Sec. 5.1.2.1), tagged photon energy cut and invariant

mass cut (Sec. 5.1.2.2), and missing mass cut (Sec. 5.1.2.3) have been applied.

The carbon target subtraction was performed using the corrected scaling factors

discussed in Sec. 5.2.2. The π0 asymmetry results as a function of π0 angle from both

the 2014 and 2015 beamtimes are shown in Fig. 5.12. These results are also compared

with Scattering Analysis Interactive Database (SAID) model [92, 93]. This model is

based on one-pion exchange process for elastic scattering of protons and neutrons, at
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(a) (b)

(c) (d)

Figure 5.12:
∑

2z asymmetry for π0 photoproduction as a function of π0 angle in lab
frame. Results are compared with SAID model [92]. (a), (c) show the π0 asymmetry
at tagged photon energy, 265− 285 MeV, from the 2014 and 2015 beamtime. (b), (d)
show the π0 asymmetry at tagged photon energy, 285− 305 MeV, from the 2014 and
2015 beamtime.

low to medium energies in terms of a partial-wave expansion. It is clearly seen that the∑
2z asymmetry results for the π0 photoproduction events are in good agreement with

the SAID model. The asymmetry results presented in this work cover the complete

angular range of CB and TAPS (2 − 159◦) and two tagged photon energy ranges,

Eγ = 265 − 285 and 285 − 305 MeV. For each data point, only statistical errors are
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shown.



119

Chapter 6

Data Analysis II : Compton
∑

2z

Asymmetry

This chapter summarizes the detailed steps applied in the data analysis of the Comp-

ton scattering reaction, γp→ γp, in the ∆(1232) resonance region. The experimental

run conditions during the 2014 and 2015 beamtimes were slightly different, so the

data were analyzed separately and results on the Compton
∑

2z asymmetry were

later combined, based on a weighted average. The particle identification, event se-

lection, kinematic cuts, Compton missing mass and its upper integration limit, and

final results on the Compton
∑

2z asymmetry are presented in the following sections.

6.1 Identification of Final State Interaction

Compton scattering, γp → γp, seems to have a simple final state, but it is very

important to correctly identify the individual particles detected in the CB-TAPS

detector system. As discussed in Sec. 3.1.3.1, the CB-TAPS system provides various

techniques for charged and neutral particle identification. The most conventional

dE/E charged particle separation method, discussed in Sec. 3.1.3.2, can be used to
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identify protons, electrons and charged pions for both the Crystal Ball and TAPS.

Depending on the beam energy and physics reaction of interest, alternative methods,

such as Time Of Flight (TOF) or PSA of the two scintillation light components of

the BaF2 crystals, as described in Sect. 4.3.9, can also be used for TAPS. Although

the discrimination of the photons and neutrons in the TAPS is possible through TOF

or PSA, the same technique cannot be applied for the CB, because the distance

between the target center and the detectors is comparably small and the NaI crystals

have relatively poor timing resolution. Electromagnetic showers from the photon hits

spread over a large number of modules, resulting in a larger cluster size than the hits

from neutrons. Therefore, a cut based on the cluster size of the particle track can be

applied to separate photons from neutrons and misidentified protons.

Because of the PID ADC issues during the 2014 beamtime discussed in Sec. 5.1.2,

a very simple approach based on the particle track as discussed in Sec. 5.3.1 was

adopted in this data analysis. Although the conventional dE/E charged particle

separation method was turned off for the 2014 beamtime, the data analysis of the

2015 beamtime was completed with, and without, the conventional dE/E charged

particle separation method. The missing mass spectra from the 2015 beamtime were

compared with and without the conventional dE/E method applied and the difference

was found to be negligible.

6.1.1 Event Selection

A Compton scattering event is identified in the analysis by selecting final states where

a single neutral particle and a single charged track, both with deposited energies

above 15 MeV (cluster threshold), are detected in the CB and TAPS detectors. The

coincidence between the time of the neutral particle, and the time of a hit in the

tagger, allows for tagging of the initial state photon. In order to remove randomly



121

coincident events from the selection, the random background was sampled in two

timing windows and subtracted from the signal after normalization according to the

width of the selected time intervals, as discussed in Sec. 5.1.1.

Although, in principle the combined CB and TAPS covers the angular range of

2-159◦, there are regions near the two cone-shaped CB tunnels (which serve as the

entrance and exit of the photon beam) that are not efficient. These regions are (i)

the forward hole in the TAPS detector, 0-6◦, (ii) the region between TAPS and the

CB, 18− 25◦, and (iii) the backward hole in the CB, 150− 180◦, as shown in Fig. 6.1.

Respective fiducial cuts have been applied.

Figure 6.1: Cross section of detectors showing fiducial cuts. A possible region for the
CB detector setup where a π0 decay photon can escape.

The missing mass and invariant mass distributions from the neutral pion pho-

toproduction simulations discussed previously in Sec. 5.1.2.3 were used to examine

the energy and angular dependence. These simulations suggested that π0 photo-

production varies significantly across both energy and angle. For this reason, the

data analysis was divided into two parts: one just below, and one just above the

γp→ π0π0p threshold (of 308.85 MeV/c2). The analysis below threshold was further
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divided into two energy bins: Eγ = 265 − 285 MeV, which corresponds to tagger

channels 156− 138, and Eγ = 285− 305 MeV, which corresponds to tagger channels

138-120. These were further divided into five Compton scattered photon angular bins:

80− 95◦, 95− 110◦, 110− 125◦, 125− 140◦ and 140− 150◦.

The upper and lower limits in energy and angle are based on both experimental

and physics limitations. One of the physics limitations is that in order for the proton

to have enough momentum to reach the detectors, the photon must be scattered or

emitted at large angle. This can be demonstrated by using the energy and momentum

conservation relations for Compton scattering defined in Equation 2.21. For example,

for an incident a photon energy of 300 MeV at θ = 90◦, (1 − cos θ) = 1, the kinetic

energy of the proton can be obtained as T ′ = Ep′ −mc2 = 73 MeV. As the Compton

angle θ of the scattered photon decreases, Ep′ continues to decrease until it only has

the energy of its rest mass, and so T ′ decreases to zero. Since we require a proton

in our final state, and a kinetic energy of roughly 70 MeV is required (Sec. 5.3.1) to

reach the CB + TAPS detector due to energy loss in the target and inner detector

elements, only the Compton scattering events with a scattered photon angle between

80− 150◦ are considered for the data analysis.

6.1.1.1 Compton Coplanarity Angle

After the hit identification and event selections, background from competing reactions

can be suppressed with several analyses of the reaction kinematics. The angular

information of the scattered photon and a charged particle detected in the final state

is a very important kinematic constraint for the Compton scattering data analysis.

The kinematic diagram for the reaction channel, γp→ γp, is shown in Fig. 6.2a. We

assume that the incoming photon is traveling along the z direction and interacts with

a proton at rest and scatters at an angle θ. The azimuthal angles of the scattered
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photon and a recoil proton can be used to check whether these particles are in the

same reaction plane spanned by the incoming photon, or not. The difference in the

azimuthal angles of a scattered photon and a recoil proton is called the Compton

coplanarity angle, and the coplanarity condition is given by

∆φ = |φγ − φp|= 180◦. (6.1)

(a) (b)

Figure 6.2: (a) A schematic diagram of a Compton scattered photon and a recoil pro-
ton in the same plane. (b) Coplanarity distribution for simulated Compton scatter-
ing events compared with the data. The simulated spectrum for Compton scattering
events is shown in magenta, simulated π0 events which were analyzed as if they were
a Compton photon is shown in blue, and the carbon-subtracted data are shown in
red.

A sample coplanarity spectrum for the butanol target data is shown in Fig. 6.2b.

For events with recoil protons, one of the largest background comes from π0 pho-

toproduction. In addition to Monte Carlo simulation of Compton events, π0 events

were also simulated, passed through the A2 Geant4 simulation and then analyzed

with the same A2 GoAT physics class as the data. These simulation results for the

∆φ distribution show a nice peak around 180◦. A cut on the fixed coplanarity angle,

∆φ = 180 ± 15◦, as indicated by the two green vertical lines, was applied on the
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reconstructed events.

6.1.1.2 Opening Angle

Charged particles suffer a significant amount of energy loss when they travel from the

event center to a detector, as discussed previously. Specifically, the requirement of

detection of a recoil charged particle eliminates all of the coherent nuclear background,

since the target atoms are too heavy to escape the target. Assuming that the reaction

was Compton scattering from a proton, and using standard two-body kinematics for

each accepted charged particle, a check requiring that it traveled in a direction similar

to the expected one as in Fig. 6.3a is made. This is done by determining the angle

between the detected and missing particles, referred to as the proton opening angle.

