u–channel Exclusive Electroproduction at Jefferson Lab

Garth Huber

CFNS Workshop on Baryon Dynamics January 23, 2024 Supported by:

*t***-Channel** π^+ vs *u***-Channel** ω Production

Hadronic Model: Evolution of Proton Structure

Evolution of the Proton Structure

- Physics observables
 t, W (s), Q², x
- *x* Evolution:0.2–0.3 valence
 - quark distribution pronounced
- W Evolution:
 - Above resonance region
- Q² Evolution
 - Wavelength of γ^{*} probe
- **t Evolution Impact parameter** $(b \sim 1/\sqrt{-t})$
- What about *u*?
 Baryon exchange processes

Hadronic Model: Regge Model by JM Laget

Soft structure → **Hard** → **Soft transition**

Partonic Model: TDA and Factorization

Baryon to Meson Transition Distribution Amplitude (TDA)

- Extension of collinear factorization to backward angle regime. Further generalization of the concept of GPDs.
- Backward angle factorization first suggested by Frankfurt, Polykaov, Strikman, Zhalov, Zhalov at JLab 2002 Exclusive Reactions Workshop.
- TDAs describe the transition of nucleon to 3–quark state and final state meson. [gray oval of plot b]
- A fundamental difference between GPDs and TDAs is that TDAs are defined as hadronic matrix elements of 3–quark operator, while GPDs involve quark–antiquark operator.
- Can be accessed experimentally in backward angle meson electroproduction reactions.

5

Skewness in Backward Angle Regime

■ Forward angle kinematics, -t ~ -t_{min} and -u ~ -u_{max}, in the regime where handbag mechanism and GPD description may apply, Skewness is defined in usual manner:

 $\xi_t = \frac{p_1^+ - p_2^+}{p_1^+ + p_2^+} \text{ where } p_{1,2} \text{ refer to light cone} + \text{ components}$ $\text{ in } \gamma^*(q) + p(p_1) \to \omega(p_\omega) + p'(p_2)$

Backward angle kinematics, $-u \sim -u_{min}$ and $-t \sim -t_{max}$, Skewness is defined with respect to *u*-channel momentum transfer in TDA formalism

$$\xi_{u} = \frac{p_{1}^{+} - p_{\omega}^{+}}{p_{1}^{+} + p_{\omega}^{+}}$$

- GPDs depend on x, ξ_t and $t=(\Delta^t)^2=(p_2-p_1)^2$ TDAs depend on x, ξ_u and $u=(\Delta^u)^2=(p_\omega-p_1)^2$
 - Impact parameter space interpretation of TDAs is similar to GPDs, except one has to Fourier transform with respect to $\Delta^{u}_{T} \approx (p_{\omega} - p_{I})_{T}$

Impact parameter Interpretation of TDA

- After integrating over one momentum fraction x_i, the three exchanged quarks can be treated as an effective diquark+quark pair
- Impact picture then looks very much like that for GPDs

ERBL: $x_3 = w_3 + \xi \ge 0$; $x_1 + x_2 = \xi - w_3 \ge 0$; \rightarrow All 3 quark momentum fractions x_i positive

Partonic Interpretation of TDA

Main reactions of interest to date:

- Backward angle exclusive π^0 , π^+ , ρ , ω , φ production
- Backward angle DVCS

P

huberg@uregina.c

Huber,

Garth

8 Model based on spectral representation w/ CZ sol for DA as input (function of quark–diquark coord)

Backward Angle Collinear Factorization

- Kinematical regime for collinear factorization involving TDAs is similar to that involving GPDs:
 - x_B fixed
 - |u|-momentum transfer small compared to Q^2 and s
 - Q^2 and s sufficiently large

Two Key Predictions in Factorization Regime:

- Dominance of transverse polarization of virtual photon, resulting in suppression of longitudinal cross section by at least 1/Q²: σ_T » σ_L
- Characteristic $1/Q^8$ —scaling behavior of σ_T for fixed x_B
- Early scaling for GPD physics occurs 2<Q²<5 GeV²
 - Maybe something similar occurs for TDA physics...

Limitations

- Exclusive ERBL and DGLAP1,2 regions are somewhat analogous to J/3q, J+2q, J+q exchange processes in SIDIS u-channel, could have different Junction contributions
- Very difficult to selectively probe ERBL and DGLAP regions. In an exclusive process, one has to exchange entire baryon in *u*-channel, and the problem is even more complicated than familiar deconvolution problem for GPDs
 - Only exception appears to be at high ξ_u , where DGLAP regions disappear, so dominant picture (e.g. for impact parameter interpretation) is ERBL based one
 - In general, JLab kinematics are expected to be more ERBL dominated, while EIC kinematics will be more DGLAP region
- Comparing exclusive *u*-channel processes for different final states (e.g. π^0 , ρ^0 , ω , φ) might help disentangle any Junction contributions from hadron form factor parts

SA

Office of

Science

Two 1.5 GHz Superconducting Linear Accelerators provide electron beam for Nucleon & Nuclear structure studies.

