B.Sc. Honours in Physics 499 Presentation

#### Simulations of Deep Exclusive π<sup>0</sup>,η,ρ,ω,η',φ Meson Production at Jefferson Lab Hall C

Michael Hladun Advisors: Dr. Garth Huber, Samip Basnet



# **Presentation Outline**

- Abstract: Motivations and Goals
- Deep Exclusive Inelastic Scattering Overview
- Experimental Overview
- Simulations and Data Manipulation
- Results

# Abstract: Motivations and Goals

- p(e,e'K<sup>+</sup>)Λ,Σ<sup>0</sup> reactions will be studied at Jefferson Labs Hall C for the first time above the resonance region in experiment E12-09-011.
- Complementary data for p(e,e'p)π0,η,ρ,ω,η',φ reactions was considered in the work.
- Study which backward angle mesons are feasible to study using complementary data from E12-09-011.

|                              | Meson   | Valence Quarks                                               | Rest Mass (MeV/ $c^2$ ) | Full Width (MeV)      |
|------------------------------|---------|--------------------------------------------------------------|-------------------------|-----------------------|
| Vectors:<br>$(J^P = 1^-)$    | $ ho^0$ | $rac{u\overline{u}-d\overline{d}}{\sqrt{2}}$                | $775.26 \pm 0.25$       | $149.1\pm0.8$         |
|                              | ω       | $rac{u\overline{u}-d\overline{d}}{\sqrt{2}}$                | $782.65\pm0.12$         | $8.49\pm0.08$         |
|                              | $\phi$  | $s\overline{s}$                                              | $1019.46 \pm 0.019$     | $4.266\pm0.031$       |
| Pseudoscalars: $(J^P = 0^-)$ | $\pi^0$ | $rac{u\overline{u}-d\overline{d}}{\sqrt{2}}$                | $134.9766 \pm 0.0006$   | $4.536 \pm 0.0005$    |
|                              | η       | $rac{u\overline{u}+d\overline{d}-2s\overline{s}}{\sqrt{3}}$ | $547.862 \pm 0.0018$    | $0.00131 \pm 0.00005$ |
|                              | $\eta'$ | $rac{u\overline{u}+d\overline{d}+s\overline{s}}{\sqrt{6}}$  | $957.78\pm0.06$         | $0.198\pm 0.009$      |

# Deep Exclusive Inelastic Scattering



The kinematic settings in E12-09-011 range from:

- 0.40 GeV<sup>2</sup>  $\leq$  Q<sup>2</sup>  $\leq$  5.5 GeV<sup>2</sup> (photon virtuality)
- 2.32 GeV  $\leq$  W  $\leq$  3.37 GeV (hadronic invariant mass)
- 0.064 GeV<sup>2</sup> ≤ -t ≤ 0.531 GeV<sup>2</sup> (four momentum transfer).



# Deep Exclusive Inelastic Scattering





 $s = (p_H + q)^2 = (p_p + p_X)^2$ 

$$t = (p_H - p_p)^2 = (q - p_X)^2$$

$$u = (p_H - p_X)^2 = (q - p_p)^2$$

- s represents the invariant mass of the hadronic system
- t represents how forward a produced meson can go
- u represents how backward a produced meson can go

High -t interaction: t-channel becomes a u-channel

5

- E12-09-011 Extract Separated Cross Sections (L/T/LT/TT) for p(e,e'K<sup>+</sup>)Λ,Σ<sup>0</sup> reactions above the resonance region using the Rosenbluth Separation Technique.
- Complementary data Extract Separated Cross Sections (L/T/LT/TT) for p(e,e'p)π0,η,ρ,ω,η',φ reactions using the Rosenbluth Separation Technique.

