PionLT/KaonLT - first separated cross sections from JLab 12 GeV data

Dave Gaskell, <u>Tanja Horn</u>, Garth Huber, Pete Markowitz

On behalf of the PionLT/KaonLT Collaborations

Supported in part by NSF grants PHY2309976 and PHY2012430

JLUO25 Jefferson Lab User Organization Annual Meeting

Jefferson Lab, June 24-26, 2025

Experiments Overview

Spokespersons: D. Gaskell (JLab), PionLT (E12-19-006) T. Horn (CUA), G.Huber (URegina)

 \Box L/T separated cross sections as a function of Q² at fixed x=0.3, 0.4, 0.55 to validate the reaction mechanism towards 3D imaging studies

Reliable pion form factor extractions to the highest possible Q^2

 \Box Validation of pion form factor extractions at the highest Q²

Pion and Kaon Experiments Motivation

Spokespersons: T. Horn (CUA), G. Huber 🛄 KaonLT (E12-09-011) (URegina), P. Markowitz (FIU)

 \Box L/T separated cross sections as a function of Q² at fixed x=0.25, 0.4 to investigate the *reaction mechanism with* strangeness towards 3D imaging studies

 \Box L/T separated and precision K⁺ Λ , K⁺ Σ^0 cross sections as a function of t up to the largest Q² to investigate the reaction mechanism towards kaon form factor extractions

- □ Pion and Kaon structure has an important place in studies of the transition from the nonperturbative to perturbative region
- Need to validate the hard-exclusive reaction mechanism key are precision longitudinal-transverse (L/T) separated data over a range of Q^2 at fixed x/t
- \Box EIC YR: comparison of F_{π} and F_{K} over a wide range in Q² will provide "unique information relevant to understanding the generation of hadronic mass" R. Abdul Khalek, ..., T. Horn, et al., Nucl. Phys. A 1026 (2022) 122447
- \Box Need L/T separated and precision cross section data for tests of the reaction mechanism (in particular K⁺ Λ , K⁺ Σ^{0}) - not possible at EIC - JLab is the only source for this towards hadron structure at EIC

Insights into Hadron Structure and Mass through Mesons

Understanding pion/kaon is vital to understand the **dynamic** generation of hadron mass and offers unique insight into EHM and the role of the Higgs mechanism

K. Raya, A. Bashir, D. Binosi, C.D. Roberts, J. Rodriguez-Quintero, arXiv:2403.00629v1 (**2024**)

Mass budget for nucleons and mesons are vastly different

- Proton (and heavy meson) mass is large in the chiral limit expression of Emergent hadronic mass (EHM)
- Pion/kaon: Nambu-Goldstone Boson of QCD: massless in the chiral limit
 - chiral symmetry of massless QCD dynamically broken by quark-gluon interactions and inclusion of light quark masses (DCSB, giving pion/kaon mass)
 - Without Higgs mechanism of mass generation pion/kaon would be indistinguishable

D. Binosi, Few Body Systems 63 (2022) 42

Valence quark distribution of proton/pion are also very different

→ Difference between meson PDFs: direct information on emergent hadron mass (EHM)

Tanja Horn, 2025 JLab User Organization Annual Meeting

Emergence of Hadron Mass (EHM)

Adapted from C.D. Roberts at PAW24, Geneva, Switzerland, Mar 18-20, 2024

- Absent Higgs boson couplings, QCD Lagrangian is scale invariant
- Yet ...
 - Massless gluons become massive
 - A momentum-dependent charge is produced
 - Massless quarks become massive
- EHM is expressed in EVERY strong interaction observable
- Challenge to Theory:

Elucidate all observable consequences of these phenomena and highlight the paths to measuring them

Challenge to Experiment:

Test the theory predictions so that the boundaries of the Standard Model can finally be drawn

- ✓ Process independent strong running coupling
 Daniele Binosi et al., arXiv:1612.04835 [nucl-th] Phys. Rev. D 96 (2017) 054026/1-7
- *Experimental determination of the QCD effective charge* α_{g1}(Q).
 A. Deur; V. Burkert; J.-P. Chen; W. Korsch, Particles 5 (2022) 171
- ✓ QCD Running Couplings and Effective Charges, Alexandre Deur, Stanley J. Brodsky and Craig Roberts, <u>e-Print: 2303.00723 [hep-ph]</u>, Prog. Part. Nucl. Phys. **134** (2024) 104081