Thus, the opening angle is defined as the angle between detected proton, and where

the proton was expected based on Compton kinematic reconstruction of the photon

cos(ΩOA) =
~pmiss.~precoil

~|pmiss|×|~precoil|
. (6.2)

Fig. 6.3b shows the comparison between the opening angle spectra for a carbon-

subtracted butanol target data (coplanarity cut applied) and the MC simulation for

Compton scattering. The Compton events were simulated using the Event Generator

(EventGen) and passed through the Geant4 and the exact same config files in several

steps as in Sec. 6.1.1.1. The simulated opening angle results show a sharp peak around

5◦, which is in good agreement with the data. The large background, as seen in

Fig. 6.3b, is believed to be mainly due to the dominant quasifree π0 photoproduction

process from the bound nucleons such as carbon and oxygen in the butanol target.

Therefore, much π0 background can be eliminated by applying a cut on the opening

angle and hence a 10◦ opening angle cut as indicated by blue vertical line has been

applied in the data analysis.
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(a) (b)

Figure 6.3: (a) Opening angle requiring that the proton is detected within a cone
around its expected angle and (b) Opening angle for simulated Compton scattering
compared with data. A cut on the opening angle is indicated by the blue vertical
line.

6.1.1.3 Missing Mass for Compton Scattering Events

For the Compton scattering process, γp→ γp, an incoming photon and a rest proton

are in the initial state and a scattered photon and a recoil proton is detected in the

final state. The four-momentum conservation rule can be defined as,

(Eγi , ~pγi) + (Epin, ~ppin) = (Emiss, ~pmiss) +
(
Eγf , ~pγf

)
, (6.3)

where (Eγi , ~pγi) and (Eγf , ~pγf ) are the four vectors of the incident and scattered pho-

ton, and (Epin, ~ppin) is the four vector of initial proton. This rule can be used to

determine the undetected final state particle (or a missing particle) as

mmiss =

√
(Emiss)

2 − (~pmiss)
2. (6.4)
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The missing mass in this case should be the mass of the proton (938.27 MeV/c2).

This relation can be further simplified to

mmiss =

√(
Eγi +mp − Eγf

)2 −
(
~pγi − ~pγf

)2
. (6.5)

Fig. 7.8 shows an example missing mass distribution for events with a single photon

and a charged track. Fiducial cuts (Sec. 6.1.1), coplanarity and opening angle cuts

(Sec. 6.1.1.1), and tagged photon energy cut (Sec. 6.1.1.2) have been applied. Because

the background varies significantly across both energy and angle, it is important to

examine the energy and angular dependence. Therefore, the two tagged photon energy

bins, below γp → π0π0p threshold were divided into five Compton θ bins, and were

analyzed separately. Fig. 7.8 shows missing mass spectra for Eγ = 265−285 and Eγ =

285−305 MeV, both at Compton θ = 125−140◦ from the 2014 and 2015 beamtimes.

These are final, carbon-subtracted missing mass spectra using the corrected scaling

factor discussed in Sec. 5.2.2. The Compton simulation and experimental missing

mass distributions show a good agreement in the region from 900 − 940 MeV/c2,

but on the other hand the region above 940 MeV/c2 has some inconsistency. To

investigate this inconsistency, simulated π0 events were analyzed as if they were from

the Compton reaction and are summed together with simulated Compton scattering

events to create an expected distribution. From these spectra, it is clear that there

is good agreement of the data with the expected distribution up to missing mass

≈ 1000 MeV/c2. In some cases, at forward angle θ = 80 − 95◦ where the recoil

proton has the minimum energy to be detected, the Compton scattering peak and

the background distribution could not replicate the experimental data.

It is observed from these spectra that π0 photoproduction is the major source

of background, which has a larger impact above a missing mass of approximately
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(a) (b)

(c) (d)

Figure 6.4: An example missing mass spectrum for two tagged photon energy bins.
(a), (c) 2014 and 2015 beamtime results at Eγ = 265 − 285 MeV. (b), (d) 2014
and 2015 beamtime results at Eγ = 285 − 305 MeV. Experimental results for θ =
125 − 140◦, are shown in blue, MC simulated results from Compton scattering and
π0 photoproduction are shown in green and black, and the sum of two contributions
to show an expected distribution is in magenta. Two red vertical lines represent the
missing mass integration limit.

940 MeV/c2 and hence it is necessary to set a clear upper missing mass limit that

coincides with the turn-on-point of π0 photoproduction. It is also clear from these

simulations that there is very little or no π0 background below a missing mass of

approximately 938 MeV/c2. Although these simulations are helpful to find out the

upper missing mass limit, a detailed asymmetry versus missing mass study, combined
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with the simulation at different energy and angular bins, has been completed to

determine ideal upper limit in missing mass and is presented in Sec. 6.1.1.4.

6.1.1.4 Upper Limit On The Missing Mass

The correct missing mass integration limit is crucial to cleanly identify Compton

scattering events and reject background processes. While the π0 photoproduction

simulation is reliable in the majority of cases, further measures must be taken to reject

any significant background contamination. Obviously, though missing mass spectra

can be integrated up to the most conservative limit 938 MeV/c2 (proton mass), we

want to have as many Compton events as possible to minimize statistical error and

maximize the physics impact of results, so a minimum amount of π0 contamination is

desired. A new, more rigorous approach was developed to determine the reliable upper

missing mass limit. In this approach, for each energy and angular bin, the asymmetry

was produced versus missing mass at a fixed integration limit 900 − 930 MeV/c2.

This asymmetry was then recalculated slowly moving the upper missing mass limit

to higher values, keeping the lower limit fixed, in steps of 2 MeV/c2, all the way to

970 MeV/c2. For example, the first data point uses the missing mass integration limit

900−930 MeV/c2, the second data point uses 930−932 MeV/c2, and so on (Fig. 6.5).

Thus, the integration limit is increased every time and the last data point is the result

of missing mass integration limit of 900−970 MeV/c2. As the upper missing mass limit

is moved to higher values, the asymmetry calculation should converge upon the same

value with reduced statistical errors. However, as the missing mass limit is moved in

to a region with large amount of the background contribution, the asymmetry will

begin to diverge.

A π0 photoproduction simulation discussed in Sec. 6.1.1.3 was used as a reference

to check the variation in asymmetry in the data. The correct upper missing mass
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(a) (b)

(c) (d)

Figure 6.5: Asymmetry as a function of upper missing mass limit for the two energy
bins at θ = 125 − 140◦. The green vertical line shows the position of upper missing
mass cut. (a), (c) 2014 and 2015 beamtime results at Eγ = 265− 285 MeV. (b), (d)
2014 and 2015 beamtime results at Eγ = 285− 305 MeV.

limits have been determined based on the following criteria:

• Compton
∑

2z asymmetry distribution is generated as a function of missing

mass in the region 900− 970 MeV/c2.

• The lower limit on the missing mass is fixed to 900 MeV/c2 and asymmetry

is allowed to vary by moving the missing mass limit to higher values up to

970 MeV/c2.
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• The upper limit on the upper missing mass is greater than or equal to the proton

mass (938 MeV/c2).

• The π0 photoproduction simulations, which were analyzed as if they were Comp-

ton events (spectrum shown with black points in Fig. 7.8), are used to determine

a safe upper missing mass cut (typically 938 − 942 MeV/c2) and the resulting

asymmetry for this region is taken as a reference value.

• The background contamination from π0 photoproduction (π0 contamination of

5%) is accepted in this analysis. This 5% is reasonable to address the discrep-

ancy in the choice of 2 cm carbon target length (Sec. 3.2.3) and various other

competing reaction from C, O and He nuclei.

• The asymmetry does not vary by more than 5% by moving to a higher missing

mass limit compared to the reference listed above.

An additional adjustment of ± 4 MeV/c2 on the upper missing mass limit has been

made for two angular bins, θ = 80− 95◦ and θ = 140− 150◦. The adjustment to the

first angular bin is made because, as discussed previously, only events reconstructed

from the recoils that deposited enough energy (≈73 MeV kinetic energy) in the Crystal

Ball. The adjustment to the second angular bin is due to some of the inefficient or

less efficient modules near the fiducial region.

Fig. 6.5 shows an example plot of asymmetry versus upper missing mass for the

Compton angular range θ = 125−140◦. A summary of the upper missing mass limits

determined at a given energy and angular bin for both the 2014 and 2015 beamtimes

is presented in Table 6.1.
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Beamtime
Compton Missing Mass Upper Limit
Angular
Range

Eγ = 265 −
285 MeV

Eγ = 285 −
305 MeV

Eγ = 310 −
330 MeV

2014

80− 95◦ 952 950 949
95− 110◦ 947 949 946
110− 125◦ 948 949 948
125− 140◦ 945 948 945
140− 150◦ 949 946 950

2015

80− 95◦ 945 946 948
95− 110◦ 942 945 944
110− 125◦ 941 942 944
125− 140◦ 942 942 941
140− 150◦ 940 940 941

Table 6.1: Missing mass cuts determined for three energy and five angular bins of
Compton scattering. The upper missing mass limits are based on π0 photoproduction
taken as a reference and detailed Compton

∑
2z asymmetry versus upper missing mass

limit study.