The Rosenbluth Separation Technique Involves taking measurements at: the same  $Q^2$ , W, -t,  $x_B$ but different  $\varepsilon$ 

Combining lepton and hadron tensors gives us:

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT}}{dt} \cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt} \cos(2\phi)$$
$$x_B = \frac{Q^2}{2m_p \nu} \qquad \nu \equiv (E_e - E_e') \qquad \epsilon = \left[1 + \frac{2|\vec{q}|^2}{Q^2} \tan^2\left(\frac{\theta_e}{2}\right)\right]^{-1}$$

- Measurements are taken over full  $\varphi$  coverage, removing the factor of  $2\pi\,as$  well as all  $\varphi$  dependence.
- Integration over the experimental acceptance is performed, making the cross sections free of interference terms.

$$\frac{d\sigma_L}{dt} = \frac{\left(\frac{d\sigma}{dt}\right)_{\text{High}} - \left(\frac{d\sigma}{dt}\right)_{\text{Low}}}{\epsilon_{\text{High}} - \epsilon_{\text{Low}}} \qquad \qquad \frac{d\sigma_T}{dt} = \frac{\epsilon_{\text{High}} \left(\frac{d\sigma}{dt}\right)_{\text{Low}} - \epsilon_{\text{Low}} \left(\frac{d\sigma}{dt}\right)_{\text{High}}}{\epsilon_{\text{High}} - \epsilon_{\text{Low}}}$$

Implications:

Each set of kinematic settings, { $Q^2$ , W, -t,  $x_B$ ,  $\varepsilon$ ,  $T_{inc}$ ,  $T_{e'}$ ,  $\theta_{e'}$ ,  $\theta_{q}$ ,  $P_p$ ,  $\Theta_{pq}$ }, we want to study has to be taken in pairs with different  $\varepsilon$ .



#### **Kinematics Settings**

| $Q^2$            | W     | $x_B$  | -t               | $\epsilon$ | $T_{inc}$ | $T_{e'}$            | $\theta_{e'}$   | $	heta_q$                                  | $P_p$     | $	heta_{pq}$ |
|------------------|-------|--------|------------------|------------|-----------|---------------------|-----------------|--------------------------------------------|-----------|--------------|
| $(\text{GeV}^2)$ | (GeV) |        | $(\text{GeV}^2)$ |            | (GeV)     | (GeV)               | (deg)           | (deg)                                      | (GeV/c)   | (deg)        |
|                  | Study | of the | reaction         | n mech     | anism a   | nd form             | n facto         | $\mathbf{r} \ Q^2 \ \mathbf{d} \mathbf{e}$ | ependence | e:           |
| 0.40             | 2.45  | 0.072  | 0.064            | 0.411      | 3.799     | 0.857               | 20.2            | -5.6                                       | 2.669     | 0,+3         |
| 0.40             | 2.45  | 0.072  | 0.064            | 0.685      | 4.951     | 2.008               | 11.5            | -7.7                                       | 2.669     | -2.15,0,+3   |
| 1.25             | 3.14  | 0.122  | 0.084            | 0.492      | 7.495     | 2.044               | 16.4            | -6.0                                       | 5.189     | $_{0,+3}$    |
| 1.25             | 3.14  | 0.122  | 0.084            | 0.699      | 9.343     | 3.892               | 10.6            | -7.4                                       | 5.189     | -1.9,0,+3    |
| 2.00             | 3.14  | 0.182  | 0.138            | 0.395      | 7.495     | 1.645               | 23.2            | -6.2                                       | 5.561     | 0,+3         |
| 2.00             | 3.14  | 0.182  | 0.138            | 0.580      | 8.761     | 2.910               | 16.1            | -7.7                                       | 5.561     | -2.2,0,+3    |
| 2.00             | 3.14  | 0.182  | 0.138            | 0.752      | 10.921    | 5.070               | 10.9            | -9.2                                       | 5.561     | -3,0,+3      |
| 3.00             | 3.14  | 0.250  | 0.219            | 0.391      | 8.191     | 1.807               | 26.0            | -6.9                                       | 6.053     | 0,+3         |
| 3.00             | 3.14  | 0.250  | 0.219            | 0.691      | 10.921    | 4.537               | 14.1            | -9.6                                       | 6.053     | -3,0,+3      |
|                  |       |        | Scaling          | study a    | at fixed  | $\mathbf{x}_B = 0$  | .25, -t=        | =0.2:                                      |           |              |
| 1.70             | 2.45  | 0.249  | 0.239            | 0.595      | 5.647     | 2.012               | 22.3            | -11.4                                      | 3.277     | 0,+3         |
| 1.70             | 2.45  | 0.249  | 0.239            | 0.856      | 8.761     | 5.125               | 11.6            | -14.9                                      | 3.277     | -3,0,+3      |
| 3.50             | 3.37  | 0.250  | 0.215            | 0.364      | 9.343     | 1.895               | 25.7            | -6.1                                       | 7.122     | 0,+3         |
| 3.50             | 3.37  | 0.250  | 0.215            | 0.557      | 10.921    | 3.473               | 17.5            | -7.8                                       | 7.122     | -3,0,+3      |
|                  |       | 5      | Scaling s        | tudy a     | t fixed a | $\mathbf{x}_B = 0.$ | <b>40, -t</b> = | = 0.5:                                     |           |              |
| 3.00             | 2.32  | 0.400  | 0.531            | 0.634      | 6.601     | 2.603               | 24.1            | -14.1                                      | 3.486     | 0,+3         |
| 3.00             | 2.32  | 0.400  | 0.531            | 0.888      | 10.921    | 6.923               | 11.4            | -18.4                                      | 3.486     | -3,0,+3      |
| 4.40             | 2.74  | 0.399  | 0.507            | 0.479      | 8.191     | 2.314               | 27.9            | -10.0                                      | 5.389     | 0,+3         |
| 4.40             | 2.74  | 0.399  | 0.507            | 0.735      | 10.921    | 5.045               | 16.3            | -13.1                                      | 5.389     | -3,0,+3      |
| 5.50             | 3.02  | 0.400  | 0.503            | 0.372      | 9.343     | 2.021               | 31.3            | -7.9                                       | 6.842     | 0,+3         |
| 5.50             | 3.02  | 0.400  | 0.503            | 0.562      | 10.921    | 3.599               | 21.6            | -9.9                                       | 6.842     | -3,0,+3      |





