Deep Exclusive Meson Production at Jefferson Lab Hall C

Garth Huber University of Regina

CAP Congress, Université de Montréal, May 27, 2013.

Fundamental questions in hadron physics

1950-1960: Does the proton have finite size and structure?

- Elastic electron-proton scattering
 - ⇒ the proton is not a point-like particle but has finite size
 - charge and current distribution in the proton, G_E/G_M

Nobel prize 1961- R. Hofstadter

1960-1990: What are the internal constituents of the nucleon?

Deep inelastic scattering

discover quarks in 'scaling' of structure function and measure their momentum and spin distributions

Nobel prize 1990 - J. Friedman, H. Kendall, R. Taylor

Today: How are the nucleon's charge & current distributions related to the quark momentum & spin distributions?

Beyond form factors and quark distributions – Generalized Parton Distributions (GPDs)

ELASTIC SCATTERING:

Proton form factors, transverse charge & current densities

DEEP EXCLUSIVE SCATTERING:

Correlated quark momentum and helicity distributions in transverse space - GPDs

DEEP INELASTIC SCATTERING:

Structure functions, quark longitudinal momentum & helicity distributions

GPD Studies require Hard Exclusive Reactions

- In order to access the physics contained in GPDs, one is restricted to the hard scattering regime.
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached.

Factorization property of hard reactions:

- Hard probe creates a small size $q\overline{q}$ and gluon configuration,
 - interactions can be described by pQCD.
- Non-perturbative part describes how hadron reacts to this configuration, or how the probe is transformed into hadrons (parameterized by GPDs).

GPD Studies require Longitudinal Virtual Photons

- Hard exclusive meson electroproduction first shown to be factorizable by Collins, Frankfurt & Strikman [PRD 56(1997)2982].
- Factorization applies when the γ^* is longitudinally polarized.
 - corresponds to small size configuration compared to transversely polarized γ^* .

Applicability of the GPD Mechanism

- Determining the bounds of the kinematic regime where the GPD mechanism may apply is a high priority for JLab 12 GeV.
 - GPDs can only be extracted from hard exclusive data where hard-soft factorization applies.
- One of the most stringent tests of factorization is the Q² dependence of the π⁺ or K⁺ electroproduction cross section
 - σ_L scales to leading order as $1/Q^6$.
 - σ_T scales as $1/Q^8$.
 - As Q^2 becomes large: $\sigma_L >> \sigma_T$.

- Contribution of σ_T unknown at higher energies.
- Need to <u>experimentally demonstrate</u> $\sigma_L >> \sigma_T$ at higher Q² \rightarrow not just assume it.
- If transverse contributions are larger than anticipated, the accessible phase space for GPD studies may be limited.

Upgrades to Experimental Hall C

Standard 6 GeV Operation

Hall C's High Momentum Spectrometer, Short Orbit Spectrometer and specialized equipment for studying:

- The strange quark content of the proton.
- Form factors of simple quark systems.
- The transition from hadrons to quarks.
- Nuclei with a strange quark embedded.

Future 12 GeV Operation

Add a Super- High Momentum (11 GeV) Spectrometer for studying:

- Super-fast (high x_{B}) quarks.
- Form factors of simple quark systems.
- The transformation of quarks into hadrons.
- Quark-quark correlations.

SOS Dipole Leaves Hall-C...

...and SHMS Wheels Arrive

Thomas Jefferson National Accelerator Facility

SHMS Focal Plane Detectors

Thomas Jefferson National Accelerator Facility

SHMS+HMS Scaling Experiment Goals

- Measure the Q² dependence of the p(e,e'π⁺)n, p(e,e'K⁺)Λ, p(e,e'K⁺)Σ cross sections at fixed x_B and –t to search for evidence of hard-soft factorization
 - Separate the cross section components: L, T, LT, TT
 - Highest Q² for any L/T separation in π ,K⁺ electroproduction

Our theoretical understanding of hard exclusive reactions will benefit from L/T separated pion and kaon data over a large kinematic range

- Quasi model-independent comparison of pion and kaon data would allow a better understanding of the onset of factorization
- Constraints for QCD model building using both pion and kaon data (flavor degrees of freedom)
- Understanding of basic coupling constants (Σ°/Λ ratio)

SHMS+HMS Scaling Experiment Overview

- Measure separated cross sections for the p(e,e'π⁺)n, p(e,e'K⁺)Λ, p(e,e'K⁺)Σ reactions at three values of x_B.
- Q² coverage is a factor of 3-4 larger compared to 6 GeV.
 - Facilitates tests of the Q² dependence even if L/T is less favorable than predicted.