6.1.2 2014, 2015 Compton
∑

2z Asymmetry Results

Since the
∑

2z asymmetry is defined in terms of the difference in cross section between

the right and left helicity states of the beam, as in Equation 2.38, due to relatively

quick helicity flipping of the beam (approximately 1 Hz), the various factors needed

to convert cross section into counts are identical. These factors include,

N(E, θ) = σ(E, θ)Ω(θ)Φ(E)Lρtε(E, θ), (6.6)

where σ(E, θ) is the cross section, Ω(θ) is the solid angle, Φ is the photon flux, L is the

target length, ρ is the target density, t is the running time and ε(E, θ) is the efficiency,

which is actually made up of tagging and detection efficiencies. These factors cancel

out between the numerator and the denominator. Therefore, the
∑

2z asymmetry can

be simplified as a ratio of the difference between the normalized yield for right and
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left helicities of the beam to their sum,

∑
2z

=
1

P γ
circ · P t

z

(
(NR

+z +NL
−z)− (NL

+z +NR
−z)

(NR
+z +NL

−z) + (NL
+z +NR

−z)

)
, (6.7)

where P γ
circ and P t

z are the degree of the photon beam polarization and target polar-

ization for polarized butanol target, respectively.

Figure 6.6: Compton
∑

2z asymmetry results from the 2014 and 2015 beamtimes for
all three tagged energy bins. Blue points are from 2014 beamtime and red points are
from 2015 beamtime. Only statistical errors are shown. The left, middle and right
pannel are for Eγ = 265− 285, 285− 305 and 310− 330 MeV, respectively.

After finding the optimal integration limit on the carbon-subtracted missing mass

spectra, we integrate the missing mass for a given angular bin to find the Compton∑
2z asymmetry. Fig. 6.6 shows the Compton

∑
2z asymmetry results including only

the statistical error. These results for 2014 and 2015 beamtime are statistically con-

sistent and hence can be combined to obtain final results. A summary of Compton∑
2z asymmetry results, along with the statistical error, is shown in Table 6.2.

The
∑

2z asymmetry result can be altered by various experimental parameters.

Some of the experimental parameters, such as the photon beam polarization and

the carbon scaling factor used in subtracting out the carbon contribution to the

missing mass spectra, and are energy dependent, while some other parameters, such
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Beamtime
Compton Asymmetry, Σ2z ± δΣ2z(stat)
Angle Eγ = 265 −

285 MeV
Eγ = 285 −
305 MeV

Eγ = 310 −
330 MeV

2014

88◦ 0.1823± 0.0909 0.2083± 0.0577 0.4435± 0.0502
102◦ 0.2322± 0.0629 0.3278± 0.0378 0.8054± 0.0246
118◦ 0.4631± 0.0416 0.4723± 0.0316 0.7463± 0.323
134◦ 0.6607± 0.0329 0.6591± 0.0203 0.7577± 0.408
148◦ 0.7466± 0.0827 0.7178± 0.0397 0.6325± 0.1110

2015

88◦ 0.1231± 0.0782 0.0981± 0.0639 0.3255± 0.0390
102◦ 0.3097± 0.0565 0.2997± 0.0514 0.4936± 0.0278
118◦ 0.4544± 0.0237 0.4952± 0.0502 0.5570± 0.0213
134◦ 0.6488± 0.0189 0.6797± 0.0273 0.6244± 0.0314
148◦ 0.7279± 0.0506 0.7897± 0.0469 0.7611± 0.0502

Table 6.2: Compton
∑

2z asymmetry results from the 2014 and 2015 beamtimes for
three energy and five Compton angular bins.

as the target polarization, are energy independent. The photon beam polarization, as

discussed in Sec. 3.2.2.2, was used to normalize the
∑

2z asymmetry results. Because

the target polarization is measured only at the beginning and the end of each data

taking period with different target orientations, the degree of target polarization for

each run was calculated using a linear interpolation, as discussed in Section 3.2.2.2.

The target polarization, is in principle, evaluated on a run-by-run basis, but the

changes are very small for all the data files when evaluated on a day-by-day basis.

Therefore, an average target polarization for a given day was determined and the data

were normalized accordingly (day-by-day target polarization correction) for both the

2014 and 2015 beamtimes.

6.2 Error Analysis

The uncertainty in the measurement of the
∑

2z asymmetry consists of both system-

atic and statistical uncertainties. The systematic uncertainties define errors which are

not determined by statistics, but are introduced by an uncertainty in the measurement
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inherent in the system. The systematic errors errors in experimental observations are

based on instrumental effects. The polarization observable has several inputs from

measuring instruments: target polarization, beam polarization, normalization factor

from the photon beam flux and carbon scaling factor. These systematic uncertainties

and their systematic errors affect the polarization observable. The systematic uncer-

tainties from beam polarization and target polarization between the 2014 and 2015

beamtimes are the same. The other systematic errors, including statistical and carbon

scaling factor, are different between the two beamtimes and hence a detailed analysis

has been completed. The systematic errors presented in this section are caused by

global sources, i.e. they are common for all the analyses and had, therefore, only to

be calculated once.

6.2.1 Target and Photon Beam Polarization

The dominating systematic error in the calculation of the
∑

2z asymmetry is the beam

and target polarization. The physics behind how the electrons have to be spin polar-

ized using a circularly polarized laser light at the electron source to produce circularly

polarized photon beam is discussed in Sec. 3.1.1.1. As discussed in Sec. 3.1.1.1, the

degree of the polarization of the electron beam is measured with a Mott polarimeter

using the Mott scattering technique, where electrons are scattered from a thin gold

foil within the MAMI accelerator. The uncertainty in the electron beam polariza-

tion for both the 2014 and 2015 beamtimes is ≈ ±1% (Table 6.3 and Table C.1).

The uncertainty in the target polarization basically arises from the uncertainty in the

measurement of the starting and ending polarization values, and this was evaluated

to be ≈ ±2% (Table 6.3 and Table C.1).
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6.2.2 Carbon Scaling Factor

Since the target contains nuclei other than hydrogen, these contributions are sub-

tracted with the use of a pure carbon target containing the same number of nucleons

as the carbon and oxygen in the butanol, and the liquid helium cryogen [50]. In

order to scale the carbon data set, a scaling factor was determined by forming the

ratio of butanol and carbon target missing mass, as explained in Sec. 5.2.2. To ex-

tract the systematic error, the carbon scaling factors were changed by ±10% and

the
∑

2z asymmetry was calculated to extract the relative difference (Table 6.3 and

Table C.1). The ±10% variation resulted an unidirectional shift in
∑

2z asymmetries,

i.e. all the bins move in the same direction. The shift in asymmetry was evaluated to

be ≈ ±8 − 12% depending on energy and the angular bin. This ±10% is an appro-

priate choice based on the ±5% discrepancy in the choice of carbon target and ±5%

background contamination from π0 photoproduction as discussed in Sec. 6.1.1.4.

6.2.3 Missing Mass Cuts

The
∑

2z asymmetry was evaluated by applying a cut on the missing proton mass

distribution. The choice of the integration limits on the upper missing mass region

caused a change in the Compton yield, with a narrow cut eliminating more background

but also resulting in a loss of some useful events. A wider cut retains more events,

but has a higher possibility of including more background. Therefore, the cuts on

the reconstructed proton missing mass (Sec. 6.1.1.4) were used to extract the
∑

2z

asymmetry. To extract the systematic error, the standard cut positions discussed in

Sec. 6.1.1.4 were changed by ±5 MeV/c2 and the
∑

2z asymmetry was calculated to

extract the relative difference (Table 6.3 and Table C.1). The shift on the asymmetries

was random, i.e. go up and down randomly from bin-to-bin and was evaluated to be

≈ ±10%.
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6.2.4 Statistical Errors

To calculate the statistical error in the
∑

2z asymmetry, Equation 6.7 is simplified to

∑
2z

=
1

P γ
circ · P t

z

(
Np −Na

Np +Na − sfNc

)
, (6.8)

where Np, Na and Nc are the yields for parallel, antiparallel and carbon data sets,

and sf is the corrected carbon scaling factor. The error propagation method from

Ref. [94] has been used to calculate the statistical error in
∑

2z asymmetry as

δΣ2z(stat) =

√(
∂Σ2z

∂Np

)2

(δNp)2 +

(
∂Σ2z

∂Na

)2

(δNa)2 +

(
∂Σ2z

∂Nc

)2

(δNc)2. (6.9)

The summary of statistical error is presented in Table 6.3 and Appendix C.