- The HMS and SHMS are both small solid angle magnetic focusing spectrometers
- Both have similar detector set ups:
  - Drift chambers for calculating charged particle trajectories and momenta
  - Hodoscopes measure the timeof-flight of charged particles, and allow the implementation of a trigger system
  - Heavy gas Čerenkov (HGC) detectors are used to separate pions and electrons
  - Aerogel Čerenkov detectors separate pion from protons at high momentum (pp > 3 GeV/c)
  - The lead glass calorimeters are used to provide additional particle identification/separation

# SIMC

#### The Standard Hall C Monte Carlo Package

- Takes input files with necessary physical parameters to simulate specific processes Kinematic Settings
  - Target Parameters
  - Spectrometer Acceptance
  - Spectrometer Offsets

For each event:

- The coordinates of the interaction vertex, and the initial energy (E) and three-momentum (p) are generated randomly within specified limits.
- The tracking of the outgoing particles are simulated with HMS and SHMS subroutines.
- Valid triggers are determined when a particle
  - is within all the spectrometer's apertures
  - crosses the minimum number of detectors in the huts

# **Project Overview**

Determining the feasibility of studying  $p(e,e'p)\pi_{0,\eta,\rho,\omega,\eta',\phi}$  reactions includes:

- Running simulations using SIMC to generate a data set of anticipated values for descriptive variables such as Q<sup>2</sup>, W, -t, x<sub>B</sub>, M<sub>m</sub>, etc.
- Applying spectrometer acceptance cuts & W-Q<sup>2</sup> cuts, as well as normalization factors & weight factors, to SIMC generated data using CERN's data analysis framework, ROOT.
- Analyzing missing mass,  $M_m$ , distributions to find meson yields.