X	Q² (GeV/c)²	W (GeV)	-t (GeV/c)²
0.31	1.5-4.0	2.0-3.1	0.1
0.40	2.1-5.5	2.0-3.0	0.2
0.55	4.0-9.1	2.0-2.9	0.5

Phase space for L/T separations with SHMS+HMS

Projected $p(e,e^{n+1})n$ **Uncertainties for 1/Qⁿ Scaling**

 $p(e,e'K^+)\Lambda,\Sigma$ measurement scheduled as one of the SHMS+HMS commissioning experiments, to run in 2016-17. \rightarrow First L/T separation involving both spectrometers.

Next Generation Study: Polarized GPD \tilde{E}

• \tilde{E} involves a helicity flip:

Depends on the spin difference between initial and final quarks.

$$\sum_{q} e_q \int_{-1}^{+1} dx \ \tilde{E}^q(x,\xi,t) = G_P(t)$$

 $G_P(t)$ is highly uncertain because it is negligible at the momentum transfer of β -decay.

- \tilde{E} not related to an already known parton distribution \rightarrow essentially unknown.
- Experimental information can provide new nucleon structure information unlikely to be available from any other source.

Polarized GPD \tilde{E}

The most sensitive observable to probe \tilde{E} is the transverse single-spin asymmetry in exclusive π production:

Requires both an L/T separation and a transversely polarized target. \rightarrow Very challenging measurement!

GPD information in A_L^{\perp} may be particularly clean

- GPD formalism is restricted to regime where hard & soft contributions factorize.
- A[⊥] is especially interesting because it is expected to display precocious factorization at only Q²~2-4 GeV².
- Argument by Frankfurt et al. [PRD 60(1999)014010]
 - Precocious factorization of the π production amplitude into three blocks is likely:
 - 1. overlap integral between γ , π wave functions.
 - 2. the hard interaction.
 - 3. the GPD.

Higher order corrections, which may be significant at low Q², likely cancel in the asymmetry ratio.

Cancellation of Higher Twist Corrections in A_L^{\perp}

Belitsky and Müller GPD based calc. reinforces this expectation:

- At Q²=10 GeV², NLO effects can be large, but cancel in the asymmetry, A[⊥]_L
 (PL B513(2001)349).
- At Q²=4 GeV², higher twist effects even larger in σ_L , but still cancel in asymmetry (CIPANP 2003).

This relatively low value of Q² for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

L/T Separations Essential to A_L^{\perp}

- In hard meson electroproduction, factorization can only be applied to longitudinal photons.
- Unlike other ongoing or proposed experiments, where dominance of longitudinal contribution is simply assumed, JLab's unique contribution to this field is in:
 - ability to take measurements at multiple beam energies.
 - unambiguous isolation of A_L^{\perp} using Rosenbluth separation.
- A JLab A[⊥] measurement could thus establish the applicability of the GPD formalism, and precocious scaling expectations, for other A[⊥] experiments.

High Luminosity Essential to A_L^{\perp}

- **Physics case for a measurement of A_L^{\perp} is compelling.**
- High luminosity required:
 - σ_L is largest in parallel kinematics, where $A_L^{\perp}=0$.
 - σ_L is small where A_L^{\perp} is maximal.
- The measurement has long been considered to be impossible because of the lack of a polarized target that can handle the required high luminosity.

Recent advancements in polarized ³He target technology may allow the measurement to proceed via the n(e,e³π⁻)p reaction.

Hall A Polarized ³He Target: FOM(P²L)=0.22E+36

UNH/Xemed Target Loop Concept: P²L=0.55E+38

- Compress polarized ³He and deliver to aluminum target cell
- Non-ferrous diaphragm compressor achieves 3000 psi (~200 bar)
- Returns through a pressure-reducing orifice

Requires two ports, entrance and exit

³He Polarized Target Rationale

- By providing optical pumping repolarization rates that keep ahead of beam depolarization rates, we propose development of a scalable polarized ³He target system that:
 - provides a ³He target thickness as high as 0.5 g/cm² in 10 cm
 - accepts the full 80µA polarized beam current at Jefferson Laboratory, and
 - maintains 65% polarization at luminosity of 10³⁸ e-nucleons/cm².
- By relocating critical components of the polarizer system in a loop outside the beam enclosure, we can incorporate redundancy and eliminate single points-of-failure.

Working Large-Scale ³He Polarizer Prototype

Assembled, Operating ³He Polarizer

- Spin-up curve measured by laserpolarization-inversion.
- Spin-up rate ~15%/hr.

