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GPDs in Deep Exclusive Meson Production

.
p,7,M
e
Four GPDs at leading twist: L
— Unp0|arized: H(x» 3 »t)a E(x» 3 »t) Factorization

/
- - / AN
— Polarized: H(x, & ,1), E(x, £ ,1) GPD
P ptA

Second set of four GPDs at twist-3: I;Ip H,E,E,
In the forward limit, H, reduces to the transversity distribution #,(x).

— Dominant twist  3contribution from /. contributes to M,,_, , amplitude
—> Manifested in the transverse cross section or interference terms:
0 O O, and various single spin asymmetries.
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Deep Exclusive n* Production

e
s Single n" produced from proton, o /
or - from neutron at high momentum g q
transfer. r*

m Can form ratios of separated cross-
sections for which non-perturbative

corrections may partially cancel, /\
yielding insight into soft-hard

factorization at modest 0°.

_ Y;n — T _p « 2Q§ _ (_1/3)2 1 A. Nachtmann,

Y;p oty Meh 2Q5 - (+2/3)2 ~ 4 | Nucl. Phys. B 115 (1976) 61.

RT

= Pseudoscalar meson production has been identified as especially
sensitive to chiral-odd transverse GPDs.

— Ry is not complicated by the n—pole term.
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At low -t, Meson-Nucleon Degrees of Freedom

m ¢ dannel diagram is purely
isovector (G ety conservation .

_o,[n(e,e'n ) p] _ ‘AV _AS‘Z

L

o, [plee'nIn] |4, + A

= A significant deviation of R; from
unity would indicate the presence
of isoscalar backgrounds (such as
b,(1235) contributions to
t dannel).

Relevant for extraction of pion form factor from p(e,e’n")n data,
which uses model including some isoscalar background.
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Only Prior 2H(e,e’nt)NN Data

Exclusive 7~ /7nt ratio vs —t [
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Only prior exclusive 2H(e,e’n*)NN
data was obtained at DESY in
the 1970’s.

m Unseparated cross sections
only, due to incomplete
azimuthal coverage.

s Q?=0.70, 1.35 GeV2,

n/n* ratio intriguingly
approaches Nachtmann’s
quark counting ratio —1/4
at high —t.

Ratio approaches n pole
dominance —1 at low —t.

Need separated 2H(e,e’'n*)NN
data over a wide kinematic range
to better interpret ratios!
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Reaction Plane

Scattering Plane

Virtual-photon polarization:

2 2 -1
s=[1+2(Ee Eo) +Q7 (2 0e

> tan

T ——=¢ +./2c(e +1 L cosd +& —Lcos
dtdd dt dt \/ ( ) b dt 2

1. At small —¢, 6, has maximum contribution from the z pole.

2. Need to investigate ¢ dependence at relatively fixed Q?, W, but only three
of Q%, W, t, 6, are independent.

m Vary 6. to measure ¢ dependence.
m Since non paallel data needed, LT and TT must also be determined.
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Jefferson Lab Hall C Experimental Setup

Hall C spectrometers:
= Coincidence measurement.
8 =  SOS detects e
HMS =  HMS detects n* and 7.
g R g Targets:
o = Liquid 4-cm H/D cells.
" 508 . = Al target for empty cell measurement.
Sron oron - = 12C solid targets for optics calibration.
ectrometer i
P a
Cryotarget Beam Paosition Monitors

4'cm liquid hydrogen)
or 4 cm dummy target)

Incident
beam

""" Beam Profile Monitors

Fast (target) raster
— (target)

Beam Current

MonitorS\
EXP Qz w Itminl Ee
(GeV/c): | (GeV) (Gev/c)? (GeV)
Fm-1 | 0.6-1.6 1.95 0.03-0.150 2.445-4 045
Fmr-2 2.45 2.22 0.189 4.210-5.246
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2H(e,e’r*)NN Event selection

. Electron-pion \

: / coincidences

Pions detected in HMS
— Cerenkov & o3l
Coincidence time for PID
Electrons detected in
SOS —Cerenkov & Lead e
Glass Calorimeter
Coincidence time
resolution ~200-230 ps.
Cut value £1 ns.