- Beam energy $E \rightarrow 12$ GeV.
- Beam current >100 μA.
- Duty factor 100%, 85% polarization.
- Experiments in all 4 Halls can receive beam simultaneously.

"6 GeV" JLab Hall C Experimental Setup

12

Physics Background Subtraction

Rosenbluth (L/T/LT/TT) Separation

- Separate measurements at different ε (virtual photon polarization)
- All Lorentz invariant physics quantities: Q², W, t, u, remain constant
- Beam energy, scattered e' angle and virtual photon angle will change as a result, event rates are dramatically different at high, low ε

"Simple" Longitudinal–Transverse Separation

- For uniform ϕ -acceptance, σ_{TT} , σ_{LT} →0 when integrated over ϕ
- Determine $\sigma_T + \varepsilon \sigma_L$ for high and low ε in each *u*—bin for each Q²
- Isolate σ_L, by varying photon polarization, ε

"More Realistic" L/T Separation

0.346

 $\phi = 0$

Std Dev x 0.8711

Std Dev y 0.1869

Cross-Section Determination:

- In reality, φ acceptance not uniform
- Must measure σ_{LT} and σ_{TT}
- Three hadron spectrometer angles needed for full azimuthal (φ_p) coverage to determine the interference terms
- Extract σ_L by simultaneous fit using measured azimuthal angle (φ_p) and knowledge of photon polarization (ε)

Separated Cross Sections

Li, arXiv: 1712.03214

W.B.

p(e,e'p)ω

 $\frac{d\sigma}{dt}$ vs -u

Observations:

- σ_T falls slowly with -u; σ_L falls faster.
- σ_{LT} is very small; σ_{TT} may sign flip for different Q² values.

Error bars = statistical and uncorrelated syst. unc; Error bands = correlated syst. unc.

Backward Angle Omega Electroproduction Peak

Photoproduction

M. Guidal, J.–M. Laget, M. Vanderhaeghen, PLB 400(1997)6

First observation of backward angle peak in electroproduction

Hall C data are scaled to match kinematics of Hall B data

	W (GeV)	x _B	Q² (GeV²)	−t (GeV²)	<i>−u</i> (GeV²)
Hall B	1.8 – 2.8	0.16 – 0.64	1.6 –5.1	< 2.7	> 1.68
		0.29	1.6	4.014	0.08 – 0.13
Hall C	2.21	0.38	2.45	4.724	0.17 – 0.24

Backward Peak is Larger than Expected

- In photoproduction, the ratio of the forward (*t*-channel) to backward (*u*-channel) peaks is ~100:1
- The same was expected for electroproduction
 - It was thus a surprise when we observed the ratio of forward/backward peaks to be ~10:1
- J.M. Laget (JML) has been able to provide a natural explanation for this surprisingly large ratio within the Regge model formalism
 - The L/T ratio for the backward peak can help distinguish various theoretical explanations, but JML model is not yet able to give such predictions
- Study of other exclusive channels over a broad kinematic range is needed to confirm whether strong backward peaks are ubiquitous or not

JML Regge Model description of *u*–Peak

J–M Laget, Private Communication (2018) and W.B. Li, GMH, et al., PRL 123(2019)182501

Model provides natural description of JLab π electroproduction cross sections without destroying good agreement at $Q^2=0$.

[PLB 685(2010)146; PLB 695(2011)1999]

- Model also consistent with magnitude and slope of backward angle ω peak.
- Would be interesting to examine L/T ratio predicted by model when full calc available.

$p(e,e'p)\omega Q^2$ –Dependence

W.B. Li, GMH, et al., PRL 123 (2019) 182501

21

TDA model Comparison to Data

Hall C u-channel Near-term Goals

- 1. Determine if backward angle peak observed in exclusive ω electroproduction occurs also in other channels, over a broad kinematic range.
- Measure u-dependence of L/T-separated cross sections, to determine the relevance of Regge-rescattering and TDA mechanisms in JLab kinematics.
- 3. Assuming the backward angle peak is present, as expected, measure the σ_T/σ_L ratio over a wide Q² range for W>2 GeV.
 - Where does $\sigma_T \gg \sigma_L$, as predicted by TDA formalism?
- 4. Determine the Q²–dependence of σ_T at fixed x_B .
 - Where does $\sigma_T \sim Q^{-8}$ as predicted by TDA formalism?

