π⁻/π⁺ Exclusive Pion Electroproduction Results from Jefferson Lab

Garth Huber
UNIVERSITY OF REGINA

APS April Meeting, Denver, CO. April 13, 2013.
Jefferson Lab F_π Collaboration

Jefferson Lab, Newport News, VA, USA

C. Butuceanu, E.J. Brash, G.M. Huber, V. Kovaltchouk, G.J. Lolos, S. Vidakovic, C. Xu
University of Regina, Regina, SK, Canada

H.P. Blok, V. Tvaskis
V.U. University, Amsterdam, Netherlands

E. Beise, H. Breuer, C.C. Chang, T. Horn, P. King, J. Liu, P.G. Roos
University of Maryland, College Park, MD, USA

W. Boeglin, P. Markowitz, J. Reinhold
Florida International University, FL, USA

Argonne National Laboratory, Argonne, IL, USA

H. Mkrtchyan, V. Tadevosyan
Yerevan Physics Institute, Yerevan, Armenia

S. Jin, W. Kim
Kyungook National University, Taegu, Korea

M.E. Christy, C. Keppel, L.G. Tang
Hampton University, Hampton, VA, USA

J. Volmer
DESY, Hamburg, Germany

A. Matsumura, T. Miyoshi, Y. Okayasu
Tohoku University, Sendai, Japan

B. Barrett, A. Sarty
St. Mary’s University, Halifax, NS, Canada

K. Aniol, D. Margaziotis
California State University, Los Angeles, CA, USA

L. Pentchev, C. Perdrisat
College of William and Mary, Williamsburg, VA, USA

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Deep Exclusive Meson Production

- Single π^+ produced from proton, or π^- from neutron at high momentum transfer.
- Probes the relevant degrees of freedom within nucleon at different distance scales.
- Use the virtual photon’s longitudinal and transverse polarizations to act as a filter on the details of the probing interaction.

$R_T = \frac{\gamma^*_T n \rightarrow \pi^- p}{\gamma^*_T p \rightarrow \pi^+ n} \bigg|_{\text{high } -t} \frac{2Q^2_d}{2Q^2_u} = \frac{(-1/3)^2}{(+2/3)^2} = \frac{1}{4}$

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
At low $-t$, Meson-Nucleon Degrees of Freedom

- π^\pm t-channel diagram is purely isovector (G-parity conservation).

\[R_L = \frac{\sigma_L[n(e, e'\pi^-)p]}{\sigma_L[p(e, e'\pi^+)n]} = \frac{|A_V - A_S|^2}{|A_V + A_S|^2} \]

- A significant deviation of R_L from unity would indicate the presence of Isoscalar backgrounds (such as $b_1(1235)$ contributions to t-channel).

- Relevant for the extraction of the pion form factor from $p(e, e'\pi^+)n$ data, which uses a model including some isoscalar background.
2\pi \frac{d\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon (\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi

1. At small $-t$, σ_L has maximum contribution from the π pole.
 - $t = (p_{\text{target}} - p_{\text{recoil}})^2$ used in this analysis.
 - not necessarily equivalent to $t = (p_\gamma - p_\pi)^2$ due to Fermi momentum and radiation.

2. Only three of Q^2, W, t, θ_π are independent.
 - Vary θ_π to measure t dependence.
 - Since non-parallel data needed, LT and TT must also be determined.
Jefferson Lab Hall C Experimental Setup

Hall C spectrometers:
- Coincidence measurement.
- SOS detects e^-.
- HMS detects π^+ and π^-.

Targets:
- Liquid 4-cm H/D cells.
- Al target for empty cell measurement.
- 12C solid targets for optics calibration.

| Exp | Q^2 (GeV/c2) | W (GeV) | $|t_{min}|$ (GeV/c2) | E_e (GeV) |
|-----|-----------------|---------|-------------------|-------------|
| Fπ-1 | 0.6 - 1.6 | 1.95 | 0.03 - 0.150 | 2.445 - 4.045 |
| Fπ-2 | 2.45 | 2.22 | 0.189 | 4.210 - 5.246 |

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada
$^2\text{H(e,e'π^±)NN Event selection}$

Pions detected in HMS
- Cerenkov &
Coincidence time for PID
Electrons detected in SOS –Cerenkov & Lead
Glass Calorimeter
Coincidence time
resolution ~200-230 ps.
Cut value ±1 ns.