6.2.5 Summation of Errors

The summation of errors was handled by separating them into correlated and point-

to-point (pt-to-pt) uncertainties. It is important to address the angular dependence

of some of the parameters like the carbon scaling factors. The uncertainty of the

experimental parameters: target polarization, beam polarization and carbon scaling

factor are totally correlated for the measurement of the
∑

2z asymmetry, but this

is not so for the uncertainty due to the missing mass integration limit. Thus, the

systematic errors from the first three sources are added in quadrature as,

(δΣ2z)syst−scale =
√

(δΣ2z(P t
z))

2 + (δΣ2z(P
γ
circ))

2 + (δΣ2z(sf ))2. (6.10)

These uncertainties are then plotted as a separate band, corresponding to every

Compton angle (Sec. 6.3.1).

However, the error from the cuts on the reconstructed proton missing mass is
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completely random and hence are summed up in quadrature with the statistical un-

certainty) as,

(δΣ2z)pt−to−pt =
√

(δΣ2z(stat))2 + (δΣ2z(syst− rand))2. (6.11)

Beamtime
Compton Types of Error (±)
Angle stat syst-

rand
pt-to-
pt

syst-
target

syst-
beam

syst-
carbon

syst-
scale

2014

88◦ 0.0909 0.0182 0.0927 0.0036 0.0018 0.0109 0.0116
102◦ 0.0629 0.0232 0.0670 0.0046 0.0023 0.0116 0.0126
118◦ 0.0416 0.0231 0.0475 0.0093 0.0046 0.0185 0.0212
134◦ 0.0329 0.0330 0.0465 0.0123 0.0066 0.0264 0.0299
148◦ 0.0827 0.0448 0.0940 0.0149 0.0075 0.0373 0.0409

2015

88◦ 0.0782 0.0123 0.0792 0.0025 0.0012 0.0074 0.0079
102◦ 0.0565 0.0309 0.0644 0.0062 0.0031 0.0155 0.0170
118◦ 0.0237 0.0227 0.0328 0.0091 0.0045 0.0182 0.0208
134◦ 0.0189 0.0324 0.0375 0.0123 0.0065 0.0260 0.0295
148◦ 0.0506 0.0436 0.0668 0.0146 0.0073 0.0363 0.0398

Table 6.3: Summary of correlated as well as uncorrelated error analysis for the Comp-
ton

∑
2z asymmetry at Eγ = 265− 285 MeV.

Tables 6.3 shows the summary of error analysis at Eγ = 265− 285 MeV for both

the 2014 and 2015 beamtimes. The summary of the other two energy bins is given in

Appendix C.

6.3 Combined
∑

2z Asymmetry Results

In Sec. 6.1.2, the
∑

2z asymmetry results for the Compton scattering process from the

2014 and 2015 beamtimes were presented. This section summarizes the final results

on the
∑

2z asymmetry, obtained by combining the results from the two beamtimes

based on the measurement of the weighted average. For two separate measurements
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of a quantity Z, the weighted average is defined as [94],

Zwav =

∑
i

ZiWi∑
i

Wi

, Wi =
1

σ2
i

, (6.12)

where, the sums are over two measurements, i = 1, 2, and the weight Wi of each

measurement is reciprocal square of the corresponding uncertainty (pt-to-pt error in

Table C.1). Because the weight factor, Wi, associated with each measurement involves

the square of the corresponding uncertainty, σi, the measurement that is much less

precise than the other contributes very much less to the final result. The uncertainty

in Zwav is calculated using the error propagation formula

δ(Zav) =
1√∑
i

Wi

. (6.13)

Beamtime
Compton Asymmetry, Σ2z ± δΣ2z(pt− to− pt)
Angle Eγ = 265 −

285 MeV
Eγ = 285 −
305 MeV

Eγ = 310 −
330 MeV

Combined

88◦ 0.1483± 0.0602 0.1564± 0.0446 0.3550± 0.0551
102◦ 0.2725± 0.0464 0.3161± 0.0383 0.6684± 0.0484
118◦ 0.4572± 0.0270 0.4798± 0.0322 0.6143± 0.0278
134◦ 0.6535± 0.0292 0.6682± 0.0289 0.6739± 0.0249
148◦ 0.7342± 0.0545 0.7491± 0.0439 0.7392± 0.0557

Table 6.4: Final Compton
∑

2z asymmetry results at three energy and five Compton
angular bins. The errors represent the pt-to-pt error averaged between 2014 and 2015
beamtime for corresponding energy and angle.

6.3.1 Comparison to HDPV Model

To study the sensitivity of the
∑

2z asymmetry results on the proton spin polarizabil-

ities, a fixed-t dispersion relation approach, HDPV [28, 44, 45], was used to generate

theoretical
∑

2z predictions. This code generates tables of polarized lab cross sections
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at fixed lab energy for various values of scalar and spin polarizabilities in their stan-

dard units. These cross sections were used to generate a pseudo-data set of the
∑

2z

asymmetry. Since the dispersion code used in this analysis to produce theoretical

asymmetries is valid only below γp → π0π0p threshold, only the
∑

2z asymmetry

results for the two combined sets at Eγ = 265− 285 MeV and Eγ = 285− 305 MeV

are compared with the theoretical model.

The HDPV
∑

2z model allows one to choose the spin polarizability basis either in

terms of αE1 +βM1, αE1−βM1, γE1E1, γM1M1, γE1M2, γM1E2, or in terms of αE1 +βM1,

αE1−βM1, γ0, γπ, γM1M1, γE1E1. The second basis was chosen because γ0 and γπ are a

linear combination of the dipole (γE1E1, γM1M1) and quadrupole (γE1M2, γM1E2) terms

and allowing them to vary essentially allows the quadrupole terms to vary as well.

Thus, the theoretical
∑

2z model varies αE1 + βM1, αE1− βM1, γ0 and γπ constrained

by the experimental error. The following nominal values were used in the dispersion

code as an input to generate the theoretical
∑

2z model predictions:

αE1 + βM1 = (13.8± 0.4)× 10−4 fm4,

αE1 − βM1 = (7.6± 1.7)× 10−4 fm4,

γ0 = (−1.00± 0.18)× 10−4 fm4,

γπ = (8± 1.8)× 10−4 fm4.

(6.14)

Furthermore, to determine whether the
∑

2z asymmetry exhibits sensitivity to

γE1E1 or γM1M1, two different sensitivity bases were generated. In the first sensitivity

basis, γE1E1 was fixed at HDPV value of −4.3 ×10−4 fm4 and γM1M1 was allowed to

vary between 2.9 to 4.9 in standard unit. While in a second sensitivity basis, γM1M1

was fixed at the HDPV value of 2.9 ×10−4 fm4 and γE1E1 was allowed to vary between

−3.5 to −5.5 in standard unit. In addition, the range of polar angles from 0 to 180◦

in steps of 10◦ was selected.
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(a) (b)

(c) (d)

Figure 6.7: Compton Σ2z asymmetry as a function of scattered photon angle. The top
panel is for Eγ = 265− 285 MeV and the bottom panel is for Eγ = 285− 305 MeV.
The curves are from the HDPV dispersion theory calculation of Pasquini, et al.,
[28, 44, 45] making use of constraints on γ0, γπ, αE1 + βM1 and αE1 − βM1 allowed
to vary within experimental error. The correlated systematic uncertainties are shown
as a separate block corresponding to every Compton angle. (a), (c) γE1E1 is fixed at
−4.3 and γM1M1 allowed to vary. The green, red and blue bands are for γM1M1 equal
to 2.9, 3.9 and 4.9. The width of each band represents the propagated errors. (b),
(d) γM1M1 is fixed at 2.9 and γE1E1 allowed to vary. The green, red and blue bands
are for γE1E1 equal to −3.5, −4.5 and −5.5. Polarizabilities are in the standard units
of 10−4 fm4.
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The final Compton
∑

2z asymmetry results are plotted in Fig. 6.7 along with the

dispersion theory curves for two energy ranges. Fig. 6.7a and Fig. 6.7c show final

results for various values of γM1M1 ranging from 2.9 to 4.9, while holding γE1E1 fixed

at −4.3. The various colour bands represent different values for γM1M1, while the

spread of each band is a result of allowing γ0, γπ, αE1 + βM1 and αE1 − βM1, to

vary about their experimental errors. It is clear from these plots that the
∑

2z data

exhibits a very strong sensitivity to γM1M1. The same data are plotted in Fig. 6.7b

and Fig. 6.7d with curves generated by varying γE1E1 in the range −3.5 to −5.5 in

the standard units, while holding γM1M1 fixed at 2.9. Unlike the previous case,
∑

2z

exhibits a very weak sensitivity to γE1E1, allowing widely varying choices of this spin

polarizability to adequately fit the data points.

The error bars shown are pt-to-pt statistical plus random systematic as discussed

in Sec. 6.2.5. The systematic errors from the three different sources (Sec. 6.2): target

polarization, beam polarization and carbon scaling factor from the 2014 and 2015

beamtimes are determined based on the weighted average and shown as a separate

block for every Compton angle in Fig. 6.7.

