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The Pion Charge Form Factor

I’ _1s a topic of fundamental importance to our
understanding of hadronic structure, as the gg valence
structure of the 7" is relatively simple.

In quantum field theory, F,_ is the overlap integral: F. (Q2)=j¢n*(p)¢n(p+q)dp

¢'K.ir1itial

The pion wave function can be separated into ¢_swith only low momentum
contributions (k<k,) and a hard tail ¢_".
While ¢_"edcan be treated in pQCD, ¢_s¥’ cannot.

From a theoretical standpoint, the study of the Q= dpendence of F.
focuses on finding a description for the hard and soft contributions of

the pion wave function.
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QCD Hard Scattering Picture

At large O°, perturbative QCD (pQCD) can be used

;an [mg[%D : {HO[@S(Qz),gﬂ

at asymptotically high 0%, only the hardest
portion of the wave function remains

3 -
0.0 >, (1)

and F_takes the very simple form

2 2
F (0%) - Lona, (Q°) /s where /= =935 MeV is the
: 0> o0 0’ w"— v decay constant.

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.
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Intermediate (° Scattering Picture

At experimentally-accessible O, the situation is more complicated

m both the “hard” and “soft” components (e.g. transverse momentum effects)
contribute.

Hard Gluecn Higher Order (ots)"

Exchange Carrections
J

D

Higher Twist (172)“ Soft (no short distance)
(J

orrection subprocesses

m The interplay of the hatd and soft contributions is pootly
understood.

— Non-perturbative hard components of higher-twist strongly cancel
soft components, evemn at modest QZ. [Braun et al., PRD 61(2000)073004

— Ditterent theoretical viewpoints on whether higher-twist mechanisms
dominate until very latge momentum transfer or not.
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F_ is one of the best choices for studying the transition
from non-perturbative to perturbative QCD

m The 7" is one of the simplest QCD systems available for study.
What is the structure of the ©# at all 0??

— all hadronic structure models use the 7w as a test case.

m At what value of O° will the hard pQCIDD) contributions

dominater

— The situation for nucleon form factors is even more complicated.

m Reliable F _(0?) data are tequired to delineate the tole of
hatd versus soft contributions at intermediate O-.

Jetterson ILab is the only experimental facility capable of the necessary
measurements.
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Determination of /_ via Pion Electroproduction

At low 0°<0.3 GeV?, the n* form factor can be measured

exactly using high energy n" scattering from atomic electrons.
= 300 GeV pions at CERN SPS. j4mendolia et al., NP B277(1986)168]
—> Provides an accurate measure

of the " charge radius. r, =0.657£0.012 fm

To access higher 0?, one must employ the
p(e,e’n" )n reaction.
» -channel process dominates G, at
small —.
* In the Born term model:
do , -t0*

dt x m gow O F(O7,1)
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Virtual-photon polarization:

2 2 1
€= 1+2(E"_E"',) Y tanz%
O 2

~Q%={pe—p) L
" W, o i=(py—Px)”
Need to take data at smallest available —, so 6; has maximum
contribution from the w* pole.
Reduced model uncertainty in /7 extraction.
For given 07, higher W allows smaller |7 . |.
Extraction of /7 requires ¢ dependence of 6; to be known.
Only three of O°, W, ¢, 0. are independent.
Vary 0_ to measure ¢ dependence.

Since noa prallel data needed, LT and TT must also be determined.
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Extraction of pion form factor trom G, data

p(e,e’n’)n data are obtained some distance from the /=m_° pole.

“Chew Low” extrapolation method requires knowing the analytic
dependence of do,/dt through the unphysical region.

m Very large systematic
uncertainties.
m Reliable phenomenological
extrapolation 1s not possible.
= Extrapolation method not used B
. ow to
since the early 1970°s. extrapolate

A more reliable approach is

to use a model incorporating '- Physical Region
the " production mechanism '

and the "spectator’ nucleon to

extract /_{rom o, .
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Electroproduction Method Check

“What 1s at best measured in electroproduction is the transition amplitude between a
mesonic state with an effective space-like mass 7°=#<0 and the physical pion.

It is theotetically possible that the off-shell form factor F (07 ¢) is significantly larger

than the physical form factor because of its bias towards more point-like ¢q valence
configurations within its Fock state structure.”

--S.]. Brodsky, Handbook of QCD, 2001.

Can test the electroproduction method by directly comparing

F _(0?) values extracted from very low -t electroproduction with the
exact values measured in elastic e-wv scattering.

