Exclusive Backward–Angle Meson Electroproduction – Unique access to u–channel physics

Garth Huber
Wenliang (Bill) Li*
* Now at College of William and Mary

CAP Congress
Dalhousie University, Halifax, NS
June 12, 2018
Scientific Motivation

The Key Science Problem:

- How does Quantum Chromodynamics (QCD) work in the confinement regime?
- Proton structure is dependent on the properties of the probe.
- Studying the transition of QCD

Objective:

- Establish a new experimental approach
 - Backward–angle (u–channel) observables
 - L/T separation

Garth Huber, huberg@uregina.ca
Jefferson Lab Hall C Experimental Setup

- **HMS (QQQD)**
 - Angle Acceptance: 6 msr
 - Momentum: 0.5–7.5 GeV/c
 - Momentum Acceptance: ±9%
 - Angular, Position Resolution: 1mr and 1mm

- **SOS (QDDbar)**
 - Angle Acceptance: 9 msr
 - Momentum: 0.1–1.8 GeV/c
 - Momentum Acceptance: ±20%

- One of last analyses from 6 GeV era.

Short Orbit Spectrometer (SOS) High Momentum Spectrometer (HMS)
t–Channel π^+ vs u–Channel ω Production

\[s = (p_1 + p_2)^2 = (p_3 + p_4)^2 \\
\[t = (p_1 - p_3)^2 = (p_2 - p_4)^2 \\
\[u = (p_1 - p_4)^2 = (p_2 - p_3)^2 \\

Mark Strikman: Knocking the proton out of the proton process.
Physics Background Subtraction

\[M_x = \sqrt{(E_e + m_p - m_{e'} - E_p)^2 - (\vec{p}_e - \vec{p}_{e'} - \vec{p}_p)^2} \]

ω (782 MeV)

ρ (770 MeV)

HERMES Empirical parameterization with Soding skewness factor

2π production phase-space
Rosenbluth (L/T/LT/TT) Separation

\[-Q^2 = (p_e - p'_e)^2 \]

\[W^2 = (p_\omega + p_p)^2 \]

\[u = (p_\gamma - p_p)^2 \]

\[t = (p_\gamma - p_\omega)^2 \]

Virtual-photon polarization:

\[\varepsilon = \left(1 + 2 \frac{(E_e - E_e')^2 + Q^2}{Q^2} \tan^2 \theta_e' \right)^{-1} \]

\[2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon (\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi \]

Rosenbluth Separation requires:

- Separate measurements at different \(\varepsilon \) (virtual photon polarization)
- All Lorentz invariant physics quantities: \(Q^2, W, t, u \), remain constant
- Beam energy, scattered e’ angle and virtual photon angle will change as a result, event rates are dramatically different at high, low \(\varepsilon \)
Iterative Procedure for L/T Separation

Improve ϕ coverage by taking data at multiple HMS angles, $-3^\circ < \theta_{pt} < +3^\circ$.

$\theta_{pt} = 0$
$\theta_{pt} = -3$
$\theta_{pt} = +3$

3 u bins
8 phi bins

Unseparated X-section

Unseparated Cross Section (ab Strength)

Separated X-section

$R = \frac{Y_{Exp} - Y_{\omega \ sim} - Y_{Xspace \ sim}}{Y_{\omega \ sim}}$
Combine ratios for settings together, propagating errors accordingly.

$\frac{d^2\sigma}{dtd\phi}_{EXP} = R \frac{d^2\sigma}{dtd\phi}_{SIMC}$

Extract L,T,LT,TT via simultaneous fit

$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon (\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$
Separated Cross Sections $\frac{d\sigma}{dt}$ VS $-u$

Observations:
- σ_T falls slowly with $-u$; σ_L falls faster.
- σ_{LT} is small; σ_{TT} has sign flip for different Q^2 values.