-4

Missing Mass (GeV)

Exclusivity assured via
0.875<MM<1.03 GeV cut

2 0 z 4

H NoPD
W _atfhID Cat

] §

COINCIDENGE TIME {ns)

After PID & MM
cuts, almost

no random

coincidences

remain.
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Diamond cuts define common
(W, Q2 coverage at both «.




Corrections to n, #* Data

= Negative polarity of HMS field
for 2H(e,e’n)pp means these
runs have high electron rates
not shared by 2H(e,e’z*)nn runs.

= Understanding rate dependent
corrections very important with
respect to separated n/nt
ratios.

= Improved high rate HMS tracking
algorithm.

m More accurate hl%h rate tracking
efficiencies (91-98%).

m HMS = misidentification correction
due to e pileup in Cerenkov
(13%/MHz e°).

m High current 2H target boiling
correction (4.7%/100pA,) for old
"beer can’ target cell and square
beam raster.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

HMS S1X Rate (kHz)
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HMS Tracking Efficiencies for High Rate Data

F.-1ran in 1997. F_-2 ran in 2003. Many changes in between.

= To bring F_-1 data to same level of reconstruction quality as F_-2 data,
a lot of effort went into modifying the Hall C Analysis Engine to accept
the older format data.

m Makes use of redesigned tracking algorithm that does a significantly
better job in selecting the best track for multi-track events.

1998 Engine overestimates tracking
efficiencies, since 2-track events have
lower efficiency than 1-track events.

Fpil ™ runs
1.05 v

— 2003 Engine tracking efficiencies are
lower, but still overestimated.

-
0.95 -

For the F -2 p(e,e’n*)n analysis (low rates),
it was found that better results were found
— if the cut to exclude multiple good PMT
ADC signals within the fiducial region of
the hodoscope plane was removed.

— This removal fails at high rates.

Track. eff.
o

Old trk.eff. +FID

MNew trk.eff.+FID

Replay 4 trk. eff.

Old trk+corr [

i » 01 0

0.3

0TS

PID:rhoer npe<dG. 0=

PID:0.2%P,,, ~hcal eot<0.d4%P_,

=0 2000 E I 6;}1)‘ (k:';l [ In] 12000 1400\ 2003 Eng|ne track”‘]g
efficiencies with correction factor
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Carbon Luminosity Scans

m [0 better understand HMS tracking efficiencies, the normalized
yields from carbon target were studied vs. rate and vs. current.
m Carbon target should not “boil”, so normalized yields
should be flat vs. current if all efficiencies are
calculated correctly.

= Unfortunately, no 2C luminosity scans were taken at different
beam currents in the F: ‘xperiment.

— Conclusions from the F;: 2study will have to be applied.

Carbon Target Luminosity Scan (passl effs)

~~
45
= | | | 1 | 1 |
Q Runs 47012—-23: Ebeam=4.210 TH _hms=12.00 P_hms=-3.000 |
E 1 OO - Runs 47757—64: Ebeam=4.210 TH_hms=10.57 P_hms=-3.000 |_
@] : 0.3% systematic uncertainty added in quadrature |
|
O
o 1l
0.98 -
45] i
=
s i
= 0.96 -
o ) o
—
Qo
o
o
0.94 —
E —6.76+0.22%/MHz
N
o—
fo—
g 0.92 =
&y
O \ ‘ I ! I v I |
P 0 200 400 600 800 1000
S1X (kHz)
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2H Cryotarget Boiling Corrections

m After the tracking efficiencies are finalized, the cryotarget boiling

Normalized HMS Yield (hcer nocut)

corrections can be determined.