See also C. D. Roberts, D. Richards, T. Horn, L. Chang, Prog.Part.Nucl.Phys. **120** (**2021**) 103883

C. D. Roberts, Symmetry **12**, (**2020**) 1468

Meson Form Factors and Emergent Mass

There are several measurement observables (e.g., hadron elastic/transition form factors)

- Two dressed quark mass functions distinguished by the amount of DSCB
 - Emergent mass generation is 20% stronger in the system characterized by the solid green curve, which is the more realistic case
- □ Fpi obtained using these mass functions

 \Box r_{π}=0.66 fm (solid green)

- \Box r_{π} = 0.73 fm (solid dashed blue)
- \Box F_{π} predictions from QCD hard scattering form, obtained with the related, computed π DAs
- QCD hard scattering formula using conformal limit of pion's twist-2 PDA

At experimentally accessible energy scales, the pion form factor is sensitive to EHM scale in QCD

Review Scientific Motivation: Form Factors

- Decision and kaon form factors are of special interest in hadron structure studies
 - pions and kaons are <u>not</u> point like; their internal structure is more complex than is usually imagined
 - precise F_K(Q²) data >Q² ~5 GeV², could deliver insights into the size and range of nonperturbative EHM–HB interference effects in hard exclusive processes
- □ Recent advances and future prospects in experiments
 - Completed Hall C experiments have established JLab's capability for reliable F_{π} measurements using the π^{-}/π^{+} validation methods
 - □ $K^+\Lambda/K^+\Sigma^0$ cross sections can play a similar role. These data will be the foundation for determining the conditions under which a clean separation of these channels may be possible at the EIC
- Experimental development has been matched by theoretical and computational advances
 - QCD calculations within DSE framework describe how quarks acquire momentum-dependent mass
 - Increasingly precise calculations of PDFs and distribution amplitudes through continuum calculations and on the lattice

Clearest test case for studies of the transition from non-perturbative to perturbative regions

C.D. Roberts, D.G. Richards, T. Horn, L. Chang, Prog. Part. Nucl. Phys. **120** (**2021**) 103883/1-65

Review Scientific Motivation: Reaction Mechanism

10

dσ_L/dt (μb/GeV²)

- One of the most stringent tests of the reaction mechanism is the Q^2 dependence of the π and K electroproduction cross section
 - $-\sigma_{\rm I}$ scales to leading order as Q⁻⁶
 - σ_{T} does not
- Experimental validation of reaction mechanism is essential for reliable interpretation of results from the JLab GPD program at 12 GeV for meson electroproduction
- \Box If σ_T is confirmed to be large, it could allow for detailed investigations of transversity GPDs. If, on the other hand, σ_L is measured to be large, this would allow for probing the usual GPDs

PionLT Publications – based on two 6 GeV pion experiments

- ~2000 J. Volmer, et al., Phys. Rev. Lett. 86 (2001) 1713 383 citations
 - \blacktriangleright Precision F_{π} results between Q²=0.60 and 1.60 GeV²
 - T. Horn, D. Gaskell, G. Huber, et al., Phys. Rev. Lett. 97 (2006) 192001 334 citations
 - \blacktriangleright Precision F_{π} results at Q²=1.60 and 2.45 GeV²
 - □ V. Tadevosyan, et al., Phys. Rev. C**75** (2007) 055205 262 citations
 - □ G. Huber, T. Horn, D. Gaskell, et al., Phys. Rev. C**78** (2008) 045203 **294 citations** > Archival paper of precision F_{π} measurements at JLab 6 GeV
 - □ H. P. Blok, T. Horn, G. Huber, et al., Phys. Rev. C78 (2008) 045202 156 citations
 - Archival paper of precision LT separated pion cross sections at JLab 6 GeV
 - □ T. Horn, D. Gaskell, G. Huber, et al., Phys. Rev. C**78** (2008) 058201 **104 citations**
 - \blacktriangleright L/T cross sections and F_{π} at Q²=2.15 GeV², exploratory at Q²~4.0 GeV²
 - □ Topical/Invited papers including Pion/Kaon results with outlook to 12 GeV results and beyond
 - T. Horn, C.D. Roberts, J. Phys. G **43** (2016) 7, 073001 **173 citations**