- 500,000 successful events were simulated using SIMC for all 19 kinematic settings and for each meson,  $\pi_{0,\eta,\rho,\omega,\eta',\varphi}(X \equiv \{\pi_{0,\eta,\rho,\omega,\eta',\varphi}\}).$
- Spectrometer cuts were applied to all distributions used in this work.
- Overlapping diamonds mean L-T separation is possible

W vs Q<sup>2</sup>





The simulation diamond plot for the  $p(e,e'p)\omega$  reaction.  $Q^2 = 2.00 \text{ GeV}^2$ ,  $W = 3.14 \text{ GeV}^2$ ,  $\varepsilon_{red} = 0.395$ ,  $\varepsilon_{black} = 0.752$ ,  $\theta_q = 6.20 \text{ deg}$ .

#### Missing Mass Plots

Used as a way of extracting production yields after cuts and factors are applied.



13



A reconstructed log-scale missing mass plot for  $Q^2 = 0.40 \text{ GeV}^2$ , W = 2.45 GeV,  $\epsilon = 0.411$ ,  $\theta_q = 5.60 \text{ deg without}$  spectrometer acceptance cuts (left) and with spectrometer acceptance cuts (right). This demonstrates how the width of the distribution is effected by spectrometer acceptance cuts. This distribution is much wider than the same distribution with spectrometer acceptance cuts

Mesons were deemed not feasible to study if their missing mass distributions did not have adequate coverage

- Missing mass distribution has peak that aligns with accepted mass value
- Healthy yield characteristics



| $Q^2$            | W     | $\epsilon$ |
|------------------|-------|------------|
| $(\text{GeV}^2)$ | (GeV) |            |
| 1.25             | 3.14  | 0.492      |
| 1.25             | 3.14  | 0.699      |
| 2.00             | 3.14  | 0.395      |
| 2.00             | 3.14  | 0.580      |
| 2.00             | 3.14  | 0.752      |
| 3.00             | 3.14  | 0.391      |
| 3.00             | 3.14  | 0.691      |
| 3.50             | 3.37  | 0.364      |
| 3.50             | 3.37  | 0.557      |
| 4.40             | 2.74  | 0.735      |
| 5.50             | 3.02  | 0.372      |
| 5.50             | 3.02  | 0.562      |

A table of settings with adequate missing mass coverage for mesons, *X*. The main limiting factor was the  $\pi^0$  meson not having yields above  $10^{-3}$  events/mC for each of the missing settings from our list of 19 settings.

Observation:

If we disregard  $\pi^0$ , and  $\eta$  at  $Q^2 = 0.40 \text{ GeV}^2$ , we have adequate missing mass coverage for each meson at each setting.

To summarize, these missing mass plots provide us with information that tells us which kinematic settings, and for which backward-angle mesons, complementary data from experiment E12-09-011 is feasible.

However, we still have to consider the production rates.

The time required to produce 10,000 successful events with the specified kinematic settings assuming 70  $\mu$ A beam current on a 10 cm LH2 target. The "Allocated Time (Hrs.)" is the updated beam time estimates for E12-09-011.