Although the dispersion code used in this analysis to produce theoretical asymme-

tries is valid only below γp→ π0π0p threshold, it is obviously still of interest to mea-

sure the
∑

2z asymmetry above γp → π0π0p threshold as this may stimulate further

theoretical work to extend their models to this energy range. Therefore, the analysis

above 2π0 threshold has been completed for the energy range, Eγ = 310− 330 MeV,

which corresponds to tagger channels, 115 − 95, for the same five Compton angular

bins without theoretical curves. The results, for the energy range Eγ = 310−330 MeV,

are shown in Fig. C.1.
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Chapter 7

Results and Discussion

In Chapters 5 and 6, the
∑

2z asymmetry results from the π0 photoproduction and

Compton scattering channels were presented. Given the high cross section and rel-

atively background-free signal, the π0 photoproduction channel proved not only to

be an excellent reaction for asymmetry studies, but also an ideal reaction to perform

systematic checks, as discussed in Sec. 6.2.

Having a well understood dominant π0 photoproduction background, the data

analysis of the Compton scattering channel for the measurement of the
∑

2z asym-

metry became more reliable and easier. The Compton
∑

2z asymmetry results were

obtained from the 2014 and 2015 beamtimes separately and then combined to find

the best estimate based on their weighted average. The goal of the Compton
∑

2z

asymmetry experiment is two fold. The first one is focused on the study of model de-

pendence within the ∆-resonance region. Another goal of the experiment is to extract

proton spin polarizabilities, which appear in the third-order effective Hamiltonian for

Compton scattering and provide a measure of the spin-dependent global resistance of

the nucleon’s internal degrees of freedom against displacement in an external electric

or magnetic field.



143

7.1 Data Fitting With HDPV Model

A global analysis of single- and double-polarized Compton scattering data in the

∆(1232) region was performed to study the model dependence of proton’s spin po-

larizabilities and extract them. This was done by fitting the asymmetry data using

a HDPV code provided by Barbara Pasquini [17, 45], as discussed in Sec. 6.3.1. In

addition to handling the experimental constraints, such as αE1 +βM1, αE1−βM1, γ0,

γM1M1 and γE1E1, the fitting routine also provides the freedom to select or reject the

experimental error in γπ as a constraint.

As discussed in Sec. 2.1.2.6, the LEGS data set (with γπ = −23.2×10−4 fm4) [34] is

particularly interesting, since it shows a large discrepancy from all other data sets (the

global result combining MAMI, LARA [36, 37] and Saskatoon [33] data set give γπ =

−38.7×10−4 fm4). Because our experimental measurements of
∑

2x,
∑

3 and
∑

2z are

based on the asymmetries, not the cross sections, but the extraction of γπ is based

on the measurement of differential cross sections, it is important to cross check if the

discrepancy exists only in the cross sections, and not in the asymmetries. Given that

γ0 and γπ have been measured experimentally, and that the uncertainty in γ0 is small,

it is of interest to investigate the effect of including the γπ data that show a larger

discrepancy from all other model predictions. Therefore, the fitting was performed

with and without the backward spin polarizabilty, γπ, as a constraint for the Paudyal

(
∑

2z) data set. This fitting was also performed for the combined (Paudyal + Collicott

(
∑

3) + Martel (
∑

2x)) data set. The four extracted spin polarizabilities from the
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Paudyal data set (this work) are as follows:

γM1M1 = 3.24± 1.05× 10−4 fm4,

γE1E1 = −4.06± 1.46× 10−4 fm4,

γE1M2 = 0.47± 2.00× 10−4 fm4,

γM1E2 = 1.36± 1.43× 10−4 fm4,

(7.1)

where the uncertainty reflects the fitting error of the model to the data described

further in Sec. 7.3. Similarly, the extracted two backward and forward polarizabilities

are:

γ0 = −1.01± 0.18× 10−4 fm4,

γπ = 8.18± 1.61× 10−4 fm4.

(7.2)

The extracted polarizabilities performing a global fit to only the Paudyal data

set compared to the combined data set (Paudyal + Collicott + Martel) from three

Compton asymmetry experiments,
∑

2z,
∑

3 and
∑

2x, are summarized in Table 7.1.

Martel, et al., used the same fitting routine and extracted the four leading order

terms of the proton’s spin polarizabilities combining the
∑

3 results from the LEGS

collaboration and the
∑

2x results from his thesis experiment [50]. A recent analysis

by Collicott, et al., also extracted these four spin polarizabilities combining the
∑

2x

asymmetry results from Martel, et al., and the
∑

3 asymmetry results from Collicott’s

thesis experiment [51].

Because both
∑

2z and
∑

3 exhibit a strong sensitivity to γM1M1, it is important

to compare the results within each experiment. It is clearly seen from Table 7.2 that

the polarizabilities extracted using
∑

2z results from this work are in good agreement

with the
∑

3 results.
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Polarizability

Data Sets
Paudyal Paudyal + Collicott + Martel

With γπ con-
straint

Without γπ
constraint

With γπ con-
straint

Without γπ
constraint

αE1 10.67± 0.49 10.68± 0.49 10.53± 0.48 10.53± 0.48
βM1 3.13± 0.49 3.11± 0.49 3.24± 0.48 3.24± 0.48
γE1E1 −4.06± 1.46 −2.86± 2.25 −4.24± 0.39 −4.24± 0.39
γM1M1 3.24± 1.05 2.58± 2.02 3.25± 0.40 3.24± 0.57
γE1M2 0.47± 2.00 −1.59± 3.47 0.76± 0.83 0.77± 1.18
γM1E2 1.36± 1.43 2.89± 3.04 1.24± 0.39 1.23± 0.54
αE1 + βM1 13.80± 0.40 13.79± 0.40 13.77± 0.40 13.77± 0.40
αE1 − βM1 7.54± 0.89 7.57± 0.89 7.28± 0.86 7.28± 0.88
γ0 −1.01± 0.18 −1.01± 0.18 −1.00± 0.18 −1.00± 0.18
γπ 8.18± 1.60 - 7.97± 1.36 -
χ2/dof 0.23 0.24 0.83 0.87

Table 7.1: Polarizabilities (10−4 fm4) extracted using either the Paudyal (this work),
or the Paudyal, Collicott and Martel data sets. The HDPV code by Pasquini et al.
[17, 45] was used to fit and extract the spin polarizabilities. Fitting errors of the
model to the data are shown. A χ2 per degree of freedom for each fit is also included.

Polarizability
Data Sets

LEGS + Martel Collicott + Martel Paudyal + Collicott
+ Martel

γE1E1 −3.5± 1.2 −5.0± 1.5 −4.24± 0.39
γM1M1 3.16± 0.85 3.13± 0.88 3.25± 0.40
γE1M2 −0.7± 1.2 1.7± 1.7 0.76± 0.83
γM1E2 1.99± 0.29 1.26± 0.43 1.24± 0.39
γ0 −1.03± 0.18 −1.00± 0.18 −1.00± 0.18
γπ 9.3± 1.6 7.8± 1.8 7.98± 1.36
αE1 + βM1 14.0± 0.4 13.8± 0.4 13.77± 0.40
αE1 − βM1 7.4± 0.9 6.6± 1.7 7.29± 0.86
χ2/dof 1.05 1.25 0.83

Table 7.2: Polarizabilities (in 10−4 fm4) extracted using the LEGS + Martel, Collicott
+ Martel and Paudyal + Collicott + Martel data sets. The fitting and extraction
of the spin polarizabilities was performed using the HDPV code by Pasquini, et al.
[17, 45], for all three data sets. Fitting errors of the model to the data are shown. A
χ2 per degree of freedom for each fit is also included.
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7.2 Data Fitting With BχPT Model

The
∑

2z asymmetry data were also fit by using the BχPT calculation of Lensky

and Pascalutsa [46]. The same experimental constraints and bases as in HDPV were

applied for both the Paudyal data set and the combined (Paudyal + Collicott +

Martel) data set. The extracted polarizabilities are summarized in Table 7.3.

Polarizability

Data Sets
Paudyal Paudyal + Collicott + Martel

Without γπ
constraint

With γπ con-
straint

Without γπ
constraint

αE1 10.76± 0.49 10.27± 0.48 10.39± 0.48
βM1 3.04± 0.49 3.51± 0.48 3.38± 0.48
γE1E1 −4.59± 3.15 −2.87± 0.42 −3.20± 0.53
γM1M1 −10.20± 0.34 2.29± 0.39 1.70± 0.42
γE1M2 4.90± 2.57 0.60± 0.85 2.06± 1.08
γM1E2 10.90± 0.78 0.98± 0.35 0.44± 0.41
αE1 + βM1 13.80± 0.40 13.78± 0.40 13.77± 0.40
αE1 − βM1 7.72± 0.89 6.76± 0.87 7.01± 0.88
γ0 −1.01± 0.18 −0.99± 0.18 −1.01± 0.18
γπ - 5.54± 1.25 -
χ2/dof 0.38 1.30 1.20

Table 7.3: Polarizabilities (in 10−4 fm4) extracted using Paudyal and the combined
(Paudyal + Collicott + Martel) data set. A BχPT [46] code was used to fit and
extract the spin polarizabilities. Fitting errors of the model to the data are shown.
A χ2 per degree of freedom for each fit is also included.