April 23, 2012

- 8.5L aluminosilicate glass cell.
- Pressure-vessel enclosure.
- Operation up to 20 atm.
- Hybrid pumping with K:Rb.
- Spectrally narrowed 2.5kW laser.

High Luminosity Polarized ³He Target Status

Many of the hardest technological hurdles have been demonstrated through working prototypes.

- 1. <u>Large-scale ³He polarizer</u> can operate at temperatures, pressures and laser-beam intensities that replace spins (much) faster than they will be destroyed by the beam at $L=5\times10^{37}$ cm⁻²s⁻¹.
- 2. Capability to develop and produce industrial-quality <u>compressor pumps</u> from non-ferrous materials.

Next phase of development:

- 1. Need to demonstrate high polarization (inadvertent contamination has limited asymptotic polarization <50%).
- 2. Need to make a cell with inlet and exit ports.
- 3. Need to measure ³He depolarization in a loop that includes pump and orifice.

JLab PAC39 Comments, June 2012

- **PR12-12-005:** *"The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Electroproduction",* D.J. Gaskell, F.W. Hersman, G.M. Huber, D. Dutta, Spokespersons
- The scientific case is really worthwhile. However, in view of many technical issues for this very challenging high luminosity polarized ³He target, the proposed experiment cannot be part of the top half of the priority list of experiments to be established for the first 5 years of 12 GeV operations.

The PAC encourages the group to purse all these technical efforts to provide a new generation of high luminosity polarized ³He target from which several other experiments can benefit."

Leading Twist GPD Parameterization

GPDs are universal quantities and reflect nucleon structure independently of the probing reaction.

 $\mathrm{H}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$

spin avg

no hel. flip

 $\bar{\mathrm{H}}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$

spin diff

no hel. flip

- At leading twist-2, four quark chirality conserving GPDs for each quark, gluon type.
- Because quark helicity is conserved in the hard scattering regime, the produced meson acts as a helicity filter.

- Vector meson production sensitive to unpolarized GPDs, H and E.
- Pseudoscalar mesons sensitive to polarized GPDs, \tilde{H} and \tilde{E} .

 $\mathrm{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$

spin avg

helicity flip

 $\mathrm{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$

spin diff

helicity flip

Links to other nucleon structure quantities

First moments of GPDs are related to nucleon elastic form factors through model-independent sum rules:

$$\sum_{q} e_{q} \int_{-1}^{+1} dx \ H^{q}(x,\xi,t) = F_{1}(t) \\ \sum_{q} e_{q} \int_{-1}^{+1} dx \ E^{q}(x,\xi,t) = F_{2}(t) \end{cases}$$

$$\sum_{q} e_{q} \int_{-1}^{+1} dx \ \tilde{H}^{q}(x,\xi,t) = G_{A}(t) \\ \sum_{q} e_{q} \int_{-1}^{+1} dx \ \tilde{E}^{q}(x,\xi,t) = G_{P}(t)$$

Dirac and Pauli elastic nucleon form factors. *t* -dependence fairly well known.

Isovector axial form factor. *t* –dep. poorly known.

Pseudoscalar form factor. Very poorly known.

Complementarity of Different Reactions

Deep Exclusive Meson Production:

- Vector mesons sensitive to *H*, *E*.
- Pseudoscalar mesons sensitive to \tilde{H}, \tilde{E} .

Deeply Virtual Compton Scattering:

Sensitive to all four GPDs.

• Need a variety of Hard Exclusive Measurements to disentangle the different GPDs.

Generalized Parton Distributions

Over the last decade, tremendous progress has been made on the theory of generalized parton distributions (GPD).

PDFs : Squared hadronic wavefunctions = probability of finding a parton with specified longitudinal momentum fraction and polarization in fast moving hadron.

GPDs : interference between wavefns of parton with momentum fraction $x+\xi$ and parton with momentum fraction $x-\xi$.

- In addition to x and ξ , GPDs depend also on $t=-(p-p')^2$.
 - *t* is independent of *x*, ξ since *p*, *p*' may differ in either their longitudinal or transverse components.
- GPDs interrelate the longitudinal and transverse momentum structure of partons within a fast moving hadron.

GPDs in Deep Exclusive Meson Production

- A special kinematic regime is probed in deep exclusive meson production, where initial hadron emits a $q\overline{q}$ or gg pair.
- This has no counterpart in usual PDFs.
- Since GPDs correlate different parton configurations in the hadron at the quantum mechanical level,
 - GPDs determined in this regime carry information about \bar{qq} and gg-components in the hadron wavefunction.