| Setting | $Q^2$            | W     | $\epsilon$ | Allocated   | Time (Hrs.) |         |          |       |         |          |
|---------|------------------|-------|------------|-------------|-------------|---------|----------|-------|---------|----------|
| Number  | $(\text{GeV}^2)$ | (GeV) |            | Time (Hrs.) | $\eta$      | $\eta'$ | $\omega$ | ρ     | $\phi$  | $\pi^0$  |
| 1       | 0.40             | 2.45  | 0.411      | 10.3        | 1898.4      | 122.6   | 0.7      | 2.9   | 201.66  | $\inf$   |
| 2       | 0.40             | 2.45  | 0.685      | 13.6        | 943.9       | 54.7    | 0.2      | 1.2   | 85.34   | inf      |
| 3       | 1.25             | 3.14  | 0.492      | 9.4         | 44.8        | 21.6    | 7.8      | 2.5   | 64.06   | 1199.98  |
| 4       | 1.25             | 3.14  | 0.699      | 8.0         | 23.1        | 12.1    | 3.7      | 1.3   | 32.24   | 378.68   |
| 5       | 1.70             | 2.45  | 0.595      | 19.6        | 1219.5      | 124.9   | 10.6     | 20.3  | 486.16  | inf      |
| 6       | 1.70             | 2.45  | 0.856      | 12.2        | 263.0       | 64.6    | 4.6      | 8.1   | 213.74  | 45225.70 |
| 7       | 2.00             | 3.14  | 0.395      | 38.3        | 115.1       | 63.2    | 31.4     | 18.6  | 344.49  | 3060.01  |
| 8       | 2.00             | 3.14  | 0.752      | 21.6        | 41.0        | 26.7    | 11.5     | 5.9   | 114.01  | 250.86   |
| 9       | 3.00             | 2.32  | 0.634      | 50.0        | 3416.9      | 414.9   | 24.7     | 76.2  | 1381.28 | inf      |
| 10      | 3.00             | 2.32  | 0.888      | 32.0        | 496.7       | 199.2   | 8.1      | 24.8  | 524.57  | 6807.34  |
| 11      | 3.00             | 3.14  | 0.391      | 73.6        | 127.4       | 95.4    | 83.2     | 59.4  | 816.85  | 1515.39  |
| 12      | 3.00             | 3.14  | 0.691      | 49.4        | 52.1        | 43.7    | 34.0     | 20.9  | 292.43  | 475.85   |
| 13      | 3.50             | 3.37  | 0.364      | 100.8       | 101.0       | 81.4    | 131.9    | 75.8  | 889     | 1598.83  |
| 14      | 3.50             | 3.37  | 0.557      | 90.2        | 58.0        | 48.9    | 74.5     | 38.2  | 445.49  | 718.10   |
| 15      | 4.40             | 2.74  | 0.479      | 115.8       | 196.9       | 335.9   | 101.6    | 188.8 | 2196.72 | 5547.05  |
| 16      | 4.40             | 2.74  | 0.735      | 93.6        | 83.0        | 172.9   | 45.6     | 75.5  | 883.88  | 558.03   |
| 17      | 5.50             | 3.02  | 0.372      | 297.1       | 144.2       | 378.9   | 296.6    | 441.6 | 3981.87 | 3126.93  |
| 18      | 5.50             | 3.02  | 0.562      | 295.3       | 83.9        | 227.2   | 167.4    | 223.6 | 1920.19 | 1552.63  |

Illustrating the difference between time required for 10,000 good events...



Removing the settings not in the allocated beam time...

| Setting | $Q^2$            | W     | $\epsilon$ | Allocated   |        | Time (Hrs.) |       |       |        |         |
|---------|------------------|-------|------------|-------------|--------|-------------|-------|-------|--------|---------|
| Number  | $(\text{GeV}^2)$ | (GeV) |            | Time (Hrs.) | $\eta$ | $\eta'$     | ω     | ρ     | $\phi$ | $\pi^0$ |
| 1       | 0.40             | 2.45  | 0.411      | 10.3        |        |             | 0.7   | 2.9   |        |         |
| 2       | 0.40             | 2.45  | 0.685      | 13.6        |        |             | 0.2   | 1.2   |        |         |
| 3       | 1.25             | 3.14  | 0.492      | 9.4         |        |             | 7.8   | 2.5   |        |         |
| 4       | 1.25             | 3.14  | 0.699      | 8.0         |        |             | 3.7   | 1.3   |        |         |
| 5       | 1.70             | 2.45  | 0.595      | 19.6        |        |             | 10.6  |       |        |         |
| 6       | 1.70             | 2.45  | 0.856      | 12.2        |        |             | 4.6   | 8.1   |        |         |
| 7       | 2.00             | 3.14  | 0.395      | 38.3        |        |             | 31.4  | 18.6  |        |         |
| 8       | 2.00             | 3.14  | 0.752      | 21.6        |        | 11.4 5.9    |       |       |        |         |
| 9       | 3.00             | 2.32  | 0.634      | 50.0        |        | 24.7        |       |       |        |         |
| 10      | 3.00             | 2.32  | 0.888      | 32.0        |        | 8.1  24.8   |       |       |        |         |
| 11      | 3.00             | 3.14  | 0.391      | 73.6        | 59.4   |             |       |       |        |         |
| 12      | 3.00             | 3.14  | 0.691      | 49.4        |        | 43.7        | 34.0  | 20.9  |        |         |
| 13      | 3.50             | 3.37  | 0.364      | 100.8       |        | 81.4        |       | 75.8  |        |         |
| 14      | 3.50             | 3.37  | 0.557      | 90.2        | 58.0   | 48.8        | 74.4  | 38.2  |        |         |
| 15      | 4.40             | 2.74  | 0.479      | 115.8       |        |             | 101.6 |       |        |         |
| 16      | 4.40             | 2.74  | 0.735      | 93.6        | 83.0   |             | 45.5  | 75.5  |        |         |
| 17      | 5.50             | 3.02  | 0.372      | 297.1       | 144.2  |             | 296.6 |       |        |         |
| 18      | 5.50             | 3.02  | 0.562      | 295.3       | 83.9   | 227.2       | 167.4 | 223.6 |        |         |