2025

- A. Aguilar, T. Horn, ..., G. Huber, et al., Eur. Phys. J A **55** (2019) 10, 190 **174 citations**
- C.D. Roberts, D. Richards, T. Horn, L. Chang, Prog.Part.Nucl.Phys. **120** (2021) 103883 **161 citations**
- J. Arrington, ..., T. Horn, ..., G. Huber, et al., J.Phys.G **48** (2021) 7, 075106 **101 citations** Tanja Horn, 2025 JLab User Organization Annual Meeting

6 GeV Pion	
Experiments:	
1997 (phase	1)
2003 (phase	2)

Plus, several spin-off papers on, e.g. L/T separations in π^- and ω production, high-t, transverse charge density (2012-present)

PionLT Publications – based on two 6 GeV pion experiments

6 GeV Pion ~2000 □ J. Volmer, et al., Phys. Rev. Lett. 86 (2001) 1713 – 383 citations Experiments: 1997 (phase 1) \blacktriangleright Precision F_{π} results between Q²=0.60 and 1.60 GeV² 2003 (phase 2) 92001 – **334 citations** T. Horn, D. Gaskell, G. Huber, et al., Phys. Rev. Lett \blacktriangleright Precision F_{π} results at Q²=1.60 and 2.45 GeV V. Tadevosyan, et al., Phys. Rev. C75 (22 G. Huber, T. Horn, D. Gaskell, et **5203 – 294 citations** Plus several spin-off inter Archival paper of precident GeV papers on, e.g. L/T H. P. Blok, T. Horn, G (2008) 045202 – **156 citations** separations in π^- and ω production, high-t, Archival ron cross sections at JLab 6 GeV transverse charge 📈s. Rev. C**78** (2008) 058201 – **104 citations** T. Horn density (2012-present) 2^{2} =2.15 GeV², exploratory at Q²~4.0 GeV² Topical/In rcluding Pion/Kaon results with outlook to 12 GeV results and beyond rts, J. Phys. G **43** (2016) 7, 073001 – **173 citations** T. Horn, 🔾 A. Aguilar, T. Horn, ..., G. Huber, et al., Eur. Phys. J A 55 (2019) 10, 190 – 174 citations Ο C.D. Roberts, D. Richards, T. Horn, L. Chang, Prog.Part.Nucl.Phys. 120 (2021) 103883 – 161 citations Ο 9 2025 J. Arrington, ..., T. Horn, ..., G. Huber, et al., J.Phys.G 48 (2021) 7, 075106 – 101 citations Ο

Tanja Horn, 2025 JLab User Organization Annual Meeting

Accessing meson structure through the Sullivan Process

□ The Sullivan process can provide reliable access to a meson target as t becomes space-like if the pole associated with the ground-state meson is the dominant feature of the process and the structure of the (off-shell) meson evolves slowly and smoothly with virtuality.

S-X Qin, C. Chen, C. Mezrag, C.D. Roberts, Phys.Rev. C 97 (2018) 7, 015203

To check these conditions are satisfied empirically, one can take data covering a range in t and compare with phenomenological and theoretical expectations.

p(k)

n(k')

□Theoretical calculations found that for -t ≤ 0.6 (0.9) GeV², changes in pion (kaon) structure do evolve slowly so that a well-constrained experimental analysis should be reliable, and the Sullivan processes can provide a valid pion target.

