Studying Color Transparency through *u*-Channel π⁰ Electroproduction off a Nuclear Target

Garth Huber (Regina) Wenliang Li (CFNS, Stony Brook) Bernard Pire (Inst Polytechnique de Paris) Wim Cosyn (Florida International)

APS—DNP Meeting, New Orleans LA October 30, 2022

GPD–Like Model: TDA and Factorization

Baryon to Meson Transition Distribution Amplitude (TDA)

- Extension of collinear factorization to backward angle regime. Further generalization of the concept of GPDs.
- Backward angle factorization first suggested by Frankfurt, Polyakov, Strikman, Zhalov, Zhalov [arXiv:hep-ph/0211263]
- TDAs describe the transition of nucleon to 3-quark state and final state meson [gray oval of plot b]
- A fundamental difference between GPDs and TDAs is that TDAs are defined as hadronic matrix elements of 3–quark operator, while GPDs involve quark–antiquark operator
- Can be accessed experimentally in backward angle meson electroproduction reactions

Skewness in Backward Angle Regime

• Forward angle kinematics, $-t \sim -t_{min}$ and $-u \sim -u_{max}$, in the regime where handbag mechanism and GPD description may apply, Skewness is defined in usual manner:

$$\xi_t = \frac{p_1^+ - p_2^+}{p_1^+ + p_2^+} \text{ where } p_{1,2} \text{ refer to light cone + components}$$
$$\text{ in } \gamma^*(q) + p(p_1) \to \omega(p_{\pi}) + p'(p_2)$$

Backward angle kinematics, $-u \sim -u_{min}$ and $-t \sim -t_{max}$, Skewness is defined with respect to *u*-channel momentum transfer in TDA formalism

$$\xi_{u} = \frac{p_{1}^{+} - p_{\pi}^{+}}{p_{1}^{+} + p_{\pi}^{+}}$$

- GPDs depend on x, ξ_t and $t=(\Delta^t)^2=(p_2-p_1)^2$ TDAs depend on x, ξ_u and $u=(\Delta^u)^2=(p_\pi-p_1)^2$
- Impact parameter space interpretation of TDAs is similar to GPDs, except one has to Fourier transform with respect to $\Delta^{\mu}_{T} \approx (p_{\pi} - p_{I})_{T}$

Backward Angle Collinear Factorization

- Kinematical regime for collinear factorization involving TDAs is similar to that involving GPDs:
 - x_B fixed
 - |u|-momentum transfer small compared to Q^2 and s
 - Q^2 and s sufficiently large
- Early scaling for GPD physics occurs 2<Q²<5 GeV²
 - Maybe something similar occurs for TDA physics...

Two Key Predictions in Factorization Regime:

- Dominance of transverse polarization of virtual photon, resulting in suppression of longitudinal cross section by at least 1/Q²: σ_T » σ_L
- Characteristic $1/Q^8$ —scaling behavior of σ_T for fixed x_B

$p(e,e'p)\omega Q^2$ –Dependence from Hall C

W. Li, et al. PRL 123 (2019) 182501

TDA model Comparison to Data

Extension to Higher Q²

- The 6 GeV JLab Halls B,C data are qualitatively consistent with the predictions of the backward–angle factorization / TDA formalism, but they are at a too low Q² to be in quantitative agreement.
 - CLAS–6 π^+ data, Hall C ω data
- Studies of the applicability of TDA formalism are being extended in the 12 GeV era, by measuring general scaling trend of separated L/T cross sections for a variety of *u*-channel reactions
 - 12 GeV data from Hall B
 - Hall C ρ, ω, φ data (E12–09–011)
 - Dedicated Hall C π^0 measurement (E12–20–007)

Backward Exclusive π^0 **Production**

E12–20–007: $u \approx 0 \pi^{\theta}$ production in Hall C

Spokespersons: W.B. Li, G.M. Huber, J. Stevens

Purpose: test applicability of TDA formalism for π^0 production

- Is σ_T dominant over σ_1 ?
- Does the σ_T cross section at constant x_B scale as $1/Q^8$?
- Kinematics overlap forward angle $p(e, e'\pi^0)p$ experiment with NPS+HMS