METHOD PASSES CHECKS:
» Existing 0°=0.35 GeV? data from DESY

are consistent with the limit of the elastic
scattering data within uncertainties.
[H. Ackermann, et al., NP B137(1978)294]

» We intend to do a much better check by | Amendolia ot al, (lastics

e Ackermann et al.

taking 0°=0.30 GeV? data at 50% lower -7 B L a ey oameeed

(OOOS Gevz) as part Of Our chLab 12 GCV,, ¢ JLab Upgrade {projected errors)
experiment. '
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F_-1and F_-2 Experiments at Jefferson Lab

Fz-2 Goals:

m HExtension of our eatlier I -1 to the
highest O possible with JILab | -

6 GeV electron beam. (Gev?) (GeV)

m Higher // above tesonance region. . : 0.03-0.150 2.445-4.045

m Repeat O7=1.60 GeV? closet to : : 0.093,0.189 | 3.779-5.246
=7 pole.

reduced model uncertainties.

Experiment:

m Extract [ via IL/T/LT/TT Rosenbluth
separation in p(e,e T’ )n.

m Coincidence measurement between charged
pions in HMS and electrons in SOS.

m Data acquired: F -1: 1997, F_-2: 2005.
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p(e.e’t")n Event Selection

Coincidence measurement between charged pions in HMS and
electrons in SOS.

m' detected in HMS — Aerogel Cerenkov and Coincidence time for PID.

Electrons in SOS — identified by Cetenkov /Calotimeter.

After PID cuts, almost no random coincidences remain.

2
Q°=0.60 e=0.74 6, =0

Missing mass cut assures
exclusivity.
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F.-2 Kinematic Coverage

3
Q° (GeV/c)?

Overlapping data at high and low &
are required for L/T separation.

Diamond cuts define common

(W,07) coverage at both €.
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0°=1.60, High ¢

Radial coordinate (-7) Azimuthal coordinate (¢).

Measurements over 0<p<2m are required
to determine LT, TT contributions versus
-1,

HMS settings =3° left and right of the
g-vector ate used to obtain good
()-COVErage ovet a tange of —7.

Technique demands good knowledge of
specttometer acceptances.




Magnetic Spectrometer Calibrations

m Over-constrained p(z¢p) reaction and ¢+'*C reactions used to
calibrate spectrometer acceptances, momenta, offsets, etc.
Beam energy and spectrometer momenta determined to <0.1%.

Spectrometer angles to ~0.5 mr.

Agtreement with published p+¢ elastics ctoss sections <2%.

s Per data 7-bin (F_-2):
Typical statistical etror: 1-2%.
Uncorrelated syst. unc. in Gy common to all 7 bins: 1.8(1.9)%.
Additional uncorrelated unc. also uncorrelated in # 1.1(0.9)%.

Total correlated uncertainty: 3.5%.

A Uncorrelated uncertainties in ¢, are amplified by 7/4¢ in L-T separation.
@ Scale uncertainty propagates directly into separated cross section.
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Experimental Cross Section Determination

m Use of Monte Carlo to replicate the
physical acceptance for the channel
studied:

Pleer )n model based on pion
clectroproduction data.

F -2 data: T. Horn et al., PRL 97(2006)192001.

Spectrometet optics (COSY model).

Radiative effects, pion decay, enetgy
loss, multiple scattering.

<YMC> W =2.21 GeV

dt -t =0.139 GeV?

(dG(W,Qz,Z‘, (I))j _ <K:xp> (dG(W,Qz,t, (P)j Q? = 1.59 (GeVZ/c)
exp MC

dt

: 50 100 150 200 250 300 350
m [ixtract 6; by simultancous fit to the

measuted yields versus azimuthal angle
((071) and vittual phOtOﬂ polarization Only Statistical Uncertainties Shown.
parametetr (€).

d3c do, d doc .

T =g 4 491 +\/288+1 Lo cosd+¢e
dtd ¢ dt dt

cos 2
dt dt ¢
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After o, is determined,
a model is required to extract F_(0O-)

Model incorporates ©* production mechanism and spectator neutron effects:

m The experimentalist would like to use a variety of models
to extract F_(0?) from the electroptoduction data, so that
the model dependence can be better understood.

The Vanderhaeghen-Guidal-Laget (VGL) Regge model is the only
reliable model available for our use at present.

It would be useful to have additional models for the pion form
factor extraction.

