Measuring the Proton's Polarizabilities at MAMI

Physics Department Seminar, October 7, 2011.

Particle Data Group: Baryon Listings

What is a Polarizability?

A measure of response of system to a quasi-static field.

e.g. Electric Polarizability $\alpha_{\rm E}$

Applied *E* induces EDM

$$\vec{p} = \alpha_E \vec{E}$$

with energy density

$$u_E = -\frac{1}{2}\alpha_E \vec{E}^2$$

Similarly, applied H induces MDM

Nucleon Scalar Polarizabilities

Low energy outgoing photon plays role of applied E.M. dipole field

Nucleon Polarizabilities of interest to many fields:

- In astrophysics, they determine neutron star properties.
- In atomic physics, they yield an appreciable correction to Lamb shift and hyperfine structure.
- In hadronic physics, they are fundamental observables of nucleon structure.

How to measure Proton Scalar Polarizabilities

- Accessed via Compton scattering of Real Photons $\gamma{+}N{\rightarrow}\gamma{+}N$
- 2nd and higher order terms describe polarizabilities and evidence of proton's internal structure.

$$H_{eff}^{(2)} = \frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2$$

Compton scattering angular distribution

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{m^2} \left(\frac{\omega'}{\omega}\right)^2 \left(\frac{1}{2}\left(1+\cos^2\theta\right) - \frac{m\omega\omega'}{\alpha} \left[\frac{\frac{\alpha_{E1}+\beta_{M1}}{2}\left(1+\cos\theta\right)^2}{+\frac{\alpha_{E1}-\beta_{M1}}{2}\left(1-\cos\theta\right)^2} + \dots\right]\right)$$

Polarizabilities from Real Compton Scattering

1. Total inclusive photoabsorption cross section:

$$\boldsymbol{\alpha}_{E1} + \boldsymbol{\beta}_{M1} = \frac{1}{2\pi^2} \int_{\upsilon_{thr}}^{\infty} \frac{d\upsilon}{\upsilon^2} \sigma_{abs}(\upsilon)$$

Baldin Sum Rule (1960)

Sum Rule is model independent → but a model is needed to evaluate integral beyond experimental data.

$$lpha_{E1} + eta_{M1} \, = (13.8 \pm 0.4) \cdot 10^{-4} \, \, {
m fm}^3$$

Polarizabilities from Real Compton Scattering

2. Compton scattering angular distribution vs energy (v)

Olmos de Leon et al., EPJ A10 (2001)

Powell cross section: photon scattering off a pointlike nucleon with anomalous magnetic moment.

Disperson relation analysis used to extract α - β from the data.

$$lpha_{E1} - eta_{M1} \, = (10.5 \pm 0.9) \cdot 10^{-4} \, \, {
m fm}^3$$

Global average of Scalar Polarizability Data

- Electric polarizability α_{E1} well constrained by experimental data.
- Magnetic polarizability β_{M1} less certain.
 - Diamagnetism is important in the nucleon, but uncertainty ~25%.
 - Experimental value about 2x smaller than value obtained from Chiral Perturbation Theory.

Fig. 6. Error contour plot in the $(\bar{\alpha}-\bar{\beta})$ -plane of the experiments in table 3 (last column) for which the errors are taken as the statistical ones only. The contours correspond to the values $\chi^2_{\rm min} + 1$ of the individual fits. Also shown are the sum rule constraint and the value $\bar{\alpha} - \bar{\beta}$ as follows from the experiment by Zieger *et al.* [28]. The thick solid line shows the result of the global fit, eq. (22).

A simple picture of what the results mean

Experimental values (PDG2010): $\alpha_{E1} = (12.0 \pm 0.6) \times 10^{-4} \text{ fm}^3 \quad \beta_{M1} = (1.9 \pm 0.5) \times 10^{-4} \text{ fm}^3$

• Size of α_{E1} measures "stiffness" of system to electric deformation.

For ¹H atom, well known calculation yields

$$\alpha_{E}^{H} = \frac{9}{2}a_{B}^{3} = \frac{27}{8\pi} \text{Vol}$$

While for proton $\alpha_{E}^{p} \cong 3 \times 10^{-4} \, \text{Vol}$

- Apparently, the proton is very "stiff".
- Simple estimate shows why:

$$\frac{\alpha_{E}^{p}}{\alpha_{E}^{H}} \approx \frac{E_{bind}^{H}}{E_{bind}^{p}} \approx \frac{\alpha_{EM}^{2}}{\alpha_{Strong}^{2}} \approx 10^{-4}$$

More detailed explanation

• Need to take into account that the proton is surrounded by a virtual meson cloud in order to quantitatively understand the observed α_{E1} , β_{M1} polarizabilities.