Experimental Validation (Pion Form Factor example)

Experimental studies over the last decade have given <u>confidence</u> in the electroproduction method yielding the physical pion form factor

T. Horn, C.D. Roberts, J.Phys.G **43** (**2016**) 7, 073001 G. Huber et al, PRL**112** (**2014**)182501 R. J. Perry et al., PRC**100** (**2019**) 2, 025206

 $\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda^0)}$

11

Experimental studies include:

- Take data covering a range in -t and compare with theoretical expectation
 - $\circ~~{\rm F}_{\pi}$ values do not depend on -t confidence in applicability of model to the kinematic regime of the data
- Verify that the pion pole diagram is the dominant contribution in the reaction mechanism
 - $\circ R_L (= \sigma_L(\pi^-)/\sigma_L(\pi^+)) \text{ approaches the pion charge ratio,} consistent with pion pole dominance}$

For the kaon need the ratio of L/T separated longitudinal K⁺ Λ and K⁺ Σ^0 cross sections

Tanja Horn, 2025 JLab User Organization Annual Meeting

Hall C Deep Exclusive Charged Meson Experiments

Home of the precision cross section measurements through L/T and tagged DIS (TDIS)

Two experiments

▶ PionLT (E12-19-006)
▶ KaonLT (E12-09-011)

T. Horn, H. Mkrtchyan, et al., Nucl. Instrum.Meth.A **842** (**2017**) 28-47

- CEBAF 10.9 GeV electron beam and SHMS small angle capability and controlled systematics are essential for precision measurements to higher Q²
- □ Focusing spectrometers fulfill the L/T separation requirements
- Dedicated key SHMS Charged Particle Identification detectors
 - Aerogel Cherenkov funded by NSF MRI (CUA)
 - Heavy gas Cherenkov partially funded by NSERC (U Regina)

LT Separation Example

The different pion/kaon arm (SHMS) settings provide the azimuthal angle (ϕ) distributions for a given t-bin

Two/three beam energies

Extract σ_L by simultaneous fit of L, T, LT, TT using the measured azimuthal angle (ϕ) and knowledge of the photon polarization (ϵ)

 $d^2\sigma$

Physics Cross Section

Define common (W, Q²) coverage at all beam energies (ϵ)

Tanja Horn, 2025 JLab User Organization Annual Meeting

LT Separated Cross Section

- Note the need to control systematic uncertainty
- Only possible with focusing spectrometers

Unseparated Cross Section

Extraction of F_{π} from σ_{L} data

 \Box JLab 6 GeV F_{π} experiments used the VGL/Regge model as it has proven to give a reliable description of σ_{I} across a wide kinematic domain

[Vanderhaeghen, Guidal, Laget, PRC 57, (1998) 1454]

- Feynman propagator replaced by π and ρ trajectories
- Model parameters fixed by pion Ο photoproduction data
- Free parameters: $\Lambda^2_{\pi}, \Lambda^2_{\rho}$ Ο

T. Horn et al., PRL 97, (2006) 192001

Tanja Horn, 2025 JLab User Organization Annual Meeting

PionLT/KaonLT – Data Collection Status

PionLT experiment (completed in 2022):

> The experiment complete fraction is 100%

Q² (GeV²)	х _в	-t (GeV²)	W (GeV)	Plan
8.5	0.55	0.55	2.8	Q ⁻ⁿ /FF
6.0	0.55/0.39	0.53/0.21	2.4/3.2	Q ⁻ⁿ /FF
5.0	0.39	0.20	2.95	Q ⁻ⁿ /FF
3.85	0.55/0.39/ 0.31	0.49/0.2/ 0.1	2.0/2.6/ 3.1	Q ⁻ⁿ /FF
2.73	0.31	0.12	2.6	Q ⁻ⁿ
2.45		0.05	3.2	FF
2.12	0.39	0.19	2.0	Q ⁻ⁿ
1.60	0.15	0.11	3.1	FF
1.45	0.31	0.11	2.0	Q ⁻ⁿ
0.375	0.087		2.2	FF
0.425	0.097		2.2	FF

KaonLT experiment (<u>data collection in 2018/19</u>):

- > The experiment complete fraction is 80% (32 days out of 40 approved PAC days at PAC38)
- > The remaining beam time to establish a high precision data base of K⁺ Λ , K⁺ Σ^0 cross sections was approved at PAC49

