The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

SoLID Collaboration, Jefferson Lab, May 15, 2015.

Complementarity of Different Reactions

Deep Exclusive Meson Production:

- Vector mesons sensitive to spinaverage *H*, *E*.
- Pseudoscalar mesons sensitive to spin-difference \tilde{H}, \tilde{E} .

Deeply Virtual Compton Scattering:

Sensitive to all four GPDs.

Need a variety of Hard Exclusive Measurements to disentangle the different GPDs.

Spin-flip GPD \tilde{E}

- $\sum_{q} e_q \int_{-1}^{+1} dx \ \tilde{E}^q(x,\xi,t) = G_P(t)$
- $G_P(t)$ is highly uncertain because it is negligible at the momentum transfer of β -decay.
- Because of PCAC, $G_P(t)$ alone receives contributions from $J^{PG}=0^{-1}$ states.
 - These are the quantum numbers of the pion, so *E* contains an important pion pole contribution.

For this reason, a pion pole-dominated ansatz is typically assumed:

$$\tilde{E}^{u,d}(x,\xi,t) = F_{\pi}(t) \frac{\theta(\xi > |x|)}{2\xi} \phi_{\pi}\left(\frac{x+\xi}{2\xi}\right)$$

where F_{π} is the pion FF and φ_{π} the pion PDF.

How to determine \tilde{E}

- GPD \tilde{E} not related to an already known parton distribution.
- Experimental information on \tilde{E} can provide new nucleon structure info unlikely to be available from any other source.
- The most sensitive observable to probe \tilde{E} is the transverse single-spin asymmetry in exclusive π production:

Dr. G.M Huber, Univ. of Regina, Regina, SK S4S0A2, Canada.

Single Spin Asymmetry in Exclusive π Production

- Frankfurt et al. have shown A_L^{\perp} vanishes if \tilde{E} is zero [PRD 60(1999)014010].
 - If $\tilde{E} \neq 0$, the asymmetry will display a sin β dependence.
- They also argue that precocious factorization of the π production amplitude into three blocks is likely:
 - 1. overlap integral between γ , π wave functions.
 - 2. the hard interaction.
 - 3. the GPD.
 - Higher order corrections, which may be significant at low Q^2 for σ_L , likely cancel in A_L^{\perp} .
- A[⊥] expected to display precocious factorization at moderate Q²~2-4 GeV².

Cancellation of Higher Twist Corrections in A_L^{\perp}

Belitsky and Müller GPD based calc. reinforces this expectation:

- At Q²=10 GeV², NLO effects can be large, but cancel in A_L[⊥] (PL B513(2001)349).
- At Q²=4 GeV², higher twist effects even larger in σ_L , but still cancel in the asymmetry (CIPANP 2003).

This relatively low value of Q² for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

Implications for Pion Form Factor Experiments

- The study of A_L[⊥] is also important for the reliable extraction of F_π from p(e,e'π⁺)n data at high Q² [Frankfurt, Polyakov, Strikman, Vanderhaeghen PRL 84(2000)2589].
 - Non-pion pole contributions need to be accounted for in some manner in order to reliably extract F_{π} from $\sigma_{\rm L}$ data at low *-t*.
 - "A-rated" 12 GeV Pion Form Factor experiment restricted to Q²=6 GeV² by need to keep non-pole contributions to an acceptable level (-t_{min}<0.2 GeV²).
 - Hall C instrumentation and beam will allow $Q^2=8.3 \text{ GeV}^2 F_{\pi}$ measurements if higher -t region is better understood.

■ A_L[⊥] is an interference between pseudoscalar and pseudovector contributions.

- **Help constrain the non-pole contribution to p(e,e'\pi^+)n.**
- Assist the more reliable extraction of the pion form factor.
- Possibly extend the kinematic region for F_{π} measurements.

Measurement of A_L[⊥]

- At very high Q², σ_{T} suppressed by 1/Q² compared to σ_{L} .
- At JLab energies, can't ignore contributions from transverse photons.
 - Require two Rosenbluth separations and ratio of longitudinal cross sections:

$$\sigma_{A} = \sigma_{T}^{\perp} + \varepsilon \sigma_{L}^{\perp}$$
$$\sigma_{U} = \sigma_{T} + \varepsilon \sigma_{L}$$

where $\sigma(\epsilon) = \sigma_U + \sigma_A \sin\beta + \dots$

To cleanly extract A_{\perp} , we need:

- Target polarized transverse to γ* direction.
- Large acceptance in π azimuthal angle (i.e. φ , β).
- Measurements at multiple beam energies and electron scattering angles.

 $\rightarrow \epsilon$ dependence (L/T separation).

 \rightarrow controlled systematic uncertainties (L/T separation).

HERMES Transverse Spin Asymmetry

- Exclusive π+ production by scattering 27.6 GeV positrons or electrons from transverse polarized ¹H without L/T separation.
 [PLB 682(2010)345].
- Analyzed in terms of 6 Fourier amplitudes for φ_π,φ_s.
- $\langle x_B \rangle = 0.13, \langle Q^2 \rangle = 2.38 \text{ GeV}^2, \\ \langle -t \rangle = 0.46 \text{ GeV}^2.$

- Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences [Eur Phys.J. C65(2010)137].
- Because no factorization theorems exist for exclusive π production by transverse photons, these data cannot be simply interpreted in terms of GPDs.
- Without L/T separation, at JLab the asymmetry dilution is expected to be a similar percentage.

Possible roles of SoLID and SHMS+HMS Expts

SHMS+HMS:

- HMS detects scattered e'.
 SHMS detects forward, high momentum π.
- Expected small systematic uncertainties to give reliable L/T separations.
- Good missing mass resolution to isolate exclusive final state.
- Multiple SHMS angle settings to obtain complete azimuthal coverage up to 4° from q-vector.
- It is not possible to have complete azimuthal coverage at larger –t, where A_L[⊥] is largest.
- PR12-12-005 by GH, D. Dutta, D. Gaskell, W. Hersman.

SoLID:

- Complete azimuthal coverage (for π) up to θ =24°.
- High luminosity, particle ID and vertex resolution capabilities well matched to the experiment.
- Need to better understand:
 - Expected missing mass resolution.
 - Expected systematic uncertainties in L/T separation.
- If L/T separation possible, this is a likely `A' rated experiment.
- If L/T separation not possible, measurement still valuable to obtain A[⊥] over a wide kinematic range, complementary to Hall C.

SHMS+HMS PR12-12-005 Kinematics

Dr. G.M Huber, Univ. of Regina, Regina, SK S4S0A2, Canada.

SoLID-SIDIS Configuration

<u>Resolution:</u> $\delta P/P \sim 2\%$, $\theta \sim 0.6$ mrad, $\Phi \sim 5$ mrad

Coincidence Trigger:

Electron Trigger + Hadron Trigger (pions, and maybe kaons)

Projected Asymmetries vs –t, x_B

- A_L^{\perp} vanishes in parallel kinematics, grows at larger $\theta_{\pi q}$.
- SoLID measurements access larger –t at fixed x, or alternately smaller x at fixed –t.
- -*t* dependence from $-t_{min}$ to ~1 GeV² is particularly important to constrain non-pion pole background studies for future F_{π} extraction at higher -*t*.

Hall C errors include statistical and uncorrelated systematic uncertainties and assume σ_L/σ_T =1 and ³He target polarization of 65%.