B. Holstein, MAMI and Beyond Conference, 2008.

How to obtain more accurate values of α_{E1} , β_{M1}

- 2x discrepancy in β_{M1} between experiment and theory has motivated a new generation of experiments.
- Combinations of cross sections with linearly polarized photons \rightarrow leading order contribution from α and β

Proton Spin (Vector) Polarizabilities

If include spin, next term in Hamiltonian:

$$H_{eff}^{(3)} = -\frac{1}{2} \begin{bmatrix} \gamma_{E1E1} \vec{\sigma} \cdot \vec{E} \times \dot{\vec{E}} + \gamma_{M1M1} \vec{\sigma} \cdot \vec{H} \times \dot{\vec{H}} \\ +2\gamma_{E1M2} H_{ij} \sigma_i E_j - 2\gamma_{M1E2} E_{ij} \sigma_i H_j \end{bmatrix}$$

involves one field derivative wrt either time or space $\dot{\vec{E}} = \partial_t \vec{E}$, $E_{ij} = \frac{1}{2} \left(\nabla_i E_j + \nabla_j E_i \right)$

e.g. γ_{M1E2} excited by electric quadrupole (E2) radiation and decays by magnetic dipole (M1) radiation

- "Stiffness" of proton spin against E.M.-induced deformations relative to the spin axis.
 - Defines the frequency of proton's spin precession induced by variable E.M. fields.

Linear combinations of Spin Polarizabilities

One can extract the spin polarizabilities using knowledge of α , β , the linear combinations γ_0, γ_π , and Subtracted Dispersion Relations.

Backward Spin Polarizability (unpolarized Compton scattering)

 $\gamma_{\pi} = \gamma_{E1E1} + \gamma_{M1M1} - \gamma_{E1M2} + \gamma_{M1E2}$

 $\gamma_{\pi} = (-38.7 \pm 1.8) \cdot 10^{-4} \text{ fm}^4$ TAPS, LARA, SENECA Schumacher, Prog. Part. Nucl. Phys. 55(2005)

Forward Spin Polarizability (polarized beam and target)

 $\gamma_{0} = -\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{E1M2} - \gamma_{M1E2}$ $\gamma_{0} = \frac{1}{4\pi^{2}} \int_{\nu_{thr}}^{\infty} \frac{\sigma_{1/2} - \sigma_{3/2}}{\nu^{3}} d\nu$ $\gamma_{0} = -(1.00 \pm 0.08 \pm 0.10) \times 10^{-4} \text{ fm}^{4}$ GDH Coll. (MAMI & ELSA)

Ahrens et al., PRL87 (2001) Dutz et al. PRL91 (2003)

Better way to extract Spin Polarizabilities

- Spin polarizabilities appear in the effective interaction Hamiltonian at third order in photon energy
 - It is in the Δ resonance region (E γ =200-300 MeV) where their effect becomes significant.
- In this energy region, it is possible to accurately measure polarization asymmetries using a variety of polarized beam and target combinations
 - All four spin polarizabilities can be independently extracted from these asymmetries.

Asymmetries with Linearly Polarized γ

azimuthal angle between the scattering plane and the photon polarization vector

- ϕ = 0 and unpolarized target $\rightarrow \Sigma_3$
- ϕ = 0 and transversely polarized target in the y direction $\rightarrow \Sigma_{3y}$
- $\phi = 45^{\circ}$ and longitudinally pol. target $\rightarrow \Sigma_{1z}$
- $\phi = 45^{\circ}$ and transv. pol. target in the x direction $\rightarrow \Sigma_{1x}$

$$\Sigma_3 = \frac{\sigma^{\parallel} - \sigma^{\perp}}{\sigma^{\parallel} + \sigma^{\perp}}$$

Asymmetry is measured with linearly polarized photons, parallel and perpendicular to the scattering plane, and unpolarized target.

Double Spin Asymmetries w/ Circularly Polarized γ

Sensitivity to Spin Polarizabilities

	Polarization			
Polarization Asymmetry	Beam	Target	E _γ Range (MeV)	Spin Polarizability
Σ_{2z}	Circular	Longitudinal	200-300	γ _{M1M1}
Σ_{2x}		Transverse	200-300	γ _{E1E1}
Σ_3	Linear	None	200-300	Υ Μ1Μ1
Σ_{3y}		Transverse	200-300	γ_{E1E1}
Σ_{1z}		Longitudinal	200-300	Both
Σ_{1x}		Transverse	150-250	Both

Spin Polarizabilities from Double and single polarization experiments at MAMI

(proposal A2/11-2009-contact person D. Hornidge)

> leading spin polarizabilities are treated as free parameters

- $\succ \alpha$ and β are fixed to central exp. value
- higher-order polarizabilities are fixed by subtracted dispersion relations based on pion-photoproduction multipoles

B. Pasquini, D. Drechsel, M. Vanderhaeghen, Phys. Rev. C 76 015203 (2007)

Institut für Kernphysik

Mainz Microtron MAMI

Major facility upgrade:

- Upgraded accelerator.
- Upgraded detectors.
- New frozen spin target.

