

Proton Spin Polarizabilities with Polarized Compton Scattering at MAMI

Dilli Paudyal

University of Regina, Regina, SK, S4S 0A2,

Canada Supervisor: Dr. Garth Huber

Nuclear Compton Scattering and Polarizabilities

• Polarizabilities are very low energy fundamental structure constants and Nuclear Compton scattering off a single proton is used to access these Internal structure constants of a nucleon.

•
$$\gamma(k) + P(p) \rightarrow \gamma(k') + P(p')$$

• Low energy outgoing photon plays a role of an applied EM dipole field

$$H_{eff}^{(0)} = \frac{\left(\overrightarrow{p} - e\overrightarrow{A}\right)^2}{2m} + e\phi$$
(1)

$$H_{eff}^{(1)} = \frac{e(1+\kappa)}{2m} \overrightarrow{\sigma} \cdot \overrightarrow{H} - \frac{e(1+2\kappa)}{8m^2} \overrightarrow{\sigma} \cdot \left[\overrightarrow{E} \times \overrightarrow{p} - \overrightarrow{p} \times \overrightarrow{E}\right]$$
(2)

What are Spin Polarizabilities

• Effective Hamiltonian in second order contains scalar polarizabilities (α_{E1} and β_{M1}) which are the evidence of proton's internal structure

$$H_{eff}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2 \right]$$
(3)

• The third order effective Hamiltonian term in the expansion:

$$H_{eff}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{E1E1} \overrightarrow{\sigma} . (\overrightarrow{E} \times \overrightarrow{E}) + \frac{1}{2} \gamma_{M1M1} \overrightarrow{\sigma} . (\overrightarrow{H} \times \overrightarrow{H}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]_{(4)}$$

- These constants (γ) are spin (or vector) polarizabilities (e.g. γ_{M1E2} excited by electric quadrupole *E*2 radiation and decays by magnetic dipole *M*1 radiation.
- They describe the response of the proton spin to an applied electric or magnetic field, 'stiffness ' of proton spin against E.M. induced deformations relative to the spin axis.

What do we know about Spin Polarizabilities

	K-mat.	HDPV	DPV	L_{χ}	$HB\chi PT$	$B\chiPT$
γ_{E1E1}	-4.8	-4.3	-3.8	-3.7	-1.1 ± 1.8 (th)	-3.3
γ_{M1M1}	3.5	2.9	2.9	2.5	2.2 ± 0.5 (st) ± 0.7 (th)	3.0
γ_{E1M2}	-1.8	-0.02	0.5	1.2	-0.4 ± 0.4 (th)	0.2
γ_{M1E2}	1.1	2.2	1.6	1.2	1.9 ± 0.4 (th)	1.1
γ_0	2.0	-0.8	-1.1	-1.2	-2.6	-1.0
γ_{π}	11.2	9.4	7.8	6.1	5.6	7.2

$$\gamma_0 = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1M1} - \gamma_{M1E2} = (-1.0 \pm 0.08) \times 10^{-4} \text{fm}^4$$
(5)

$$\gamma_{\pi} = -\gamma_{E1E1} - \gamma_{E1M2} + \gamma_{M1M1} + \gamma_{M1E2} = (-8.0 \pm 1.8) \times 10^{-4} \text{ fm}^4 \tag{6}$$

- Spin-polarizabilities in units of 10⁻⁴ fm⁴.
- K-matrix: Kondratyuk et al., PRC 64, 024005 (2001), HDPV and DPV (Dispersion Relation): Holstein et al., PRC 61, 034316 (2000), Drechsel et al., Phys.Rep. 378, 99 (2003), Pasquini et al., PRC 76, 015203 (2007), L_χ (Chiral Lagrangian): Gasparyan et al., NP A866, 79 (2011), HB_χPT and B_χPT (Heavy Baryon & Covariant Chiral PT): J. A. McGovern et al., Eur. Phys. J. A 49, 12 (2013). <

Best Way to extract Spin Polarizabilities

- Spin polarizabilities appear in the effective interaction Hamiltonian at third order in photon energy
 - It is in the \triangle (1232) resonance region ($E_{\gamma} = 200 300$ MeV) where their effect becomes significant.
- In this energy region, it is possible to accurately measure polarization asymmetries using a variety of polarized beam and target combinations
 - The various asymmetries respond differently to the individual spin polarizabilities at different E and θ .
 - Measure three asymmetries at different E, θ .
- Our plan is to conduct a global analysis:
 - include constraints from "known" γ_0 , γ_{π} , α_{E1} and β_{M1} .
 - extract all four spin polarizabilities independently with small statistical, systematic and model-dependent errors.

Three Polarization Asymmetry Experiment at A2

Circularly polarized beam, longitudinally polarized target

•
$$\sum_{2z}$$
 is sensitive to γ_{M1M1}

Circularly polarized beam, transversely polarized target

$$\sum_{2x} = \frac{\sigma_{+x}^R - \sigma_{+x}^L}{\sigma_{+x}^R + \sigma_{+x}^L} = \frac{\sigma_{+x}^R - \sigma_{-x}^R}{\sigma_{+x}^R + \sigma_{-x}^R} \qquad \Longrightarrow \qquad \clubsuit$$

•
$$\sum_{2x}$$
 is sensitive to γ_{E1E1}

Polarization Asymmetry (contd..)