After PID & MM
cuts, almost no random
coincidences remain.

Exclusivity assured via
$0.875 < \text{MM} < 1.03 \text{ GeV cut}$

Diamond cuts define common
(W, Q^2) coverage at both ε.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Corrections to π^-, π^+ Data

- **Negative polarity of HMS field for $^2\text{H}(e,e'\pi^-)\text{pp}$ means these runs have high electron rates not shared by $^2\text{H}(e,e'\pi^+)\text{nn}$ runs.**

- **Understanding rate dependent corrections very important with respect to final π^-/π^+ ratios.**
 - Improved high rate HMS tracking algorithm.
 - More accurate high rate tracking efficiencies (91-98%).
 - HMS π misidentification correction due to e^- pileup in Cerenkov (13%/MHz e^-).
 - High current ^2H target boiling correction (4.7%/100μA).

Q^2

$0.60, 0.75, 1.0, 1.6$ GeV2
Extract response functions through iterative procedure

Improve φ coverage by taking data at multiple π (HMS) angles, $-4^\circ < \theta_{\pi q} < 4^\circ$.

For each π HMS setting, form ratio:

$$R = \frac{Y_{\text{EXP}}}{Y_{\text{SIMC}}}$$

Combine ratios for π settings together, propagating errors accordingly.

Extract via simultaneous fit of L, T, LT, TT

$$2\pi \frac{d\sigma}{dt d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon (\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$
2H(e,e'π±)NN Separated $d\sigma/dt$

- Data points have slightly different \overline{W}, Q^2.
- All data scaled to $W=2.0$ GeV assuming $1/\overline{W}^2$ dependence, M=free nucleon mass.
- No scaling applied in Q^2.

- **Longitudinal cross-section shows steep rise due to π pole at small $-t$.**
- **Transverse cross-section much flatter, generally smaller for π^-**.
- **Both follow nearly universal curves vs $-t$, with only a weak Q^2-dependence.**

Error bars indicate statistical and pt-pt systematic uncertainties in quadrature.
Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
\(\pi^-/\pi^+ \) Separated Response Function Ratios

VGL Regge Model:

- \(\pi \) electroproduction in terms of exchange of \(\pi \) and \(\rho \) Regge trajectories.

[PRC 57(1998)1454]

- Model parameters fixed from pion photoproduction.

- Free parameters: \(\Lambda_{\pi}^2 \) and \(\Lambda_{\rho}^2 \) (from \(^1H \) data).

\[R_L = 0.8 \text{ consistent with } |A_S/A_V| < 6\% \]

- Transverse Ratios tend to \(1/4 \) as \(-t\) increases:

 \(\rightarrow \) Is this an indication of Nachtmann’s quark charge scaling?

- \(-t = 0.3 \text{ GeV}^2 \) seems too low for this to apply. Might indicate the partial cancellation of soft QCD corrections in the formation of the ratio.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Summary

- Separated σ_L, σ_T, σ_{LT}, σ_{TT} cross sections for the $^2\text{H}(e, e'\pi^\pm)\text{NN}$ reactions were extracted using the Rosenbluth L/T separation technique.
 - F_{π}-1: $W=1.95\ \text{GeV}$: $Q^2=0.6,\ 1.0,\ 1.6\ \text{GeV}^2$.
 - F_{π}-2: $W=2.2\ \text{GeV}$: $Q^2=2.45\ \text{GeV}^2$.

- π^-/π^+ ratios for σ_L, σ_T extracted as a function of $-t$.
 - $R_L \approx 0.8$, trending towards unity at low $-t$.
 - Indicates the dominance of isovector processes at low $-t$ in the longitudinal response function.
 - The evolution of R_T with $-t$ shows rapid fall off consistent with earlier theoretical predictions, expected to approach $\frac{1}{4}$, the square of the ratio of the quark charges involved.
 - Further theoretical work needed re. alternate explanations.