Form Factors and GPDs

- Form factors and GPDs are essential to understand the structure of nucleons, which make up nucleons and mesons (q-q systems)
- But measurements of form factors and GPDs have certain prerequisites:
 - Before we can start looking at form factors, we must make sure that σ_L is dominated by the meson pole term at low -t
 - *Before we can learn about GPDs*, we must demonstrate that factorization applies
- A comparison of pion and kaon production data may shed further light on the reaction mechanism, and intriguing 6 GeV pion results

Projected Uncertainties for $\sigma_{\rm L}$ and $\sigma_{\rm T}$

- High quality kaon L/T separation above the • resonance region
- Projected uncertainties for σ_{L} and σ_{T} use the L/T ratio from • Hall C parameterization

SOS Removal now Completed

Thomas Jefferson National Accelerator Facility

SHMS Support Structure installation

Thomas Jefferson National Accelerator Facility

Experiment Overview

- Measure the separated cross sections at varying –t and x_B
 - If K⁺ pole dominates σ_L allows for extraction of the kaon ff (W>2.5 GeV)
- Measure separated cross sections for the p(e,e'K⁺) $\Lambda(\Sigma^{\circ})$ reaction at two fixed values of –t and x_B
 - Q² coverage is a factor of 2-3 larger compared to 6 GeV at much smaller –t
 - Facilitates tests of Q² dependence even if L/T ratio less favorable than predicted

x	Q ²	W	-t
	(GeV²)	(GeV)	(GeV/c) ²
0.1-0.2	0.4-3.0	2.5-3.1	0.06-0.2
0.25	1.7-3.5	2.5-3.4	0.2
0.40	3.0-5.5	2.3-3.0	0.5

Projected Uncertainties for the Kaon FF

- If the K^+ pole dominates low -t σ_L , we would for the first time extract F_K above the resonance region (W>2.5 GeV)
- Projected uncertainties for σ_L use the L/T ratio from Hall C parameterization

Projected Uncertainties for Q⁻ⁿ scaling

Is onset of scaling different for kaon than pion? Kaons and pions together provide quasi model-independent study

Projected Uncertainties for σ_L at constant Q^2

- x_B scan at Q²=4 GeV²
- Can easily distinguish between pole and axial contributions within the framework of GPD calculations
 - Provides information about non-pole contributions
- May constrain longitudinal backgrounds in the extraction of F_π

Q² Scaling of the Interference Terms

- Scaling prediction based on transverse content to the amplitude
 - σ_{LT} ~ Q-7
 - σ_{TT} ~Q-8
- Limited Q² coverage complicates the interpretation
 - Interference terms decrease in magnitude as Q² increases

Require Target Polarization Parallel to $\hat{q} \times \hat{p}_{\pi}$

- Target polarization components (P_x, P_y) are defined relative to reaction plane.
- β = azimuthal angle between (transverse) target polarization and reaction plane

$$P_x = P_{\perp} \cos\beta$$
 and $P_y = P_{\perp} \sin\beta$

 $P_y \parallel q \times p_\pi$ uniquely defined only in non-parallel kinematics.

 $\begin{array}{l} \begin{array}{l} \textbf{Unpolarized} \\ \textbf{Cross section} \end{array} \quad \frac{d\sigma}{d\Omega} = \sigma_T + \epsilon \sigma_L + \sqrt{\frac{1}{2}} \epsilon (\epsilon + 1) \sigma_{LT} \cos \phi + \epsilon \sigma_{TT} \cos 2\phi \end{array}$

$$A_{\perp} = \frac{1}{P_{\perp}} \frac{2}{\pi} \frac{2\sigma_{L}^{y}}{\sigma_{L}} = P_{x} \left[-\sqrt{2\epsilon(1+\epsilon)} \sin\phi \sigma_{LT}^{x} - \epsilon \sin 2\phi \sigma_{TT}^{x} \right] \\ - P_{y} \left[\sigma_{TT}^{y} + \epsilon \cos 2\phi \sigma_{TT'}^{y} + 2\epsilon \sigma_{L}^{y} + \sqrt{2\epsilon(1+\epsilon)} \cos\phi \sigma_{LT}^{y} \right] \\ + P_{z} \left[\epsilon \sin 2\phi \sigma_{TT}^{z} + \sqrt{2\epsilon(1+\epsilon)} \sin\phi \sigma_{LT}^{z} \right]$$

Spin-flip GPD \tilde{E}

 $\sum_{q} e_q \int_{-1}^{+1} dx \ \tilde{E}^q(x,\xi,t) = G_P(t)$

- $G_P(t)$ is highly uncertain because it is negligible at the momentum transfer of β -decay.
- Because of PCAC, $G_P(t)$ alone receives contributions from $J^{PG}=\theta^{-1}$ states.
 - These are the quantum numbers of the pion, so \tilde{E} contains an important pion pole contribution.