JLab Hall C – 12 GeV Upgrade

SHMS:

• 11 GeV/c Spectrometer • Partner of existing 7 GeV/c **HMS**

MAGNETIC OPTICS:

- Point-to Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

- Drift Chambers
- Hodoscopes
- •Cerenkovs
- Calorimeter

Well-Shielded Detector Enclosure

Rigid Support Structure • Rapid & Remote

- Rotation
- Provides Pointing Accuracy & Reproducibility demonstrated in HMS

Luminosity •~4x10³⁸ cm⁻² s⁻¹

Upgraded Hall C has some similarity to SLAC End Station A, where the quark substructure of proton was discovered in 1968.

-JSA

TDA Model Predictions for JLab E12–19–006

PionLT experiment (E12–19–006) L/T separations up to $Q^2=8.5 \text{ GeV}^2$ Spokespersons: D. Gaskell, G.M. Huber, T. Horn

- Data acquired 2021–22
- L/T–Separations over wide kinematic range will allow $\sigma_T \gg \sigma_L$ and $1/Q^8$ scaling predictions to be checked with greater authority
- u-channel \u03c6-electroproduction particularly interesting
 - Sensitive to Strangeness content of nucleon
- Combined analysis of ρ , ω production allows one to disentangle isotopic structure of *VN* TDAs in non–strange sector

At Q²=6.0 GeV², ω predicted to remain dominant (unlike *t*-channel), φ to drop rapidly with -u.

Example "12 GeV" data already acquired

K⁺ L/T–experiment (E12–09–011)

Spokespersons: T. Horn, G.M. Huber, P. Markowitz

- Data acquired 2018–19
- Abundant u-channel p(e,e'p)X data acquired will allow backward angle studies over a wide kinematic range
- Planned first extraction of Beam Spin Asymmetry for *u*–channel reactions (PhD student: Alicia Postuma)

Setting	Low ε data	High ε data
Q ² =0.50 W=2.40		
Q ² =2.1 W=2.95		
Q ² =3.0 W=2.32		
Q ² =3.0 W=3.14		
Q ² =4.4 W=2.74	•	
Q ² =5.5 W=3.02		-

Backward Exclusive π^0 **Production**

E12–20–007: $u \approx 0 \pi^{\theta}$ production in Hall C

Spokespersons: W.B. Li, G.M. Huber, J. Stevens

Purpose: test applicability of TDA formalism for π^0 production

- Is σ_T dominant over σ_L ?
- Does the σ_T cross section at constant x_B scale as $1/Q^8$?
- Kinematics overlap forward angle $p(e,e'\pi^0)p$ experiment with NPS+HMS
- Beam time possible for 2025–26

 $p(e,e'p)\pi^{\theta}$ Kinematics

 Backward angle kinematics match forward angle experiment using NPS currently running in Hall C

 DVCS/π⁰ E12-13-010 (Spokespersons: T. Horn, C. Hyde, C. Munoz-Camacho, R. Paremuzyan, J. Roche)

 Combination of both experiments will allow forward/backward peak ratio to be measured for π⁰ electroproduction for first time

> E12–20–007 covers a broad range in skewness, approaching $\zeta_u \rightarrow 1$, which is ERBL dominated

L/T–separations planned for fixed x_B =0.36 at:

Q ²	2.0	3.0	4.0	5.5*
W	2.11	2.49	2.83	3.26*

* Low ε only possible for θ_{pq} =+1.64°

π^0 Channel Expected to be Clean

- In comparison to backward– angle ω electroproduction, there is little physics background in π^0 production.
- Bethe–Heitler process has no backward–angle peak, and will be negligible.
- Virtual Compton Scattering

 (VCS) should dominate backward–angle γ production, but is expected to be much smaller than π⁰ production.

- BH+VCS simulations based on code by P. Guichon and M. Vanderhaeghen.
- BH calculation is exact.
- VCS calculation makes use of ad-hoc ansatz based on *u*-channel ω data.

E12–20–007 Projected Data Quality

Summary

- New experimental technique pioneered at JLab Hall C has opened up a unique kinematic regime for study:
 - Extreme backward angle (*u*≈0) scattering
 - Detect forward–going proton in parallel kinematics, leaving "recoil" meson nearly–at–rest in target
- Possible access to Transition Distribution Amplitudes
 - Universal perturbative objects in *u*-channel, analogous to Generalized Parton Distributions (GPDs)
 - Access to 3–quark plus sea component $\psi_{(3q+q\overline{q})}$ of nucleon
- J.–M. Laget Regge Model provides natural explanation of magnitude and u–slope of observed backward angle peak
 - σ_L/σ_T separations will be essential to distinguish between alternate theoretical descriptions
- Color Transparency (CT) also is a signal of factorization and can be used to distinguish Regge and TDA explanations (see our LOI12-23-009)
 - Does Baryon Junction predict absence of u-channel CT? If so, the comparison would be interesting