Linearly polarized(|| and \perp to scattering plane) beam, unpolarized target

•
$$\sum_{2z}$$
 is sensitive to γ_{M1M1}

$\sum_{2x'}, \sum_{3}$ and \sum_{2z} Experimental data

- Transverse Target(\sum_{2x}): Sep 2010, Feb 2011 500 hrs (P. Martel)
- Unpolarized Target(∑₃): Dec 2012- 150 hrs (C. Collicot)
- Longitudinal Target (∑_{2z}): D. Paudyal (University of Regina) and A. Rajabi (University of Massachusetts)
 - First round of data in 2014 with Butanol (320 hours) and Carbon Target (180 hrs)
 - Second round of data in 2015 with Butanol (310 hours) and Carbon Target (60) hrs
 - Worked as a run coordinator for two weeks during 2015 beam time.

Experimental Apparatus at MAMI

Σ_{2z} Data Analysis Status and Experimental challenges

- Calibration of first round of carbon and butanol target data has been completed
- Tagging Efficiency and target polarization check has been competed
- Σ_{2z}- Experimental Challenges
 - Small Compton scattering cross sections.
 - Coherent and incoherent reactions off of C, O, and He.
 - A source of polarized protons is not easy to come by (or to operate)
 - In Δ-region, proton tracks are required to suppress backgrounds, but energy losses in the frozen-spin cryostat, and CB-TAPS are considerable.
- What to do ???
 - π^0 photo-production cross section is about 100 times that of Compton scattering, work on π_0 photo-production Asymmetry.

π^0 Production - Background Reaction

Compton Scattering $\gamma + {\it P} \rightarrow \gamma + {\it P}$

• Dominant Background for Compton Scattering Experiments

 π^0 Production as a Systematic Check

• Provides an excellent reaction for systematic checks and constraints. Due to the large σ (and clean reaction signal), π^0 production is an ideal reaction to perform systematic checks

Σ_{2x} – Martel, et al.

- MM distribution for E_{γ} =273-303 MeV, $\theta_{\gamma'=100-120}$ degree (green)
- Background contributions to MM: accidental coincidences, (cyan) carbon/cryostat contributions (blue), reconstructed π₀ background where one decay γ escapes setup in: TAPS downstream hole (red) and CB upstream hole(magenta)
- Right: Fully-subtracted MM spectrum with simulated Compton peak and conservative MM <940 MeV cut is applied to exclude neutral pion production,

Σ_{2x} – Martel, et al.

• New results! Physical Review Letters 114, 112501 (2015), arXiv:1408.1576 [nucl-ex]

• First measurement of a double-spin Compton scattering asymmetry on the nucleon. Curves are from DR calculation of Pasquini et al., making use of constraints on " γ_0 , γ_π , $\alpha_{E1} + \beta_{M1}$. $\alpha_{E1} - \beta_{M1}$ (allowed to vary within experimental errors). Checks were done with $B_{\chi}PT$ calculation of Lensky & Pascalutsa.

< 4[™] >

Σ_3 – Collicot, et al.

	HDPV	ΒχΡΤ	$\boldsymbol{\Sigma}_{2x}$ and $\boldsymbol{\Sigma}_{3}^{\text{LEGS}}$	$\boldsymbol{\Sigma}_{2x}$ and $\boldsymbol{\Sigma}_{3}^{MAMI}$
γ_{E1E1}	-4.3	-3.3	-3.5±1.2	-5.0±1.5
γ_{M1M1}	2.9	3.0	3.16±0.85	3.13±0.88
$\gamma_{\rm E1M2}$	-0.0	0.2	-0.7±1.2	1.7±1.7
γ_{M1E2}	2.2	1.1	1.99±0.29	1.26±0.43
γ_0	-0.8	-1.0	-1.03±0.18	-1.00±0.18
γ_{π}	9.4	7.2	9.3±1.6	7.8±1.8
$\alpha + \beta$			14.0±0.4	13.8±0.4
α-β			7.4±0.9	6.6±1.7
χ^2/df			1.05	1.25

• Dispersion relation fits to Σ_{2x} along with either \sum_{3}^{MAMI} or \sum_{3}^{LEGS} (Note: Pion pole contribution has been subtracted)

Σ_{2z} – Estimated Experimental Precision (D. Paudyal, A. Rajabi)

- To get a rough idea of the sensitivities, use a basis of γ_{E1E1} , γ_{M1M1} , γ_0 and γ_{π} , Produce event rates for nominal values of the SPs, using a dispersion theory calculation.
- Hold either γ_{E1E1} or γ_{M1M1} fixed, and perturb the other by a fixed amount and allow γ_0 , γ_{π} , α_{E1} and β_{M1} to vary by their experimental errors.
- The bands represent the spread about theese values by varying γ_0 , γ_{π} , α_{E1} and β_{M1} by their errors.

- Σ_{2x} has been measured for the first time and published in recent PRL.
- To further reduce the Σ_{2x} error bars, we have planned to acquire more data in January/February 2016.
 - Σ_3 data analysis has been completed and planed for publication.
- Planned to finish data analysis and have Compton double polarization asymmetries results Σ_{2z} before the end of 2016.
- Extract proton spin polarizabilities combining the Σ_{2z} results from first round of Σ_{2z} data taken in 2014 and second round of data taken in 2015

< □ > < □ > < □ > < □ > < □ > < □ >

October 29, 2015 16 / 18

- DNP: Cool target to 0.2 K, use 2.5 Tesla magnet ٠ to align electron spins, pump 70 GHz microwaves, causing spin-flips between the electrons and protons.
- Cool target to 0.025 K, 'freezing' proton spins in ٠ place, remove polarizing magnet, energize 0.6 Tesla 'holding' coil in the cryostat to maintain the polarization, Relaxation times > 1000 hours, Polarizations up to 90%.

First Round of 2014 butanol data

Polariza

ONSING

< □ > < 同 > < 回 > < 回 > < 回 >

π^0 Beam Asymmetry: 288.3 +- 3.9 MeV

• • • • • • • •

э