LD2 Target Luminosity Scan {corrected passi effs)

1 1
1.04 | | | |
) Runs: 47190-246: 4.21 GeV 6=10.54
Runs: 47480-83: 525 GeV 6=10.61 |
0.3% systematic uncertainty added in quadrature
1.02 — dashed lines indicate effect of trkeff correction uncertainty |—
1.00 %—%::_:;_E::::i_ ________________________ -
0.98 0.08+0.26% /100A B
096 | | T | T |
0 20 40 60 80 100

Beam Current (uA)

F_-2: “tuna can” target cell and

uniform circular rastering.

e Consistent with no 'H cell

correction in T. Horn F_-2 analysis.

Normalized HMS Yield (hcer nocut)

LD2 Target Fpi—1 Luminosity Scan (c‘orrected traclking effs)
Il 1 1 1 1

1.02

o
o
|

0.98

D986 -

0.94

0D.852

Runs: 17476—513: 4.044 GeV £=12.50

0.3% systematic uncertainlty added in quadrature

0.2pA beam current oifset added |

—4.7240.27%/100uA

20

I T I T I
40 60 80
Beam Current (uA)

F_-1: “beer can” target cell and

non-uniform square rastering.

J. Volmer F_-1 analysis.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
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HMS Cerenkov Blocking Correction (x°)

= In both F_-1,2, the HMS gas Cerenkov was
used as a veto in the trigger for 2H(e,e’n’) runs

— needed to avoid high DAQ deadtime due to large
e rates in HMS.

= Cerenkov Blocking:

n are lost when e pass through the gas Cerenkov
within ~100ns after ©~ has traversed the detector.
— results in mis-identification of =~ as e

m Actual veto thresholds vary according to PMT gain
variations at high rates.

m slightly more restrictive software thresholds are applied
In the analysis:

m F- taccept < 1.5 hcer_npe
m F- 2accept <2 hcer_npe

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada. 14



HMS Cerenkov Blocking Correction (x°)

s Cerenkov Blocking Correction is
— R R obtained from Trigger TDC
information, since that is
T independent of tracking
_ | Fr-2: 116+6 ns efficiency and cryotarget
E . corrections.
iV

ra-1: 19810 s s Result is consistent with t from
other studies (not shown here)
- JW within statistical errors.

»

E
L

| — ELLOrate -t
lDD I HH H’h SOHD)HOH ’HI WLHD’ED I 6 CCblOCk N e

HMS Cerenkov Trigger TDC

=
I
—

| 1 1 ] ] 1
0 1000 20

» Region due to early e- passing through F?‘t 21=115£6 ns
detector before e- associated with F- 1t=138+6ns
trigger.

» Already addressed in coincidence time
blocking correction.
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Extract Response Functions through Iterative Procedure

Improve ¢ coverage by taking data at

multiple = (HMS) angles, -4°<0,, <4°.
-t vs Phi (pnlar)

[k

V
s

A2 [} 2
HMS al 4 degres

15
i ® EXP ()
8 2=1.60t" o EXP (e
> | - Q — XFmrme
Q E
310 =
§ B ATTR A e
T o L 'y ‘“1—?
a= ’
—t=0.195
D i | 1 1 1 | 1 1 1 1 | 1 1 1 | | 1 1
0 100 200 300
0, (deg)

For each 1 HMS setting, form ratio:
R= YEXP

YSIMC
Combine ratios for n settings together,
propagating errors accordingly.

