Deep Exclusive π⁻ Production using a Transversely Polarized ³He Target and the SoLID Spectrometer

Garth Huber

University of Regina

APS April Meeting April 17, 2021 Supported by:

SAPIN-2016-000

- GPDs interrelate the longitudinal momentum and transverse spatial structure of partons within a fast moving hadron.
- GPDs are universal quantities and reflect nucleon structure independently of the probing reaction.
 - At leading twist–2, four quark chirality conserving GPDs for each quark, gluon type.
 - Because quark helicity is conserved in the hard scattering regime, the produced meson acts as helicity filter.
 - Pseudoscalar mesons $\rightarrow \tilde{H} \tilde{E}$
 - Vector mesons $\rightarrow H E$.

Additional chiral–odd GPDs ($H_T E_T \tilde{H}_T \tilde{E}_T$) offer a new way to access the transversity–dependent quark–content of the nucleon.

How to determine \tilde{E}

- GPD \tilde{E} not related to an already known parton distribution.
- Experimental information on \tilde{E} can provide new nucleon structure info unlikely to be available from any other source.
- The most sensitive observable to probe \tilde{E} is the transverse single-spin asymmetry in exclusive π production:

GPD information in \mathbf{A}_{L}^{\perp} may be particularly clean

- At Q²=10 GeV², Twist-4 effects can be large, but cancel in A_L[⊥] (Belitsky & Műller PLB 513(2001)349).
 At Q²=4 GeV², higher twist effects even larger in σ_L, but
 - effects even larger in σ_L , but still cancel in the asymmetry (CIPANP 2003).

This relatively low value of Q² for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

Transverse Target Single Spin Asymmetry in DEMP

Note: Trento convention used for rest of talk

Unpolarized
Cross section
$$2\pi \frac{d^2 \sigma_{UU}}{dt d \phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$
Transversely
polarized cross
section has
additional
components
$$\frac{d^3 \sigma_{UT}}{dt d \phi d \phi_s} = -\frac{P_{\perp} \cos \theta_q}{\sqrt{1-\sin^2 \theta_q} \sin^2 \phi_s}$$
Gives rise to Asymmetry Moments

$$A(\phi, \phi_s) = \frac{d^3 \sigma_{UT}(\phi, \phi_s)}{d^2 \sigma_{UU}(\phi)}$$

$$= -\sum_k A_{UT}^{\sin(\mu\phi+\lambda\phi_s)_k} \sin(\mu\phi+\lambda\phi_s)_k$$

$$m_{mn} \rightarrow nucleon polarizations ij = (+1/2, -1/2)$$
photon polarizations $mn = (-1, 0, +1)$

Unseparated sinβ=sin(φ- $φ_s$) Asymmetry Moment/

$$A_{UT}^{\sin(\phi-\phi_s)} \sim \frac{d\sigma_{00}^{+-}}{d\sigma_L \left(\frac{++}{00}\right)} \sim \frac{\operatorname{Im}(\tilde{E}^*\tilde{H})}{\left|\tilde{E}\right|^2} \text{ where } \tilde{E} \gg \tilde{H}$$

Ref: M. Diehl, S. Sapeta, Eur.Phys.J. C**41**(2005)515.

HERMES sin(ϕ - ϕ _S) Asymmetry Moment

- Exclusive π⁺ production by scattering 27.6 GeV positrons or electrons from transverse polarized ¹H [PL B682(2010)345].
- Analyzed in terms of 6 Fourier amplitudes for φ_π,φ_s.
- $\langle x_B \rangle = 0.13, \langle Q^2 \rangle = 2.38 \text{ GeV}^2, \\ \langle -t \rangle = 0.46 \text{ GeV}^2.$

- Since there is no L/T separation, $A_{UT}^{sin(\varphi-\varphi s)}$ is diluted by the ratio of the longitudinal cross section to the unseparated cross section.
- Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences [Eur Phys.J. C65(2010)137].
- Because no factorization theorems exist for exclusive π production by transverse photons, these data cannot be trivially interpreted in terms of GPDs.

6

HERMES sin(φ_s) Asymmetry Moment

While most of the theoretical interest and the primary motivation of our experiment is the sin(φ-φ_s) asymmetry moment, there is growing interest in the sin(φ_s) moment, which may be interpretable in terms of the transversity GPDs.

- In contrast to the sin(φ-φ_s) modulation, which has contributions from LL and TT interferences, the sin(φ_s) modulation measures only the LT interference.
- The HERMES sin(φ_S) modulation is large and nonzero at -t'=0, giving the first clear signal for strong contributions from transversely polarized photons at rather large values of W and Q².
- Goloskokov and Kroll calculation [Eur.Phys.J. C65(2010)137] assumes the transversity GPD H_T dominates and that the other three can be neglected.

Measure DEMP with SoLID – Polarized ³He

SoLID Acceptance and Projected Rates

- Event generator is based on data from HERMES, Halls B,C with VR Regge+DIS model used as a constraint in unmeasured regions.
- Generator includes electron radiation, multiple scattering and ionization energy loss.
- Every detected particle is smeared in (P,θ,φ) with resolution from SoLID tracking studies, and acceptance profiles from SoLID-SIDIS GEMC study applied.

Q²>4 GeV², W>2 GeV, 0.55< ϵ <0.75 cuts applied.

9

Example Cuts to Reduce Background

Two different background channels were simulated:

- SoLID–SIDIS generator p(e,e'π⁻)X and n(e,e'π⁻)X, where we assume all X fragments contain a proton (over-estimate).
- $en \rightarrow \pi^- \Delta^+ \rightarrow \pi^- \pi^0 p$ where the Δ^+ (polarized) decays with l=1, m=0angular distribution (more realistic).

Background remaining after P_{miss} cut

Kinematic Coverage and Binning

- We binned the simulated data in 7 t-bins.
- In actual data analysis, we will consider alternate binning.
- All JLab data cover a range of Q², x_{Bj} values.
 - x_{Bj} fixes the skewness (ξ).
 - Q^2 and x_{Bj} are correlated. In fact, we have an almost linear dependence of Q^2 on x_{Bj} .
- HERMES and COMPASS experiments are restricted kinematically to very small skewness (ξ<0.1).
- With SoLID, we can measure the skewness dependence of the relevant GPDs over a fairly large range of ξ.

-t' (GeV²)

E12–10–006B Projected Uncertainties

Summary

- $A_{UT}^{sin(\phi-\phi s)}$ transverse single-spin asymmetry in exclusive π production is particularly sensitive to the spin-flip GPD \tilde{E} . Factorization studies indicate precocious scaling to set in at moderate $Q^2 \sim 2-4$ GeV², while scaling is not expected until $Q^2 > 10$ GeV² for absolute cross section.
- $A_{UT}^{sin(\phi s)}$ asymmetry can also be extracted from same data, providing powerful additional GPD–model constraints and insight into the role of transverse photon contributions at small -t, and over wide range of ξ .
- High luminosity and good acceptance capabilities of SoLID make it well-suited for this measurement. It is the only feasible manner to access the wide –*t* range needed to fully understand the asymmetries.
- SoLID measurement is also important preparatory work for EIC.