The fitting was performed with and without the backward spin polarizabilty, γπ,

as a constraint for both the Paudyal and the Paudyal + Collicott + Martel data

sets, as done in Sec. 7.1. When γπ is included as a constraint in the BχPT code

for the Paudyal data set, it returns some meaningless polarizability values, with an

unacceptable χ2 and blows up. This means that the Paudyal data set by itself does

not have the required strength to fit the spin polarizabilties when using this model.

However, fitting the combined data set returns some meaningful polarizability values,

as shown in Table 7.3.
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7.3 Fitting and χ2 minimization

The minimization technique in general uses an input parameters, the function to

minimize and the parameters to adjust in order to minimize the function. The input

parameters to this study were the desired polarizabilities, and the function passed to

it was a χ2 function. Therefore, in both the HDPV and BχPT studies, the polariz-

abilities were fit using a χ2 minimization technique. This was done by developing a

formalism that introduced an analytical algebraic solution that reduced the problem

to a matrix equation, and then by reversing the matrix equation, the fitted values for

polarizabilities were obtained. The fitting routine employed in this study assumed a

linear approximation for the dependence of the asymmetries (a similar relation exists

for the cross section) on the polarizabilities as

Ai ({P}) = Ai
({
P
})

+
6∑
j=1

∂Ai
({
P
})

∂Pj

(
Pj − P j

)
, (7.3)

where
{
P
}

is the set of six polarizabilities used as starting points in calculating the

first partial derivatives of the asymmetries and {P} is the set of polarizabilities at

some new values. The following procedure was implemented to fit the polarizabilities:

• Select the set of six polarizabilities as the starting points, and for each of the

data points, calculate a theoretical point (or constraint).

• Perturb the polarizability data one by one by some fixed step to calculate the

new theoretical points.

• Determine the partial derivative by finding the difference in theory over differ-

ence in parameter.

• Solve for χ2 minimum (Sec. 7.3.1) and determine the parameter values and

errors.
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• Repeat the process with current parameters until χ2 converges to a desired

limit.

7.3.1 Construct χ2

The χ2 for a given observable, including the constraints that are simply linear com-

binations of the polarizabilities, is defined as

χ2 =

Nobs∑
i=1

Npnt∑
j=1

(
Aexpij (Eγ, θ)− Ai(Eγ, θ, ({P}))

σAij(Eγ ,θ)

)2

+ constraints, (7.4)

where Nobs is the number of asymmetry observables, Npnt is the number of polariz-

abilities, Aexpij (Eγ, θ) is the energy and polar angle dependent experimental asymme-

try, Ai (Eγ, θ, ({P})) is the energy and polar angle dependent theoretical asymmetry

(from HDPV and BχPT ) as a function of six polarizabilities, and σAexpij (Eγ ,θ) is the

uncertainty in Aij(Eγ, θ) . The constraints in Equation 7.4 are given by

constraints =

(
(α + β)ex − (α + β)

σ(α + β)

)2

+

(
γexπ − γπ
σγπ

)2

+(
(α− β)ex − (α− β)

σ(α− β)

)2

+

(
γex0 − γ0

σγ0

)2

.

(7.5)

χ2 was constructed for each experiment, at each polar angle bin, and summed together

to get an overall χ2 as

χ2 =

Npnt∑
j=1

(∑j
2z(Eγ, θ)−

∑
2z(Eγ, θ, ({P}))

σΣj2z(Eγ ,θ)

)2

+

Npnt∑
j=1

(∑j
2x(Eγ, θ)−

∑
2x(Eγ, θ, ({P}))

σΣj2x(Eγ ,θ)

)2

+

Npnt∑
j=1

(∑j
3(Eγ, θ)−

∑
3(Eγ, θ, ({P}))

σΣj3(Eγ ,θ)

)2

+ constraints.

(7.6)
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The experimental values and errors used for these constraints are the currently

accepted world values for them, as discussed in Sec. 6.3.1. The minimization program

ran in a loop, adjusting the values of the parameters, recomputing the theoretical

values of the asymmetries and then the value of χ2, and finally determined where the

minimum of χ2 occurred.

The derivative of χ2 with respect to each polarizability is

∂χ2

∂Pk
=

∂

∂Pk

Nobs∑
i=1

Npnt∑
j=1

(
Aexpij (Eγ, θ)− Ai(Eγ, θ, ({P}))

σAij(Eγ ,θ)

)2

,

= 2

Nobs∑
i=1

Npnt∑
j=1

(
Aexpij (Eγ, θ)− Ai(Eγ, θ, ({P}))(

σAij(Eγ ,θ)
)2

)
∂Ai (Eγ, θ, ({P}))

∂Pk
.

(7.7)

When the two observables are linear, the partials must be the same, i.e.,

∂Ai ({P})
∂Pk

=
∂Ai

({
P
})

∂Pk
. (7.8)

We can apply this condition to our previous equation to solve for

∂χ2

∂Pk
= 2

Nobs∑
i=1

Npnt∑
j=1

(
Aexpij (Eγ, θ)− Aij(Eγ, θ, ({P}))(

σAij(Eγ ,θ)
)2

)
∂Ai

(
Eγ, θ,

({
P
}))

∂Pk
. (7.9)

Since the minimum occurs at ∂χ2

∂Pk
= 0, the solution for {P} is at
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0 = 2

Nobs∑
i=1

Npnt∑
j=1

A
exp
ij (Eγ, θ)−

(
Ai
({
P
})

+
∂Ai({P})

∂Pj

(
Pj − P j

))
(
σAij(Eγ ,θ)

)2

×
∂Ai

(
Eγ, θ,

({
P
}))

∂Pk
,

= 2

Nobs∑
i=1

Npnt∑
j=1

A
exp
ij (Eγ, θ)−

(
Ai
({
P
})
− ∂Ai({P})

∂Pj

(
P j

))
(
σAij(Eγ ,θ)

)2

∂Ai
(
Eγ, θ,

({
P
}))

∂Pk

−
2

Nobs∑
i=1

Npnt∑
j=1

1(
σAij(Eγ ,θ)

)2

(
∂Ai

({
P
})

∂Pj
(Pj)×

∂Ai
(
Eγ, θ,

({
P
}))

∂Pk

)
.

(7.10)

We can rearrange the second part of Equation 7.10 to isolate {P} and the resulting

relation can be interpreted in terms of matrices as

0 = Cj −DkjPj → P = D−1C. (7.11)

By constructing these two matrices, one can determine the values of the polarizabil-

ities at this χ2 minimum. The errors for these parameters (Sec. 7.1) are determined

by the curvature matrix as

α =
1

2



∂2χ2

∂P 2
1

∂2χ2

∂P1P2
. . . ∂2χ2

∂P1P6

∂2χ2

∂P 2
2 P1

∂2χ2

∂P 2
2

. . . ∂2χ2

∂P2P6

. . . . . .

. . . . . .

. . . . . .

∂2χ2

∂P 2
6 P1

∂2χ2

∂P6P2
. . . ∂2χ2

∂P 2
6


. (7.12)
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The error matrix is the inverse of the second derivative matrix of the function with

respect to its free parameters. Therefore, the error matrix from Equation 7.12 is given

by ε = α−1, where

ε =



σ11 σ12 . . . σ16

σ21 σ22 . . . σ26

. . . . . .

. . . . . .

. . . . . .

σ61 σ62 . . . σ66


. (7.13)

The errors associated with polarizabilities are calculated from the diagonal elements

of the error matrix as σ1 =
√
σ11, σ2 =

√
σ22, etc.

7.3.2 Verification of the Fitting Procedure

It often happens that the solution of a minimization problem using the χ2 minimiza-

tion technique seems very straightforward, but the calculation or interpretation of

the resulting parameter uncertainties is considerably more complicated. There were

several items that needed to be checked in the χ2 minimization technique. For ex-

ample, one of the main concerns that can be raised is whether the errors are being

calculated properly. Furthermore, one can argue whether the linear dependence on

the polarizabilities is really linear or not, and also one can argue whether there is any

dependence on the starting values for the polarizabilities or not. These concerns are

explained in the following section.