-t=0.3 LD2,02=0.6,8=D.74,717+ 2012/05/22
27 27
15[ o 15 § o
1 E...QQ’Q ¢. iRl .. 1 ..... L 0.9 No.g-f.
g { ¢ ot.u¢¢ ; e E” eretee
0.5 — 0.5 —
[ —t=0.026 —t=0.038
g 5 0 15 95 5 10 i
Extract via 2 2
. G Yy
simultaneous fit =
of LTLT,TT atdp pyp  \ Yopye ) 14D g0
do do
T ddftb i Bl ) coscl) +& —Lcos2d
t

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada. 16



Systematic Uncertainties (F,-1)

m Over mnstrained p(e,ep)
reaction and elastic e+12C
reactions used to calibrate
spectrometer acceptances,
momenta, offsets, etc.

m Spectrometers welt uderstood
after careful comparison with MC
simulations.

m Beam energy and
spectrometer

momenta determined to
<0.1%.

m Spectrometer angles to <1
mrad.

m Agreement with published pt+e
elastics cross sections <2%.

Source Pt-Pt € uncorr. Scale
t corr,
Beam and Spectrometer Kinematic 0.2% 0.8-1.1%
Offsets
HMS B-cut corrections 0.4%
Particle ID 0.2%
Pion Absorption Correction 1.0%
Pion Decay Correction 0.03% 1.0%
HMS Tracking 0.4% (m+) 1.0% (m+)
1.3% (m-) 1.0% (m-)
SOS Tracking 0.2% 0.5%
Integrated Beam Charge 0.3% 0.5%
Target Thickness 0.3% 1.0%
CPU and Trigger Dead time 0.3%
HMS Cerenkov Veto Correction (rt-) 0.7% 2.0%
Missing Mass Cut 0.8% 1.3%
Spectrometer Acceptance 1.0% 0.6% 1.0%
MC Model Dependence (L,T) 0.4% 0.7-3.5% 0.3-2.0%
Radiative Corrections 0.4% 2.0%
TOTAL (n+) 14% | 1.43.6% | 3.1-3.5%
TOTAL (n-) 1.6% 2.3-4.4% 3.7-4.2%
Typical Statistical 5-10%

Uncertainty (per t-bin)

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
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’H data Kinematic coverage

2H(e,e’n)nn

2H(e,e’m)pp

Q2=0.6 GeVZ, W=1.95 GeV (F -1)

=037, E=2.445 GeV

3 HMS settings: Gnq=+0.5,+2.0,+4.0°.

2 HMS settings: Missing +2.0°.

£=0.74, E=3.548 GeV

4 HMS settings: Gnq=-2.7, +0.0,+2.0,1+4.0°.

1 HMS setting: Only +0.0°.

Q?=0.75 GeV%, W=1.95 GeV (F,-1)

=043, E=2.673 GeV

2 HMS settings: 6,,=+0.0,+4.0°.

2 HMS settings: 0,,=+0.0,+4.0°.

£=0.70, E=3.548 GeV

3 HMS settings: Gnq=-4.0, +0.0,+4.0°.

NO HMS settings.

Q*=1.0 GeV%, W=1.95 GeV (F-1)

£=0.33, E;=2.673 GeV

2 HMS settings: 6,,=+0.0,+4.0°.

2 HMS settings: 0,,=+0.0,+4.0°.

£=0.65, E=3.548 GeV

3 HMS settings: Gnq=-4.0, +0.0,+4.0°.

1 HMS setting: Only +0.0°.

Q*=1.6 GeV%, W=1.95 GeV (F -1)

=027, E.=3.005 GeV

2 HMS settings: 6,,=+0.0,+4.0°.

2 HMS settings: 0,,=+0.0,+4.0°.

£=0.63, E.=4.045 GeV

3 HMS settings: Gnq=-4.0, +0.0,+4.0°.

3 HMS settings: Gnq=-4.0, +0.0,14.0°.

Q2%=2.45 GeV?%, W=2.20 GeV (F_-2)

€=0.27, E=4.210 GeV

2 HMS settings: 0,,=+1.35,+3.0°.

2 HMS settings: 6,,=+1.35,+3.0°.

£=0.55, E,=5.248 GeV

3 HMS settings: Bnq=—3.0, +0.0,+3.0°.

3 HMS settings: Bnq=—3.0, +0.0,+3.0°.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
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2H(e,e’r*) NN Separated do/dt