$p(e,e'p)\pi^0$ Skewness Range

 $\mathbf{u} = (\mathbf{p_p} - \mathbf{p}_\omega)^{\mathbf{2}}$

CT and Backward–angle Factorization

CT has recently been shown to not apply in C(e,e'p) up to Q²=14 GeV², in contrast to CT applying already in A(e,e'π⁺) at Q²≈5 GeV²

 Color Transparency is a co-requisite of reaching the factorization regime, and is expected to be an equally valid requirement for both forward-angle and backward-angle factorizations

Backward–angle A(e,e'p) π^0

- Since JLab 6 GeV data are qualitatively consistent with early factorization in backward kinematics, backward–angle meson production events with a high momentum forward proton may provide an alternate means of probing Color Transparency
- Example is π^0 production, but technique extendable also to vector meson production. A short test could be attempted in E12–20–007

A(e,e'p) π^0 Kinematics E _{beam} =10.6 W=2 GeV					
Q ² (GeV ²)	<i>e</i> '(GeV/c, deg)	p (GeV/c, deg)	$oldsymbol{\pi^{ heta}}$ (GeV/c, deg)	<i>t</i> (GeV ²)	u (GeV ²)
3	7.3 @	3.9–3.6 @	0.2–0.5 @	–5.7 to	+0.5 to
	11.3º	23°–30°	202°–95°	–5.2	-0.1
6	5.7 @	5.6–5.2 @	0.1–0.5 @	8.8 to	+0.6 to
	18.1º	19º–24º	196º-79º	8.2	0.0
10	3.6 @	7.7–7.3 @	0.0–0.5 @	-12.8 to	+0.6 to
	29.7º	13º–16º	193º–61º	-12.1	-0.1

Theoretical considerations

- Halls B,C 6 GeV data hint at applicability of backward–angle factorization mechanism as early as Q²=2.5 GeV²
- If this interpretation is correct, it can be confirmed by *u*-channel CT measurements such as A(e,e'p)π⁰

Considerations:

- CT will not appear in the same way for backward π^0 as for the other experiments. This is because the π^0 does not originate from a point–like quark configuration, it is attached to the TDA which has no small transverse distance inside
- Even if factorization applies, the π⁰ will be subject to strong interactions in the nucleus, such as absorption, or formation of a 2π state
- One should not insist on detecting the final meson. Rather, it would be sufficient to require 120<m_{missing}<500 MeV. It is important to detect the high–momentum forward–going nucleon
- This new type of experiment gives rise to the intriguing idea of "Half Color Transparency"

Model Estimate of Color Transparency

- Relativisitic Multiple Scattering Glauber Approximation (RMSGA)
- Flexible framework that treats kinematics and dynamics (nuclear wavefcn, FSI) relativisitically, and applied to wide variety of hadron—, electron—, and neutrino—induced nuclear reactions
- Transparency Ratio: $T = \sigma^{\text{RMSGA}} / \sigma^{\text{PWIA}}$
- Calculation is for Hall C kinematics on slide 11
- Clear CT effects are predicted, which set the stage for future proposal

Summary

- New experimental technique pioneered at JLab Hall C has opened up a unique kinematic regime for study:
 - Extreme backward angle (*u*≈0) scattering
 - Detect forward–going proton in parallel kinematics
 - Leaves "recoil" meson nearly-at-rest in target
- Possible access to Transition Distribution Amplitudes
 - Universal perturbative objects in *u*-channel, analogous to GPDs
 - Access to 3–quark plus sea component $\Psi_{(3q+q\overline{q})}$ of nucleon
- The approach of backward angle factorization regime can be studied via *u*-channel CT measurements, such as A(e,e'p)π⁰, across a variety of nuclei
- For more details, see our paper: MDPI *Physics* Special Issue on JLab Color Transparency Workshop, arXiv:2202.04470 https://doi.org/10.3390/physics4020030