7.3.2.1 Error Calculations

There are several ways to check if the errors are being properly calculated. It is

obviously difficult to check if the errors in six dimensional phase space are being
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correctly calculated or not. However, the problem can be simplified. For example,

among the six input parameters, we can fix some of the parameters and scan over

the remaining parameters and determine the χ2 at each point. In this study, four

out of the six parameters were fixed at their resulting values and the remaining two

parameters were scanned over the χ2 phase space for all permutations to see the

χ2 +1 ellipsoid. This was done for all permutations but only three of them are shown

in Figs. 7.1-7.3. One can see that the resulting χ2 minima are clearly not only well

defined but also well behaved.

7.3.2.2 Linearity

In Sec. 7.3.1, while deriving the matrix equation we assumed that the polarizabilities

are linearly dependent. This was an integral part of the χ2 minimization method.

Therefore, it is important to check whether they are actually linear or not. This

can be tested by varying the given observable over a range of values for a single

polarizability, and determining if the change is indeed linear. As can be seen from

the Figs. 7.4-7.5, these are not strictly linear but the difference from linearity is quite

small.

In addition, this can be handled by iterating the process multiple times. We know

that the iterative process should be convergent, so the iteration can be continued until

the old and new χ2 values differ by less than some desired convergence factor. The

number of iterations necessary therefore depends on this convergence factor as well as

the step size chosen in calculating the partial derivatives. The linear approximation

is valid for a relatively small step size compared to the errors.
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(a)

(b)

Figure 7.1: (a) χ2/DOF as a function of γE1E1 and γM1M1, keeping the other four
polarizabilities fixed at their previously fitted values. (b) Zoomed in version of the
two dimensional projection, along with corresponding χ2 + 1 ellipsoid.
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(a)

(b)

Figure 7.2: (a) χ2/DOF as a function of γE1M2 and γM1E2, keeping the other four
polarizabilities fixed at their previously fitted values. (b) Zoomed in version of the
two dimensional projection, along with corresponding χ2 + 1 ellipsoid.
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(a)

(b)

Figure 7.3: (a) χ2/DOF as a function of αE1 and βM1, keeping the other four polar-
izabilities fixed at their previously fitted values. (b) Zoomed in version of the two
dimensional projection, along with corresponding χ2 + 1 ellipsoid.
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Figure 7.4:
∑

3 for different values of γE1E1 at Eγ = 273 ± 10.1 MeV. (a) shows the
theory values fit with a line. (b) shows the difference between the theory points, and
this fit.

7.3.2.3 Starting Value of Polarizabilities

The sensitivity to the starting polarizabilities is one of the challenges for fitting be-

cause, in the case of extreme non-linearity, or large correlations between the param-

eters, it is important to avoid so called “local minima” from the global minimum in

the χ2 phase space. This was tested by varying the input parameters randomly over a

wide range of polarizabilities and in this study ±5 in the standard units were chosen.

The resulting values of the six polarizabilities from the BχPT and HDPV model fit

are shown in Fig. 7.6 and Fig. 7.7. As can be seen from these plots, the fits in all

of them converge to approximately the same value. This means that the variance in

each plot is much less than the actual fitted parameter errors.

7.4 Study of Model Dependence

Given the lack of required strength to fit the spin polarizabilties using the BχPT

code for the Paudyal data set, the Paudyal + Collicott + Martel combined data set

is used to study the model dependence. Fig. 7.8 shows the comparison of the fitting
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Figure 7.5:
∑

2x for different values of γE1E1 at Eγ = 273− 303 MeV. (a) shows the
theory values fit with a line. (b) shows the difference between the theory points, and
this fit.

results obtained from the HDPV and BχPT models. It is clear from these plots that

the fit results from HDPV model for γE1E1 differ by about 3σ and γM1M1 differ by

about 2σ compared to BχPT model. BχPT prefers smaller γE1E1, γM1M1 magnitude

than HDPV. Within the uncertainties, the results for γE1M2 and γM1E2 from the

two HDPV and BχPT model fits are in good agreement, indicating that the model

dependence of the polarizability fitting is comparable to, or smaller than, the fitting

errors from data fitting.

7.5 Comparison With Theory Models

The extracted proton spin polarizabilities can be compared to several theoretical

models. Table 7.4 lists some of the theoretical calculations. The comparison of four

spin polarizability results based on the HDPV and BχPT model fits including the

best estimate based on their weighted average is shown in Fig. 7.8. The HDPV,

DPV, BχPT, HBχPT and K-matrix calculations resulted in similar spin polarizabil-

ity values, with the exception of large negative γE1M2 by the K-matrix prediction.
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Figure 7.6: HDPV model fits with partial derivatives calculated using parameter steps
of 0.001. The spread in each of these distributions represent the error in the fitting
of each polarizability and y-axis represent the number of fits.

However, some of the theory calculations lack an uncertainty estimate, for example

the fourth order (p-expansion) and a small scale (ε-expansion) calculations seem to
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Figure 7.7: BχPT model fits with partial derivatives calculated using parameter steps
of 0.001. The spread in each of these distributions represent the error in the fitting
of each polarizability and y-axis represent the number of fits.

be quite different from the remaining model predictions and also do not agree well

with the experimental spin polarizabilities.
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(a) (b)

(c) (d)

Figure 7.8: Comparison of four spin polarizabilities in 10−4 fm4 based on fitting
results from the HDPV and BχPT models. The colour bands on the right show
different theory model predictions and the blue background shows the uncertainty in
the HBχPT model prediction. The horizontal colour band is the weighted average
of the fitting results from the HDPV and BχPT models. (a) γE1E1, (b) γM1M1, (c)
γE1M2, (d) γM1E2.

Nevertheless, it is rather clear from the table and figure that the extracted polariz-

abilities within this work, both via
∑

2z asymmetry measurement and a combination

of a
∑

2x,
∑

3 and
∑

2z asymmetry measurement, prefer some models over the others.

For example, the extracted γM1M1 via HDPV model fit is in good agreement with the
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HDPV DPV O(p4)a O(p4)b O(ε3) HBχPT BχPT K-matrix
γE1E1 -4.3 -3.8 -5.4 1.3 -1.9 -1.1 ± 1.8 -3.3 -4.8
γM1M1 2.9 2.9 1.4 3.3 0.4 2.2 ± 1.2 3.0 3.5
γE1M2 -0.02 0.5 1.0 0.2 0.7 -0.4 ± 0.4 0.2 -1.8
γM1E2 2.2 1.6 1.0 1.8 1.9 1.9 ± 0.4 1.1 1.1
γ0 -0.8 -1.1 1.9 -3.9 -1.1 -2.6 -1.0 2.0
γπ 9.4 7.8 6.8 6.1 3.5 5.6 7.2 11.2

Table 7.4: Theoretical model predictions of the proton spin polarizabilties in 10−4 fm4.
HDPV and DPV are once-subtracted fixed-t and fixed-angle (θlab = 180◦) dispersion
relation calculations [95], O(p4)a and O(p4)b are fourth order (p-expansion) calcula-
tions [45], O(ε3) is a small scale (ε-expansion) calculation [96], HBχPT is a heavy
baryon chiral perturbation calculation [97], BχPT is a covariant baryon chiral pertur-
bation calculation [98] and K-matrix is a dressed K-matrix model based on K-matrix
formalism and dispersion relations [99].

HDPV, DPV, covariant BχPT and K-matrix predictions, while the extracted γM1M1

via BχPT model fit is in good agreement with only the HBχPT model prediction.

Similarly, the extracted γE1E1 via HDPV model fit is in good agreement with the

HDPV, DPV, covariant and K-matrix predictions, but the extracted γE1E1 via BχPT

model fit is off by about 1-5σ from all the model predictions. It is to be noted here

that the model predictions are based on the old data sets including results from pre-

vious experiments and when we add the new data sets to the old data set, the models

give better result. This means with the addition of new data sets, the HDPV and

BχPT models are not only handling the data in a consistent manner but also giving

better results compared to the old data sets.

7.6 Outlook

The aim of the experimental proposal submitted to the MAMI Program Advisory

Committee (PAC) for the set of three Compton scattering experiments was not only to

perform a measurement of the single and double polarization observables, but also to

investigate the sensitivities of the proton spin polarizabilities to the
∑

2x,
∑

3 and
∑

2z
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asymmetries using data collected only at the MAMI tagged photon facility. These

asymmetries certainly bench-marked a significant achievement in their own right,

being the first double-polarized Compton scattering asymmetries ever measured. The

first achievement of the Compton program at MAMI has been published by Martel,

et al. [49], by investigating the sensitivities on the
∑

2x asymmetry and extracted

the set of spin polarizabilities. The second achievement was the measurement of the∑
3 asymmetry by Collicott, et al. [51], and the extraction of the same set of spin

polarizabilities. The final achievement towards this program was the measurement of

the
∑

2z asymmetry and the extraction of the individual spin polarizabilities presented

in this work. Since all three experiments have been completed, a combination of these

experimental results allowed for a thorough extraction of the spin polarizabilities and

the uncertainties in γE1E1, γM1M1, γE1M2 are improved by a factor of two to four, but

the uncertainty in γM1E2 remained unchanged.