40 i i L A 1 i L i i 1 L A i i 1

- |« Data points have slightly
2. 2 - 7 ) 2
ol ML = @06 cevt | different 7,0
. A 2 |
- . 07245 Gev? + All data scaled to #=2.0 GeV
a‘.; 207 5 E [solid] o, i assuming 1/(W?-M?)
o 5 o [empty] o, ' dependence, M=free
04 709 i |
" 2 - nucleon mass.
= ! "5 0 5 oA H(e.e'm)pp | * No scaling applied in Q.
3 D 1 1 1 1 1 1 I8 Iisl IQI I~I ﬁ|_.I I.I I.I
+ 50- _— . s ne
© F oo = Longitudinal cross-
o 404 T - section shows steep rise
Ly due to = pole at small —t.
‘ % 0-=1.0 = Transverse cross-section
20 - E Q . N
_ . - 5 _ much flatter.
i H_e e.e'm’)nn |
R T o245 | @ Both follow nearly
gl B " 3VCERR P K sgf o o universal curves vs —t,
00 Ut (Gavy with weak Q*-dependence.
Error bars indicate statistical and pt-pt systematic uncertainties in quadrature.
Bands indicate L,LT,TT MC model dependence systematic uncertainty.
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do, (ub/GeV?)

do&

60

Q*=0.6 GeV?
W=195 GeV

Q*=1.0 GeV?

W=195 GeV

Q*=1.6 GeV?
W=185 GeV

Q?=2.45 GeV?

W=2.2 GeV

30

3

Yo |

"any

-

~0.3

0.6

=+ 0.09 ==

0.1

0.2

6

0.1 0.2 0.3

—t (GeV?)

02 03 04

Model do, /dt

VGL Regge Model:
AEZ, Apz ;

* Free parameters:
(from 'H data),
[PRC 57(1998)1454]

KM Regge+DIS Model:

+ o, from 'H data, DIS

~ process dominates 0.
[PRC 81(2010)045202]

VR Regge+DIS Model:

* Similar to KM but with
improved DIS parameters
[PRC 89(2014)025203]

Error bars indicate statistical and pt-pt
systematic uncertainties in quadrature.

Bands indicate L,LT,TT MC model

dependence systematic uncertainty.

>anada. 20



n/nt Separated Response Function Ratios

Transverse Ratios tend
to Y4 as -t increases:

— Is this an indication of
Nachtmann’s quark charge
scaling?

-t=0.3 GeV2 seems too low
for this to apply. Might
indicate the partial
cancellation of soft QCD
corrections in the
formation of the ratio.

N\

- | 0 Q=00 GeV?
o Q?=0.4 GeV?
T 207 + m Q?=06 GeV? i
= " ¢ Q=10 GeV?
b[d 1.5 A Q*=16 GeV? s
2-2.45 GeV?
> ] E e Q e
Il: 1.DJ§EI -
sl o ° ta,
[ F= .
0-0 I -'““ M i Ll L | N LI Ll
| e
™ 2,0- L
; i At
\‘_:’_1 a % I T |
o 15
\\ = ®
'i_\ 1.0 E { =
k= _ = L
= T ﬁ $ ®
o B [ A 4 §
0.0 +— — — :
0.000 0.095 : %goV 2) 0.285 0.380
— o

R,;=0.8 near -t_, at
each®*
Predicted in large
N, limit calculation.
Frankfurt, et al.

PRL 84(2000)2589.

Error bars indicate statistical and pt-pt systematic uncertainties in quadrature.
Bands indicate MC model dependence systematic uncertainty.
Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
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Relevance to Pion Form Factor Extraction

Q?=0.6 GeV? Q?=1.0 GeV? Q=16 GeV? Q?=2 ji;VVrancx-Ryckebusch

W=195 GeV  W=195 GeV W=195 GeV W=2.2 Model:

£ 20 * VGL Regge Model
5 15{ —— underpredicts g by
D large factor.
E i .
—osih Tt | | * VR extend VGL with

2y : : ; ; hard DIS process of
1';2-5' P— [ — [ ] e ] ——— [ virtual photons off
*:J-“' t i ] % w ;] ' nucleons.