® Our philosophy remains to publish our experimentally

measured dG,/dt, so that updated values of F_(0?) could be
extracted in the future.

The experimental F_(Q’) result is not permanently

“locked In” to a specific model.
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Extraction of F_((Q?) from the F_-2 ¢; data

VVGL Regge Model:

® Feynman propagator ( 1 )

2
t—m,

replaced by 7 and p Regge propagators.

Represents the exchange of a series
of particles, compared to a single
partticle.

m Model parameters fixed from pion

photoproduction.

= Free parameters: A, A (trajectoty

cutoft),
Vanderhaeghen, Guidal, Ilaget, PRC 57(1998)1454]

=

"1+ Q% /A
Fit of model to o;(?) data /
gives F, at each O-.
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do/dt (ub/GeV?)

Error bars indicate statistical'and random (pt-pt)
systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly.
correlated (t-corr) systematic uncertainties.

A7=0.513, 0.491 GeV~>, Ap2=1.7 GeV-.
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F -2 p(e,e ' )n model check

To check whether the
VGL Regge model propetly

accounts fot:
7' production mechanism.
spectator nucleon.
other off-shell (~dependent)

effects.

extract I7_values for each
t-bin separately, instead of
one value from fit to 5 7-bins.

Published F_ertor band
based on fit to all ~bins.

Deficiencies in the model may show up as a ~-dependence in the extracted I (Q?) values.

The resulting F_values ate insensitive (<2%) to the #~bin used.

LLends contidence in the applicability of the VGIL model to the kinematical regime of
the F_-2 data, and the validity of the extracted 7 (O?) values.
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Fitting the VGL model to the F_-1 data

F -1 data: V. Tadevosyan e¢f al., nucl-ex/0607007.

§3=0.60 GeVi Q¥=0.75 ceV2
IF -1 data were acquired in
1997, when maximum beam
energy available was 4 GeV.

Experimental data T

constrained to W/=1.95 GeV. = 0 eV

oy : ~dependence of VGIL
model 1s significantly
flattet than the data.

6. model strongly
underestimates data for

Error bars indicate statisticalland random (pt-pt)
systematic uncertainties added in quadrature.

A1y value of ApZ used. In addition, there is an overall systematic uncertainty of

~6%), mainly from the t-correlated, e-uncorrelated
systematic uncertainty.

A2=0.393, 0.373, 0.412, 0.458 GeV?>
Ap2:1.5 GeV?>.
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Possible effect of resonances at W=1.95 GeV

The deficiencies in the description of the F_-1 data by the VGL model
may be due to contributions from resonances
— No such terms are included in the Regge model.

— Could enhance the strength in O and contribute to Oy .

m The discrepancy is strongest at the lowest 0?.
m At higher 0 the resonance form factot is

expected to reduce tesonance contributions.

Our analysis assumes that the contribution of
the missing background’ is small at the
kinematic endpoint 7.

. 020 025
) oo o001 Q02 003 Q04 005 oo op 02 o003 O 005

— Hit VGL model to each ~bin separately, U st L

yielding A_2(O7,7).
—> A 2 decreases with —7 presumably due to

background not included in the model.
—> Linear fit of A to 7 . yiclds "best estimate’ of

2

Fn. at ea:Ch Q . .. : 0.5»%100 002 004 006 008 0.0
— We assign an additional “model uncertainty” to FIRTIRY.

account for the possibility that this assumption

may be inappropriate.
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Jetterson Lab Experimental Results

o SN F -1: nucl-ex/0607007.
= 0-=1.60 GeV* point: to check mgdel F'-2: PRL 97(2006)192001,
dependence of form factor extraction.
E-1 (W=1.95 GeV) &
F.-2 (W=2.22 GeV) agtee to ~4%, monopole
indicating reliability of analyses.
[F" -2 point 1s 3070 closet: to pion pole,
with significantly reduced
uncertainties.

dipole

—

| Q2:2.45 GCVZ pOint: dCViates frOm o »  Amendolia et al. o
. : Ackermann et al.
0.657fm chatge radius cutve by ~la. Rvauel ot al. (Reanalyzed)
Monopole cutve reflects sott (VIMD) F.=1 {2008)
physics at low O-. g |
A significant deviation would indicate

the increased tole of " hatd wave
function components at moderate O~

S.R. Amendolia, et al., Nucl. Phys. B277 (1986) 168.