"Ultimate" polarized observables

laboratory:

- \rightarrow polarized beam.
- \rightarrow polarized target.
- \rightarrow recoil polarization.

Nearly 4π Detector Coverage.

Race Track Microtron Concept

2 m long, 25 kW Hf, 18 MeV acceleration

Need 1km Linac to get 800 MeV

◆ Solution → multiple passes! → Race Track Microtron (RTM)

A2 Tagging system (Glasgow, Mainz)

- **1.** Production and energy measurement of Bremsstrahlung photons
- 2. Determination of the degree of polarization of the electron beam (Moeller Polarimeter); Circularly pol. photons

A2 Tagger Detectors and Tagger Microscope

Energy resolution of our standard tagger ladder (352 plastics) 4 MeV per Channel.

•96 Plastic Scintillator Fibers (3x2 mm). • 1/3 Overlap of the fibers with its neighbor. Overlap region defines the Microscope channel *µch* (191 channels). • Energy resolution: **0.3 MeV per** microscope channel (*µch*). Det. 85 • Microscope Tagger is positioned in the electron energy range of the reaction threshold, e.g. Beam energy E_0 =883 MeV SOCIN corresponds to a photon energy range from 674 MeV to 730 MeV (η -threshold ~707 MeV).

4π photon Spectrometer @ MAMI

Crystal Ball Detector Arrival at Frankfurt Airport

1982-1986

1996-2002

MAMI (E_{cm} = 1.2 -1.9 GeV)

- Accurate separation of final states \rightarrow good detector resolution.
- Sensitivity to small σ processes $\rightarrow 4\pi$ detector acceptance, large γ flux.
- \blacklozenge Access to polarization observables \rightarrow polarized beam, target, recoil.

1976

SPEAR

τ decays D decays. $\gamma\gamma \rightarrow \gamma\gamma$,

 η, η', f

Crystal Ball: Particle Calorimetry and Identification

- Wide energy range with good resolution
- Energy resolution: ΔE/E = 0.020•E[GeV]^{0.36}
- Angular resolution: $\sigma_{\theta} = 2-3^{\circ} \sigma_{\phi} = \sigma_{\theta}/\sin(\theta)$
- ♦ MWPC → Charged particle tracking
- ♦ 𝔅E (PID) / E (CB) locus → particle id.
- High photon & neutron efficiency

Polarized Solid Target

Polarization = Orientation of Spins in a magnetic field

P=100% is not so easy to realize: Complicated interplay between

Polarizing force

∼ magnetic field **B** and

Depolarizing force

thermal motion of spins (temperature **T** – relaxation)

Trick: Transfer of the high electron polarization to the nucleon via \bigcirc μ -wave irradiation (DNP)

Magnetic Dipole transition allows Spin flip (Δm =+-1) of electrons or protons. <u>P</u>robability to pump forbidden transitions W_{ep+} or $W_{ep-} \sim \epsilon^2$

Target material is doped with free electrons (Butanol) Zeeman Dipole-Dipole-IA couples electrons and protons

Transfer of the high electron polarization to the protons

via µ-wave irradiation

•Simultaneous spinflip of electrons and protons

•Fast spin-lattice-relaxation of the electrons

•Long relaxation time of the protons

•Dipole-Dipole-WW of the protons

Spin diffusion homogeneously spreads the proton polarization

37

Electrons are ready for the next simultaneous spinflip

Polarized Target for Crystal Ball

Magnet Technology

Setup in the A2 – Tagger Hall

Movable Crystal Ball 4π-Photon Detector

First Beam with Transverse Polarization started December, 2009. In 2010 we had more than 2000 hours beam on this target.

Frozen Spin Target Waltz

Crystal Ball

Plans and Prospects

- Short term goal: new extraction of α_{E1} , β_{M1} using linearly polarized beam and unpolarized target.
 - New technique promises to resolve large discrepancy between theory and experiment for magnetic polarizability.
- Completion of all three asymmetry measurements $\Sigma_3, \Sigma_{2z}, \Sigma_{2x}$ will allow all four spin polarizabilities to be extracted independently with very small statistical and systematic errors.
 - A powerful technique that takes advantage of the different effects the individual spin polarizabilities have on the energy and angular dependences of the asymmetries.
 - Circularly polarized photon data was taken in concert with a transversely polarized target in the summer of 2010. We are optimistic to complete the remaining measurements by 2014.

Acknowledgements

The following kindly provided slides which were helpful in the preparation of this talk:

COLLABORATORS

- Evie Downie
- Dave Hornidge
- Andreas Thomas

THEORISTS

- Barry Holstein
- Vladimir Pascalutsa
- Barbara Pasquini