Error bars = statistical and uncorrelated syst. unc; Error bands = correlated syst. unc.
Hadronic Model: Evolution of Proton Structure

- Physics observables
 - t, $W(s)$, Q^2, x

- x Evolution:
 - 0.2-0.3 valence quark distribution is pronounced

- W Evolution:
 - Above the resonance region

- Q^2 Evolution
 - Wavelength of the probe

- t Evolution
 - Impact parameter

- What about u?
 - Physical interpretation unclear
Hadronic Model: Regge Model by JM Laget

M. Guidal, J.-M. Laget, M. Vanderhaeghen, PLB 400(1997)6

Garth Huber, huberg@uregina.ca

\(p(\gamma^*,\omega)p \)

\(Q^2 = 0 \text{ GeV}^2 \)
\(W = 2.48 \text{ GeV} \)
SLAC

\(Q^2 = 0.84 \text{ GeV}^2 \)
\(W = 2.30 \text{ GeV} \)
DESY

\(Q^2 = 1.75 \text{ GeV}^2 \)
\(W = 2.476 \text{ GeV} \)
JLab

\(Q^2 = 2.35 \text{ GeV}^2 \)
\(W = 2.472 \text{ GeV} \)
JLab

Soft structure \(\rightarrow \) Hard \(\rightarrow \) Soft transition!
Partonic Model: TDA and Factorization

- **Nucleon to Meson Transition Distribution Amplitude (TDA)**
 - Backward angle analog of GPD
 - Translate from t–space to u. Translate V–DA to N–DA
 - No consensus on applicability of TDA factorization regime.

- **Interactions of Interest:**
 - u–channel pseudoscalar meson and vector meson production

- **Two Predictions of TDA:** [B. Pire, K. Semenov, L. Szymanowski, PRD 91(2015)094006]
 - Dominance of the transverse polarization of the virtual photon resulting in the suppression of the longitudinal cross section by at least $1/Q^2$: $\sigma_T > \sigma_L$.
 - Characteristic $1/Q^8$–scaling behavior of σ_T for fixed Bjorken x.
Partonic Model: TDA Prediction

- TDA prediction undershoots data by a factor of 7 at $Q^2=1.60$ GeV2, but has impressive agreement with data at $Q^2=2.45$ GeV2
 - A true prediction, calculation made 2 years before data analysis was completed.
- TDA model also has good agreement with new CLAS π^+ backward angle data for $Q^2>2.50$ GeV2 [K. Park, et al., PLB 780(2018)340].
- TDA expected to dominate for $Q^2>:10$ GeV2, but some indications that TDA factorization scheme may begin to apply as soon as $Q^2=2$ GeV2.
Future Backward Meson Production Opportunities

Upcoming Jefferson Lab 12 GeV experiments

- K^+ L/T–experiment (E12–09–011):
 - Backward angle η, ω, ρ, η', ϕ will be obtained parasitically
 - Scheduled for Aug 22–Dec 19, 2018

- Large ϕ Emission Angle Experiment at CLAS: E12–12–007

- LOI (2018): Backward π^0 production at Hall C

- Backward–angle program with PANDA @ FAIR–GSI

Simulation at $Q^2=3.00$ \(W=3.14\) \(x=0.25\) \(\varepsilon=0.69\)

Missing Masses: Counts vs. Mass (GeV/c²)

Plot by: M. Hladun, URegina BSc Hons (2018)
Unseparated Cross Sections (Money Plot)

\[2\pi \frac{d^2\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon (\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi \]

\[Q^2 = 1.60 \text{ GeV}^2 \]

\[Q^2 = 2.45 \text{ GeV}^2 \]

0 < u < 0.10 (t ~ 4.1)

High \(\varepsilon = 0.59 \)

Low \(\varepsilon = 0.33 \)

\[0.10 < u < 0.17 \text{ (t ~ 4)} \]

\[0.17 < u < 0.32 \text{ (t ~ 3.8)} \]

\[Q^2 = 1.60 \]

\[Q^2 = 2.45 \]

Garth Huber, huberg@uregina.ca
Mandelstam variables \((s,t,u\text{-channels})\)

\(s\): invariant mass of the system

\(t\): Four-momentum-transfer squared between target before and after interaction.

\(u\): Four-momentum-transfer squared between virtual photon before interaction and target after interaction

\(t\text{-channel}: -t \sim 0\), after interaction
 - Target: stationary,
 - Meson: forward
 - Measure of how forward could the meson go.

\(u\text{-channel}: -u\sim 0\), after interaction
 - Target: forward
 - Meson: stationary
 - Measure of how backward could the meson go
Sytematic Uncertainties

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Contribution</th>
<th>Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale Error</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Background</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Common</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Source</th>
<th>Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zee5.1, 6.10.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Zee5.1, 6.10.2</td>
<td>1.7</td>
</tr>
<tr>
<td>Zee5.3, 6.10.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Figures

- Figure 1: Diagram illustrating the systematic uncertainties.
- Figure 2: Table showing the contributions of various uncertainties.

Universität Regensburg