Q ² (GeV ²)	х _в	-t (GeV²)	W (GeV)	Plan	Comment	
5.5	0.40	0.503	3.02	Q ⁻ⁿ	Low stat	
4.4	0.40	0.507	2.74	Q ⁻ⁿ	Low stat	Г
3.0	0.40	0.531	2.32	Q ⁻ⁿ	Low stat	2
3.0	0.25	0.219	3.14	Q ⁻ⁿ /FF	No Q ⁻ⁿ	S
2.115	0.21	0.166	2.95	FF	No <mark>Q⁻ⁿ</mark>	
0.5	0.09	0.081	2.40	FF	Done	
1.25			3.14	FF	No data	L/ fro
1.70	0.25		2.45	Q ⁻ⁿ	No data	cc
3.50	0.25		3.37	Q ⁻ⁿ	No data	fir de

Data taken in 2018/19 – some settings with low statistics only

T-separated data, om which the ontributions of $\sigma_{\rm L}$ nd σ_{τ} to Λ and Σ^{0} nal states can be etermined 15

PionLT/KaonLT – Data Collection Status

PionLT experiment (completed in 2022):

The experiment complete fraction is 100% \geq

KaonLT experiment (data collection in 2018/19):

- > The experiment complete fraction is 80% (32 days out of 40 approved PAC days at PAC38)
- > The remaining beam time to establish a high precision data base of K⁺ Λ , K⁺ Σ^0 cross sections was approved at PAC49

Q² (GeV²)	х _в	-t (GeV²)	W (GeV)	Plan	Comment	
5.5	0.40	0.503	3.02	Q ⁻ⁿ	Low stat	
4.4	0.40	0.507	2.74	Q ⁻ⁿ	Low stat	Dat
3.0	0.40	0.531	2.32	Q ⁻ⁿ	Low stat	201 set
3.0	0.25	0.219	3.14	Q ⁻ⁿ /FF	No Q ⁻ⁿ	stat
2.115	0.21	0.166	2.95	FF	No Q ⁻ⁿ	
0.5	0.09	0.081	2.40	FF	Done	
1.25			3.14	FF	No data	L/T-ទ from
1.70	0.25		2.45	Q ⁻ⁿ	No data	cont and
3.50	0.25		3.37	Q ⁻ⁿ	No data	final dete

ta taken in 8/19 – some tings with low itistics only

separated data, which the tributions of $\sigma_{\rm L}$ σ_{T} to Λ and Σ^{0} states can be ermined 16

PionLT – Analysis Results

Link to all data and topics available

PionLT unseparated cross sections (Analysis by M. Junaid)

KaonLT – Analysis Results

KaonLT unseparated cross sections at higher Q² (Analysis by R. Trotta)

Tanja Horn, 2025 JLab User Organization Annual Meeting

18

- Low ε

Ο High ε

350

 φ [degree]

KaonLT – Analysis Results

Link to all data and topics available

KaonLT separated cross sections at higher Q² (Analysis by R. Trotta)