For this reason, a pion pole-dominated ansatz is typically assumed:

$$\tilde{E}^{u,d}(x,\xi,t) = F_{\pi}(t) \frac{\theta(\xi > |x|)}{2\xi} \phi_{\pi}\left(\frac{x+\xi}{2\xi}\right)$$

where F_{π} is the pion FF and φ_{π} the pion PDF.

Implications for Pion Form Factor Experiments

- Vanderhaeghen et al. [PRL 84(2000)2589] point out that the study of A_L^{\perp} is important for the reliable extraction of F_{π} from p(e,e' π^+)n data.
 - At Q²=10GeV², x=0.3, t=t_{min}, Mankiewicz, Piller & Radyushkin [EPJ C10(1999)307] find that the pion pole contributes about 80% of σ_L.
 - The non-pole contributions need to be accounted for in some manner in order to reliably extract F_π from σ_L data at low -t.
- Since A_L[⊥] is an interference between pseudoscalar and pseudovector contributions, its measurement would help constrain the non-pole contribution to p(e,e'π⁺)n, and so assist the more reliable extraction of the pion form factor from the data.

Measurement of A_L^L

- At JLab energies, can't ignore contributions from transverse photons (σ_T suppressed by 1/Q² compared to σ_L).
 - Require two Rosenbluth separations and ratio of longitudinal cross sections:

 $A_{\!\perp}$

 $=\frac{1}{P_{\perp}}\frac{2}{\pi}\frac{2\sigma_{L}^{v}}{\sigma_{L}}$

 $\sigma_{A} = \sigma_{T}^{\perp} + \varepsilon \sigma_{L}^{\perp}$ where $\sigma(\varepsilon) = \sigma_{U} + \sigma_{A} \sin\beta + ...$ $\sigma_{U} = \sigma_{T} + \varepsilon \sigma_{L}$

To cleanly extract A_{\perp} , we need:

- Target polarized transverse to γ^* direction.
- Large acceptance in π azimuthal angle (i.e. φ , β).
- Measurements at multiple beam energies and electron scattering angles.
 - $\rightarrow \epsilon$ dependence (L/T separation)
 - (advantage of focusing spectrometers in Hall C)
- Need $\Delta\epsilon$ as large as possible.

Property	Hall A	
Polarization (%)	55	60
Beam Current (µA)	15	100
Pressure (atm)	10	200
Cell type	Glass/sealed	Ti/continuous flow
"Spin UP" time (h)	7	4
Beam Relaxation (h ⁻¹)	41	0.1
Laser Power (W)	150	1500-2500
Thickness (cm ⁻²)	1.07E+22	1E+24
FOM (P ² ℒ)	0.22E+36	0.55E+38

Target Performance Goals

- Spin-up rate of one mole per hour (25% per hour with four moles of ³He gas)
- Beam depolarization constant 10⁻³⁹ per e-nucleon/cm² per hour per atom
 - for rate, multiply times luminosity divide by dilution

Calculated for 160uA beam current on 40cm target

- Assuming beam depolarization dominates losses, peak figureof-merit occurs at luminosity 10³⁹ with half polarization, ~35%
- Maintains ~65% polarization at luminosity 10³⁸ enucleons/cm²

Polarizer Schematic

- K-He spin exchange less "lossy" than Rb-He, requiring fewer replacement photons.
- Can reach higher efficiencies by using high alkali densities at higher temperatures, reducing "spin-up time" to just a few hours.
- 8.5L cylindrical glass vessel with thin optical window at top.
- Enclosed in pressure vessel to neutralize pressure differential across glassware.
- Lower part of cell maintained at 250°C, to achieve desired alkali density for hybrid SEOP.

Working Non-ferrous Diaphragm Compressor

- Titanium diaphragm head.
- Phosphor-bronze diaphragm.
- PEEK valves.
- Prototype designed for 1000 psi output pressure.
- Flow of 22 SLPM achieved (⁴He).
- Incorporated into flow test facility for tests of ³He depolarization.

SHMS+HMS Kinematics

Projected A_L[⊥] Uncertainties

Solid: asymptotic pion distribution amp. Dashed: CZ pion dist. amp.

- Example t-binning only. Finer binning will depend on actual experimental factors.
- Errors include statistical and uncorrelated systematic uncertainties (including partial cancellation of uncorrelated systematic errors when forming the ratio).
- Assumes $\sigma_{L}/\sigma_{T}=1$ and ³He target polarization of 65%.