Charged π - Meson Studies at Jefferson Lab

Ali Usman¹, G. M. Huber¹, D. Gaskell², T. Horn³, P. Markowitz⁴, S. J. D. Kay¹, R. L. Trotta³, V. Kumar¹

On behalf of Hall C Collaboration

Scientific Motivation

How do the properties of mesons arise from their constituents?

What is the role of the form factor in the understanding of internal structure of meson?

Which theoretical model accurately predicts pion form factor at high Q²?

Introduction

Quark scale is smaller than the nucleon scale.

Ali Usman

Pion – An ideal Candidate

- Pion is lightest meson with only two valence quarks (up and down).
- Pion is positronium atom of QCD.
- Crucial in the understanding of dynamical mass generation.
- The residual nuclear force is carried by pions inside a nucleus.
- Charged Pion decay

$$\pi^+ \to \mu^+ + \nu_{\mu}$$
$$\pi^- \to \mu^- + \overline{\nu_{\mu}}$$

Charge	+1e/-1e	
Spin	0	
Mass	139.57 MeV/c ²	
Life Time	2.6 x 10 ⁻⁶ s	
Charge Radius	0.659 ± 0.004 fm	

Exclusive Pion Electroproduction

Elastic scattering of electrons from pions gives

$$e + \pi^+ \rightarrow e' + \pi^+ '$$

- > No stable pion target for direct measurement.
- Scatter electrons off a proton target to produce pions.

Reaction is

$$p+e^-
ightarrow e^{-\prime}+\pi^++n$$

Need a precise measurement of the crosssection of this reaction.

Cross-Section and L/T Separation

The physical cross-section can be decomposed into four structure functions.

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

- > These structure functions depend on " ϵ " > polarization of virtual photon.
- "Rosenbluth Separation technique" is used to separate the longitudinal and transverse cross-section terms.
- The successful separation requires a range of kinematic settings.

Pion Form Factor

- Form factor describes the orientation of the momentum of the partons inside a hadron.
- \succ Pion form factor, F_{π} , can be extracted from the longitudinal cross-section.
- F > In Born term model F_{π} appear as

- \succ F_{π} is cleanest case for studying transition from non-perturbative QCD to the perturbative QCD region.
- Previous experimental measurements are limited and don't give enough information.

Limitations of Previous Studies

- Only have experimental results at low Q².
- Difficult to validate theoretical predictions at low Q².
- At high Q², the theoretical predictions deviate from each other.
- Need experimental data to validate any of the predictions at high Q².
- Need a specific facility to study pions at high Q².

Jefferson Lab

- Located in Newport News, VA
- Continuous Electron Beam Accelerator Facility (CEBAF)
- Consists of two superconducting LINACs
- > Capable of delivering a 12 GeV electron beam of up to 200 μA .
- Four Experimental Halls which perform unique experiments.
 - All four halls can run simultaneously

Experimental Hall C

- Specifically designed to measure precise cross-sections and form factors for mesons.
- Two advanced rotatable magnetic spectrometers.
 - High Momentum Spectrometer (HMS)
 - Super High Momentum Spectrometer (SHMS)
- Particles of specific momentum are studied by using a dipole.
- Capable of working at very high rates and different configurations.

Spec	Angle	Particle	Rate	Momentum range
HMS	10.5 - 90	Electron	< 1 MHz	0.5-7 GeV
SHMS	5.5 - 40	Meson	< 1 MHz	0.5-11 GeV

Super High Momentum Spectrometer (SHMS)

High Momentum Spectrometer (HMS)

SHMS Detector System

DETECTOR	PURPOSE	NOTES	
S1XY, S2XY Hodoscopes	Lowest-level Trigger. Time reference		
Drift Chambers	Momentum Measurement. Tracking.	5mm max. drift 300 micron resolution	
Noble-Gas Cérenkov	Particle ID, Trigger. e [±] /π [±] at high momentum (replace by vacuum at low p)	Vary Ar/Ne mixture to set index at π [±] threshold.	
Heavy-Gas Cérenkov	Particle ID, Trigger. π^{\pm}/K^{\pm} discrimination	C ₄ F ₈ O – Vary pressure to set index at K [±] threshold	
Aerogel Cérenkov	Particle ID, K+/p discrimination	n= 1.011,1.015, 1.03,1.05	
Preshower / Shower Counters	Particle ID, Trigger. Electron tag		

Projected Results

Two experiments were proposed for meson form factor studies for 12 GeV upgrade at Jefferson Lab.

E12-09-011 Mainly focused on Kaon studies but will also be used for pions due to high pion yield.

E12-06-101 (High Priority)

Actual pion form factor experiment which is planned to study high Q², up to 6 GeV².

Experiment Status

E12-09-011

E12-06-101

Data Collection	Done	Fall 2018 – Spring 2019	E _b = 2.8 GeV	Done	Summer - 2019
			E _b = 3.7 GeV	Done	Summer - 2019
Calibrations	Done	Fall 2019	E _b = 4.2 GeV	Done	Summer - 2019
			E _b = 4.5 GeV	Done	Summer - 2019
Efficiencies	In-Progress	Now	E _b = 6.0 GeV	Scheduled	Summer - 2021
			E _b = 8.0 GeV	Scheduled	Summer - 2021
			E _b = 9.9 GeV	Scheduled	Summer - 2021
Cross-	Cross- Section	-	E _b = 6.7 GeV	Planned	2023
Section			E _b = 8.8 GeV	Planned	2023
Form Factor	Next	_	E _b = 9.2 GeV	Planned	2023
			E _b = 11.0 GeV	Planned	2023

Calibrations - Drift Chambers

Residual is the difference between final track position and the hit location obtained from individual drift chamber planes.

Calibrations - Calorimeter

Momentum distribution for electrons.

Deviation of particle momentum from spectrometer central momentum

Hodoscope & Cérenkov

$$\beta_{shms} = \frac{1}{c} \frac{\Delta l(h_2 - h_1)}{\Delta t(h_2 - h_1)}$$

$$t = t_{HMS \ trig} - t_{HMS \ Cer}$$

2/23/20

Summary and Outlook

- \succ F_{π} is a key variable in our understanding of quark momentum distribution.
- > Hall C at Jefferson lab is the only facility in the world which can measure F_{π} to a very high precision.

Collaborators

¹ University of Regina ² Thomas Jefferson National Accelerator Facility (JLab) ³ Catholic University of America ⁴ Florida International University

Backup Slides

DC

Hodoscope

Calorimeter

2/23/20

The Pion in perturbative QCD

> At very large Q^2 , pion form factor (F_{π}) can be calculated using pQCD

$$F_{\pi}(Q^2) = \frac{4}{3}\pi\alpha_s \int_0^1 dx dy \frac{2}{3} \frac{1}{xyQ^2} \phi(x)\phi(y)$$

at asymptotically high Q^2 , the pion distribution amplitude becomes

$$\phi_{\pi}(x) \xrightarrow[Q^2 \to \infty]{} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$Q^2 F_{\pi}(Q^2) \underset{Q^2 \to \infty}{\longrightarrow} 16\pi \alpha_s(Q^2) f_{\pi}^2$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

- ▶ This only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_S / \partial \mu) < 0$ as $\mu \rightarrow \infty$.
- $\triangleright Q^2 F_{\pi}$ should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 .
- > Can study the renormalization of α_s quark-gluon coupling, and QCD's transition between asymptotic freedom and confinement.