KaonLT – Additional Channels/Topics

PionLT/KaonLT – Projected Uncertainties

PionLT experiment (completed in 2022): **KaonLT** experiment (data collection in 2018/19): Q²=1.70 Q²=3.50 Q²=3.00 Q²=4.40 Q²=5.50 Vary et al Brauel 0.8 0.05 0.4 0.20 ₩=2.45 ₩=3.37 ₩=2.32 ₩=2.74 ₩=3.02 BSE+DSE Amendolia p(e,e'K⁺)A $Q^2 F_{\pi}(Q^2)$ 0.04 0.04 0.02 6 GeV |Lab Fpi1 OCD SR 0.7 0.3 0.15 No data No data 6 GeV |Lab Fpi2 LFOM 0.03 No data 12 GeV |Lab proj Monopole 0.2 0.10 $(\mu \mathrm{b}/\mathrm{GeV^2})$ vet 0.02 0.02 0.01 Ackermann 0.1 0.05 0.01 0.5 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 0.4 0.5 0.6 0.7 · 0.4 0.100 --0.020 -- 0.010 -Q²=1.70 Q²=3.50 Q²=3.00 Q²=4.40 Q²=5.50 do∕dt 0.3 0.012 0.008 ₩=2.74 ₹=2.45 W=3.37 V=2.32 0.015 ₩=3.02 0.075 p(e,e'K+)Σ⁰ 0.04 0.2 l 0.009 0.006 0.050 · No data Nø data No data 0.010 0.006 Projected Uncertainties for PionLT 0.004 0.1 0.02 -L ve vet 0.025 0.005 0.003 0.002 0.0 0 2 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 Q^2 (GeV²) -t (GeV²) **Projected Uncertainties for KaonLT** Grad. Students: N. Heinrich (URegina). M. Junaid (URegina x = 0.40/dt (µb/GeV² Projected Errors x = 0.39 x = 0.55x = 0.30.8 T. Horn et. al. Data Projected Errors Projected Errors Dally K-e elastics $\propto 1/Q^6$ Projected Errors × Amendolia K-e elastics $\propto 1/\Omega^6$ $\propto 1/\Omega^6$ $\propto 1/Q^{6\pm0.5}$ $\propto 1/Q^6$ Carmignotto JLab Fπ-2 $\propto 1/Q^{6 \pm 0.3}$ $\sim 1/Q^{6\pm0.3}$ $\sim 1/O^{6 \pm 0.4}$ Projected 0.6 Uncertainties [™]2.4 20 for KaonLT p(e,e'π⁺)n ♦ E12-09-011 (proposal) E12-09-011 (acquired to date) 0.2Projected Uncertainties for PionLT et al Dyson-Schwinge p(e,e'K⁺)Λ 1.5 2.5 3.5 4 Q² (GeV²) 3.5 4.5 5.5 6 Q² (GeV²) 8 Q² (GeV²) K charge radius fit 0.0 First scaling study with kaons 2.5 Q^2 (GeV²) 0.0 7.5 10 2.5 3.5 5.5 6

Tanja Horn, 2025 JLab User Organization Annual Meeting

10

Grad. Students: V. Kumar (URegina), R. Trotta (CUA), A.Usman (URegina), A. Postuma (URegina)

JLab 22 GeV: Opportunities for π , K form factors

Exclusive study group: Dave Gaskell (JLab), Tanja Horn (CUA), Garth Huber (URegina), Stephen Kay (U. York), Wenliang Li (Miss. State), Pete Markowitz (FIU), et al.

Projections based the same statistics per setting as PionLT

A. Accardi, et al., "Strong Interaction Physics at the Luminosity Frontier with 22 GeV electrons at Jefferson Lab", Eur. Phys. J A **60** (2024) 9, 173

Assume a staged energy upgrade with Phase 1 at 18 GeV and minor updates of SHMS, HMS PID, tracking, and DAQ

- □ Enables a significant increase in Q² reach of quality LT separations for DVMP only possible in Hall C
- Interpretation of future data, e.g., EIC, depend on the extrapolation of LT data maximizing the data set overlap of high priority

Summary

□ Meson structure is essential for understanding EHM and our visible Universe

- Meson structure is non-trivial and experimental data for pion and kaon structure functions is extremely sparse
- Higher Q² data on π^+ and K^+ form factors play a vital role in the understanding of hadronic physics inform on how Emergent Hadron Mass manifests in the wave function

 \Box PionLT/KaonLT will dramatically improve the π^+/K^+ electroproduction data set

- $\circ~$ The only source of L/T separated cross sections towards hadron structure at colliders
- JLab L/T separated data will be crucial for interpretation of EIC data for decades to come

□ PionLT/KaonLT will provide precision cross sections for tests of the reaction mechanisms

- Q² scans at fixed x_B will allow for validation of hard-soft factorization for transverse nucleon structure studies – may allow for accessing new type of GPDs
- t- scans will allow for improving the uncertainties in possible form factor extractions
- PionLT was completed in 2022 and KaonLT has a complete fraction of 80% (expected to be completed as soon as FY27)
 - First separated cross sections are available from KaonLT
 - BSA results have been submitted for publication, results on cross sections expected later this year
 - Link to all data and topics available still many opportunities, new collaborators welcome!