The limitation of TOF

- TOF over the short ~2.2m baseline inside the SHMS hut will be of little use for most of the momentum range anticipated for the SHMS.
- Even over a 22.5m distance from the target to the SHMS detector stack, TOF is of limited use.

Effect of finite timing resolution ($\pm 1.5\sigma$ with $\sigma=200\text{ps}$). Separation <3σ to the right of where lines intersect.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Non-TOF techniques

- Efficient, high-confidence PID requires extensive use of non-TOF techniques such as Čerenkov detectors.

- Good PID can be obtained with a series of Čerenkov detectors:
 - e^-/π^- ⇒ Noble Gas Čerenkov $(n-1 < 10^{-4})$
 - π^+/K^+ ⇒ Heavy Gas Čerenkov $(n-1 \leq 10^{-3})$
 - $K^+/$ ⇒ Aerogel Čerenkov $(n-1 \leq 0.05)$

- Lead Glass Calorimeter also plays a critical role in e^-, e^+ identification.
Hall-C SHMS Detector System

Noble Gas Čerenkov:
e/π separation at high momenta, where multiple-scattering is less of an issue.

Trigger Hodoscopes:
Time-of-Flight at low momenta; insensitive to photon or low-energy background.

Heavy Gas Čerenkov:
π/K separation for P>3.4 GeV/c.

Aerogel Čerenkov(s):
Depending on the n used, K/p separation or π/K separation at low momenta.

Lead Glass Calorimeter:
e/π separation.
Calorimeter: e/π separation

- Lead-Glass Block / PMT / Base Assemblies from HERMES.
- Expect >200:1, based on HMS Calorimeter performance.
Noble Gas Cerenkov: e/π (or π/K) separation at high momenta

2.5 m long gas radiator at atmospheric pressure.
- Argon: π threshold \sim 6 GeV/c.
- Adding Neon: π threshold may be varied up to 12 GeV/c.
- Para-Terphenyl PMT window over-coating.
- Performance 20 photoelectrons (worst case: pure Neon).

At low momenta: remove mirrors, insert coupling so that the tank becomes part of the vacuum system – reduces MCS.
Heavy Gas Cerenkov: π /K separation for momenta > 3.4 GeV/c

To maintain good π/K separation, it is necessary to reduce the gas pressure above 7 GeV/c.

Lowest π^\pm identification efficiency occurs at 3.4 GeV/c (~10 p.e.).

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Electron-Pion Discrimination

- The most stringent requirements arise when the SHMS is set to negative polarity.
- Both e^-/π^- and π^-/e^- separations are required:

<table>
<thead>
<tr>
<th>Expt</th>
<th>P_{SHMS} (GeV/c)</th>
<th>Worst Fore/Bkd Rate Ratio</th>
<th>Noble Gas Č</th>
<th>Pb-G Cal</th>
<th>Total $e:\pi$ Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_π (E12-06-101)</td>
<td>5.1, 6.5</td>
<td>1 (π^-):1000(e-)</td>
<td>50:1</td>
<td>200:1</td>
<td>10000:1</td>
</tr>
<tr>
<td>SIDIS p_T (PR12-09-017)</td>
<td>1.5-5.0</td>
<td>1 (π^-):10 (e-)</td>
<td>Not used for lowest P.</td>
<td>250:1</td>
<td>250:1</td>
</tr>
<tr>
<td>$x>1$ (E12-06-105)</td>
<td>4.8-10.6</td>
<td>1(e-):50(π-)</td>
<td>50:1</td>
<td>100:1</td>
<td>5000:1</td>
</tr>
<tr>
<td>DIS-Parity (E12-07-102)</td>
<td>4.9-6.7</td>
<td>3(e-):1(π-)</td>
<td>10:1</td>
<td>100:1</td>
<td>1000:1</td>
</tr>
</tbody>
</table>
Pion-Kaon Discrimination

- Equally applicable for positive or negative SHMS polarity.
- Supplemental Aerogel or TOF must supplement Heavy Gas Čerenkov at low momentum.