Given the completion of the analysis of three Compton scattering experiments at

MAMI, the global analysis of the subsequent asymmetry data is a milestone in this

area, leading to the extraction of all four proton spin polarizabilities: γE1E1, γM1M1,

γE1M2 and γM1E2. However, an attainable goal in this area is to further reduce the

uncertainties in spin polarizabilities by approximately 50%. The A2 Collaboration at

MAMI already has plans to collect more data in the near future. Since the uncer-

tainty in the
∑

2z asymmetry is small compared to the uncertainty in the two other

asymmetry results, the data will only be collected to measure
∑

2x (Sec. 2.2.2) and∑
3 (Sec. 2.2.3) by the end of 2017 and 2018, respectively.
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Appendix A

Experimental Trigger

Figure A.1: A schematic diagram for the subcomponents of an experimental trigger
(after October 2012) [81].
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Figure A.2: A schematic diagram of the experimental trigger components (after Oc-
tober 2012) [81].
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Appendix B

Carbon Scaling

B.0.1 Extra Scaling Factor

Data Set
π0 Extra scaling factor
Angular
Range

Eγ = 265-285
MeV

Eγ = 285-305
MeV

Eγ = 310-330
MeV

Anti-parallel

80− 95◦ 1.216± 0.044 1.269± 0.035 1.335± 0.040
95− 110◦ 1.211± 0.035 1.260± 0.037 1.357± 0.039
110−125◦ 1.204± 0.037 1.262± 0.039 1.364± 0.040
125−140◦ 1.228± 0.036 1.272± 0.038 1.356± 0.041
140−150◦ 1.221± 0.035 1.293± 0.036 1.409± 0.037

Parallel

80− 95◦ 1.278± 0.032 1.287± 0.034 1.380± 0.036
95− 110◦ 1.216± 0.034 1.289± 0.035 1.373± 0.035
110−125◦ 1.214± 0.037 1.261± 0.038 1.342± 0.039
125−140◦ 1.211± 0.036 1.254± 0.037 1.341± 0.038
140−150◦ 1.127± 0.061 1.212± 0.087 1.418± 0.024

Table B.1: 2014 beamtime: The extra carbon scaling factors determined for three
energy and five angular bins for anti-parallel and parallel configurations.



166

Data Set
π0 Extra scaling factor
Angular
Range

Eγ = 265-285
MeV

Eγ = 285-305
MeV

Eγ = 310-330
MeV

Anti-parallel

80− 95◦ 1.234± 0.032 1.262± 0.011 1.305± 0.042
95− 110◦ 1.246± 0.034 1.281± 0.012 1.317± 0.038
110−125◦ 1.241± 0.037 1.291± 0.054 1.294± 0.041
125−140◦ 1.254± 0.033 1.299± 0.041 1.316± 0.041
140−150◦ 1.268± 0.024 1.288± 0.045 1.309± 0.036

Parallel

80− 95◦ 1.267± 0.032 1.283± 0.032 1.318± 0.036
95− 110◦ 1.232± 0.034 1.291± 0.042 1.303± 0.0352
110−125◦ 1.228± 0.036 1.299± 0.077 1.312± 0.039
125−140◦ 1.239± 0.038 1.286± 0.069 1.321± 0.038
140−150◦ 1.167± 0.024 1.292± 0.086 1.301± 0.034

Table B.2: 2015 beamtime: The extra carbon scaling factors determined for three
energy and five angular bins for anti-parallel and parallel configurations.
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B.0.2 Corrected Scaling Factor

Data Set
π0 Corrected scaling factor
Angular
Range

Eγ = 265-285
MeV

Eγ = 285-305
MeV

Eγ = 310-330
MeV

Anti-parallel

80− 95◦ 2.119± 0.373 1.935± 0.354 1.810± 0.346
95− 110◦ 2.110± 0.368 1.921± 0.352 1.840± 0.351
110−125◦ 2.100± 0.366 1.924± 0.353 1.849± 0.353
125−140◦ 2.140± 0.373 1.939± 0.355 1.838± 0.351
140−150◦ 2.128± 0.371 1.971± 0.361 1.910± 0.364

Parallel

80− 95◦ 2.227± 0.387 1.962± 0.358 1.871± 0.356
95− 110◦ 2.119± 0.369 1.965± 0.359 1.861± 0.354
110−125◦ 2.116± 0.369 1.923± 0.352 1.819± 0.347
125−140◦ 2.110± 0.368 1.912± 0.350 1.818± 0.347
140−150◦ 1.964± 0.354 1.848± 0.359 1.892± 0.364

Table B.3: 2014 beamtime: The corrected carbon scaling factors determined for three
energy and five angular bins for anti-parallel and parallel configurations.
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Data Set
π0 Corrected scaling factor
Angular
Range

Eγ = 265-285
MeV

Eγ = 285-305
MeV

Eγ = 310-330
MeV

Anti-parallel

80− 95◦ 5.649± 0.620 5.758± 0.639 5.888± 0.663
95− 110◦ 5.704± 0.628 5.845± 0.649 5.942± 0.663
110−125◦ 5.681± 0.630 5.890± 0.696 5.838± 0.656
125−140◦ 5.740± 0.631 5.927± 0.683 5.937± 0.667
140−150◦ 5.804± 0.629 5.877± 0.682 5.906± 0.657

Parallel

80− 95◦ 5.800± 0.636 5.895± 0.664 5.919± 0.662
95− 110◦ 5.640± 0.622 5.890± 0.679 5.879± 0.650
110−125◦ 5.621± 0.622 5.927± 0.744 5.919± 0.662
125−140◦ 5.672± 0.630 5.868± 0.721 5.960± 0.665
140−150◦ 5.800± 0.629 5.895± 0.761 5.870± 0.651

Table B.4: 2015 beamtime: The corrected carbon scaling factors determined for three
energy and five angular bins for anti-parallel and parallel configurations.
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B.0.3 Detection Effeciency Fitting Parameters

Polar Range Parameter (L) Parameter (k) Parameter (x0)
20 - 25◦ 0.627059 0.0743982 83.6834
25 - 30◦ 0.602448 0.0971172 79.3318
30 - 35◦ 0.647931 0.0898588 78.2212
35 - 40◦ 0.554969 0.146317 68.6574
40 - 45◦ 0.517886 0.193844 64.6669
45 - 50◦ 0.515316 0.218918 62.2127

Table B.5: Logistic function (Equation 5.7) fitting paramters for different polar ranges
(in degrees). These fitting parameters are from the parallel data set for the 2014
beamtime.

Polar Range Parameter (L) Parameter (k) Parameter (x0)
20 - 25◦ 0.627059 0.0743982 83.6834
25 - 30◦ 0.602448 0.0971172 79.3318
30 - 35◦ 0.647931 0.0898588 78.2212
35 - 40◦ 0.554969 0.146317 68.6574
40 - 45◦ 0.517886 0.193844 64.6669
45 - 50◦ 0.515316 0.218918 62.2127

Table B.6: Logistic function (Equation 5.7) fitting parameters for different polar
angles in degrees. These fitting parameters are from the anti-parallel data set for the
2014 beamtime.
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Appendix C

∑
2z Above γp→ π0π0p threshold

Figure C.1:
∑

2z asymmetry results at Eγ = 310− 330 MeV.
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C.0.4 Systematic Errors at Eγ = 285− 305 MeV

Beamtime
Compton Types of Error (±)
Angle stat syst-

rand
pt-to-
pt

syst-
target

syst-
beam

syst-
carbon

syst-
scale

2014

88◦ 0.0577 0.0208 0.0613 0.0040 0.0020 0.0125 0.0133
102◦ 0.0378 0.0328 0.0500 0.0066 0.0033 0.0164 0.0179
118◦ 0.0316 0.0236 0.0394 0.0094 0.0047 0.0188 0.0215
134◦ 0.0203 0.0330 0.0387 0.0120 0.0066 0.0263 0.0297
148◦ 0.0397 0.0430 0.0585 0.0144 0.0072 0.0358 0.0393

2015

88◦ 0.0639 0.0117 0.0650 0.0021 0.0010 0.0088 0.0100
102◦ 0.0514 0.0299 0.0594 0.0061 0.0030 0.0149 0.0163
118◦ 0.0502 0.0247 0.0560 0.0099 0.0049 0.0198 0.0227
134◦ 0.0273 0.0340 0.0436 0.0136 0.0068 0.0272 0.0312
148◦ 0.0469 0.0473 0.0666 0.0156 0.0078 0.0395 0.0432

Table C.1: Summary of correlated as well as uncorrelated error analysis for the Comp-
ton

∑
2z asymmetry at Eγ = 285− 305 MeV.
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