# References

[1] Henley, Ernest M., et al. Subatomic Physics 3rd Ed. World Scienti c, 2008.

[2] Je erson Lab E12-09-011 "Studies of the L-T Separated Kaon Electroproduction Cross Section from 5-11 GeV", T. Horn, G.M. Huber, P. Markowitz (spokespersons), https://www.jlab.org/exp\_prog/proposals/09/PR12-09-011.pdf

[3] Siegfried Bethke, Experimental Tests of Asymptotic Freedom, arXiv:hep-ex/0606035.

[4] Wenliang Li, Exclusive Backward-Angle Omega Meson Electroproduction, Ph.D. Thesis, University of Regina, 2017.

[5] K.A. Lovie et al, "Review of Particle Physics," Particle Data Group, Chin. Phys., vol C38, 2014.

[6] Meziani, Z.E. et al. arXiv:1609.00676 [hep-ex] PR12-16-007, JLAB-PHY-16-2358

[7] Samip Basnet, Deep Exculsive Pseudoscalar Meson Production at Je erson Lab Hall C M.Sc. Thesis, University of Regina, 2017.

[8] pre-Conceptual Design Report, (pCDR), SURA, 2004. Je erson Lab Upgrade.

[9] D.G. Meekins, Coherent  $\pi^0$  photoproduction on deuteron. Ph.D. Thesis, College of William and Mary, 1998.

#### Thank You!

# Questions

# Extra Slides



GeV2, W = 2.32 GeV, sred = 0.634, sblack = 0.888,  $\theta q = 14.1 \text{ deg.}$ 





W vs Q<sup>2</sup>

GeV2, W = 2.32 GeV, sred = 0.634, sblack = 0.888,  $\theta q = 14.1 \text{ deg}$ 

| Quantity                                | Specifications  |                          |  |  |
|-----------------------------------------|-----------------|--------------------------|--|--|
|                                         | $\mathbf{HMS}$  | SHMS                     |  |  |
| Dipole Bend Angle (°)                   | 25.0            | 18.4                     |  |  |
| Central Momentum Range $(\text{GeV}/c)$ | 0.5 - 7.5       | 2.0-11.0                 |  |  |
| Path Length (m)                         | 26.0            | 18.1                     |  |  |
| Scattering Angle Range $(^{o})$         | 12.5 - 90       | 5.5 - 40.0               |  |  |
| Momentum Acceptance $(\delta p/p)$      | $\pm 10.0\%$    | $-10\% < \delta < +22\%$ |  |  |
| Momentum Resolution                     | < 0.1%          | 0.03 - 0.08%             |  |  |
| Solid Angle Acceptance (msr)            | 6.7             | 4.0                      |  |  |
| Horizontal Acceptance (mrad)            | $\pm 27.5$      | $\pm 24.0$               |  |  |
| Vertical Resolution (mrad)              | $\pm 70.0$      | $\pm 40.0$               |  |  |
| Horizontal Resolution (mrad)            | 0.8             | 0.5 - 1.2                |  |  |
| Vertical Resolution (mrad)              | 0.9             | 0.3-1.1                  |  |  |
| Maximum DAQ Rate (events/second)        | $\sim \! 10000$ | $\sim 10000$             |  |  |