1.5 - - - X -
] 3 ] P 2 | [PRC 89(2014)025203]
‘E;OS- TRE T ,—_‘- e ij_!lL B iy
=) R _"_'

9860 0.05 0.0 0.1 0.0 0.2 0.0 0.2 0.4

—t (GeV?)
= Qualitatively in agreement with our Fn-1 analysis:

m We found evidence for small additional
contribution to o, at W=1.95 GeV not taken into
account by the VGL model.

m We found little evidence for this contribution in
Fr-2 analysis at W=2.2 GeV.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada. oy

R,=0.8 consistent
with |AJ/A,1<6%.




Comparison with Goloskokov-Kroll GPD model

Q2=0.6 GeV? Q=10 GeV? Q2=16 GeV? Q2=2.45 GeV? « 7 * electroproduction

. W=I1.95 .Gev. | .T.”=.1'95. (I'.'reV W 1.95. Ge.v. W=2.I2 GeV in a handbag
:E, 20 & framework.
\bj el — — e * Modified perturbative
(Wit SR 1 @=. || E== <— approach with full
= T S i, [ | F (0.

00 | | | j « Substantial
Ejz T T = ] — ] — contributions from
5 45 0] * i il / transverse photons
=1 ~o L] L P I as twist-3 effect (H,)
E o5 [ ] =11 e 1] i‘r_‘f?_-/ i [Eur.Phys.J.A47(2011)112]

= Model parameters optimized for small skewness (£<0.1) and W>4 GeV.
m  Application to our kinematics requires substantlal extrapolatlon in W é

— Please be cautious in the comparison.

Although model does reasonable jOb at predrctlng ratlos agreement of model
~ withouro;is not good |

n Model optrmlzed for JLab kmematlcs should be sensrtrve to transverse GPD H
Dr Garth Huber Dept. of Physics, Un|v of Reglna Regina, SK S4SOA2 Canada 23




g, /oy and o /0; Ratios for n*, &

Q*=0.6 GeV? Q*=1.0 GeV? Q*=16 GeV? Q?=2.45 GeV?

W19 Gev | Noies Gev  Wo199 el W-2zGel | T rafio becomes

— — — ——— more favorable for «-
6 m ot 67 e n~ [67 a H 67 [P . 2
} % ’ production as Q
S L " . ‘ increases.
B | 1
by ' } -
SRR I L I F Jie I = Another prediction of
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Projected Data from Fr-12 Experiment

m E12-06-101 approved for 52

days of beam with
SHMS+HMS, A rating, selected
by PAC41 as “High Impact”.

’H data to determine R, n/n" ratio
to constrain modeling of non-
pole backgrounds in g, relevant
for extraction of pion form factor

m 44 hrs (z*), 174 hrs (w).

If R; is ~1/4 at higher Q2 and
similar xg, the hypothesis of a
quark knockout mechanism
will be strengthened.
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Summary

= Separated o, 0, O, 1, O7 cross sections for the
’H(e,e’n*)NN reactions were extracted using the
Rosenbluth L/T separation technique.

s Fx EW=1.95 GeV: Q>=0.6, 1.0, 1.6 GeV2.
s Fr 2W=2.2GeV: Q>=2.45 GeV2.

= n/a* ratios for o, o; extracted as a function of -t.

s R,=0.8, trending towards unity at low —t.

= Indicates the dominance of isovector processes at low —t in the
longitudinal response function.

m The evolution of R, with —t shows rapid fall off consistent with
earlier theoretical predictions, expected to approach Y, the
square of the ratio of the quark charges involved.

m Further theoretical work needed re. alternate explanations.
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