H. Ackermann, et al, Nucl. Phys. B137 (1978) 294.
P. Brauel, et al., Z. Phys. C3 (1979) 101.
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pQCD LO+NLO Calculation

A.P. Bakulev, K. Passek-Kumericki, W. Schroers, & N.G. Stefanis, PRD 70 (2004) 033014.

Pion distribution amplitude consistent to 1o level with CLEO my transition data.

Analytic perturbation theory at the parton amplitude level.

QCD Sum Rules DA

l Chernyak-Zhitnitsky DA

Asymptotic DA

<  Amendolia et al.
Ackermann et al.
Brauel et al. {Reanalyzed)
F -1 (20086)

hard apft
F "°+F

Hard component is only slightly larger
than that calculated with asymptotic
DA in all considered schemes.

—> Soft contribution from local quatk-
hadron duality model needed to
describe data.
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Comparison with QCD-based Models

BSE+DSE

Dispersion Rel

T
— —— -—-‘::-_-_-______

——

2 03 4
Q* (Gev?)

Bethe-Salpeter/Dyson-Schwinger
[P. Maris and P. Tandy, Phys.Rev.C 62(2000)055204]

mB-S equation 1s conventional formalism for
relativistic bound states.

mD-S expansion in terms of dressed quark
propagators, consistent w,/ confinement.

m Model parameters fixed from [ and 7, then 7

and I predicted.

v

Disperson Relation with QCD Constraint:

[B.V. Geshkenbein, Phys.Rev.D 61(2000)033009]

* Uses constraints posed by causality and
analyticity to relate the timelike and spacelike
domains of the pion form factor on the
complex plane.

* Additional constraints, such as behavior of F_
in asymptotic region, imposed.

Constituent Quark Model
[C-W. Hwang, Phys.Rev.D 64(2001)034001]

m Relativistic constituent quarks and effective
interaction on the light front
m Consistent treatment of quatk spins.

m Wave function parameters determined from f_
and TCO—>W decay width, then charge and
transition FF’s and m branchmg ratios

predicted.
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Hall C’s High Momentum Spectrometer,
Short Orbit Spectrometer and
specialized equipment for studying:

* The strange quark content of the proton.

* Form factors of simple quark systems.

* The transition from hadrons to quarks.
* Nuclei with a strange quark embedded.

Operated by Jefferson Science Associates for the U.S. Department of Energy

—~ o~ Thomas Jefferson National Accelerator Facility

Experimental Hall C

At the present 6 GeV Beam Energy After the 12 GeV Upgrade

Add a Super- High Momentum (12 GeV)
Spectrometer for studying:

« Super-fast (high x;) quarks.

* Form factors of simple quark systems.

* The transformation of quarks into hadrons.
* Quark-quark correlations.

pPP—=S" Office of
Science

U.S. DEPARTMENT OF ENERGY




Proposed F,. Measurements with JLab Upgrade

*  Amendolia et al.
Ackermenn et ml.

Brauel et al. (Reanalyzed)

F_—1 (2006)

F =2 Maris & Tandy BSE+DSE
L

¢ JLab Upgrade (projected errors)

Hakulev Hard QCD
Hwang ERelativistic CgM
Geshkenbein Disp.Rel.

Nesterenko & Radyushkin QSE
Melntichoulr Duality
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o 4
Q* (Gev?)
11 GeV electron beam and SHMS spectrometer with 6=5.5° capability will allow:
m Best test to date of electroproduction method at 0?=0.30 GeV?*
— compare I from very low —7 electroproduction to upper limit of exact elastic data.
s Stringent test of model-dependence in /7 extraction.
—> New 02=1.060, 2.45 GeV2 data at =3 GeV to compate with same at I7=2.2 GeV.

s Precision data up to O°=6 GeV? to study the transition to hard QCD.
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Summary

F; a good observable to study transition from soft to hard QCD.

Ambitious experimental program at Jefferson Lab now yielding high quality
data.

This success 1s due in large part to:
Continuous electron beam provided by the JLLab superconducting linac.
Magnetic spectrometers and detectors with well-understood properties.
The hard wotk of many people.

Highest O JILab results show Q?F, still increasing, but ~16 below monopole
parameterization of charge radius.

Still' far from pQCD prediction.

Studies of F; at higher electron beam enetgy will allow us to teach the
kinematic range where hard contributions are larger.

Planned measutement at JILab after upgrade to O°=6 GeV>2.

Planned tests of the I_extraction method from electroproduction data also an
important part of the program.

ILook forward to continued development of QCD techniques for the
non-pertutrbative light quatk sectot.
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