<table>
<thead>
<tr>
<th>Expt</th>
<th>P_{SHMS} (GeV/c)</th>
<th>Worst Fore/Bkd Rate Ratio</th>
<th>Heavy Gas Č P>3.4 GeV/c</th>
<th>Aerogel Č P<3.4 GeV/c (n=1.010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_π (E12-06-101)</td>
<td>2.2-8.1</td>
<td>2(π):3(K+p)</td>
<td>1000:1</td>
<td>300:1</td>
</tr>
<tr>
<td>CT (E12-06-107)</td>
<td>5.1-9.6</td>
<td>1(π):1(K+p)</td>
<td>1000:1</td>
<td>NA</td>
</tr>
<tr>
<td>π Factorization (E12-07-102)</td>
<td>2.4-8.5</td>
<td>2(π):3(K+p)</td>
<td>1000:1</td>
<td>300:1</td>
</tr>
<tr>
<td>K Factorization (PR-09-011)</td>
<td>2.6-7.1</td>
<td>1(K):30(π)</td>
<td>1000:1</td>
<td></td>
</tr>
</tbody>
</table>
Aerogel Čerenkov

- Reliable K/p separation over a wide momentum range is a challenge.
- Although only one aerogel Čerenkov is required at any particular momentum, two detectors would allow flexibility over a greater range.
- K/p separation gets progressively more difficult as $(n-1)$ is reduced at higher momenta.

<table>
<thead>
<tr>
<th>P_{SHMS} (GeV/c)</th>
<th>n (10cm)</th>
<th>K p.e.</th>
<th>p p.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5-3.0</td>
<td>1.030</td>
<td>13-46</td>
<td><0.5</td>
</tr>
<tr>
<td>3.1-3.7</td>
<td>1.020</td>
<td>12-31</td>
<td><0.5</td>
</tr>
<tr>
<td>3.8-4.3</td>
<td>1.015</td>
<td>13-24</td>
<td><0.5</td>
</tr>
<tr>
<td>4.4-5.1</td>
<td>1.010</td>
<td>5.5-</td>
<td><0.5</td>
</tr>
<tr>
<td>5.2-6.2</td>
<td>1.0075</td>
<td>5.5-13</td>
<td><1</td>
</tr>
<tr>
<td>6.4-7.3</td>
<td>1.0055</td>
<td>6-9</td>
<td><1</td>
</tr>
</tbody>
</table>

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Kaon-Proton Discrimination

- Only relevant for SHMS positive polarity.
- Several experiments have similar stringent requirements:

<table>
<thead>
<tr>
<th>Expt</th>
<th>Momenta (GeV/c)</th>
<th>Worst Fore/Bkd Rate Ratio</th>
<th>Aerogel Č (worst case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT (E12-06-107)</td>
<td>5.1-9.6</td>
<td>1(K):10(p)</td>
<td>100:1</td>
</tr>
<tr>
<td>SIDIS p_T (PR12-09-017)</td>
<td>1.5-5.0</td>
<td></td>
<td>200:1</td>
</tr>
<tr>
<td>K Factorization (PR12-09-011)</td>
<td>2.6-7.1</td>
<td>1(K):3(p)</td>
<td>100:1</td>
</tr>
</tbody>
</table>
Supplementary K/π 7 GeV/c

- pCDR includes a supplemental K/π identification technique utilizing the dE/dx distribution of particles traversing the wire chambers.
- Requires analog readout for groups of wires.

Cut placed at 75% likelihood results in 200:1 π:K sep. separation with 95% efficiency.
Summary

- Particle identification requirements of approved and proposed SHMS experiments are largely met by the planned detector package.
- At least one Aerogel Čerenkov is required for π^\pm identification at $P<3.4$ GeV/c and for K^\pm identification up to at least 5 GeV/c.
- The need to supplement K identification at higher momenta seems clear.
 - Addition of pulse-height info to the wire chamber readout is a particularly attractive option.
 - Requires new readout electronics, but cost is offset by the need for fewer sets of aerogel (different n) and less overhead when changing momentum.
 - Likely cost effective over the longer term.