Measurement of the Charged Pion and Kaon Form Factors to High Q² at JLab and the EIC

Garth Huber

(on behalf of PionLT and KaonLT Collaborations and EIC Canada)

SAPPJ-2023-00041

Charged Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} . While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

The Pion in perturbative QCD

huberg@uregina.ca arth Huber, Ű

At asymptotically high Q^2 , only hardest portion of pion distribution amplitude contributes

$$\phi_{\pi}(x) \xrightarrow{Q^2 \to \infty} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

 $Q^2 F_{\pi}(Q^2) \longrightarrow 16\pi\alpha_s(Q^2) f_{\pi}^2$ $O^2 \rightarrow \infty$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

This only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_S / \partial \mu) \leq 0$ as $\mu \rightarrow \infty$.

At very large Q^2 , pion form factor (F_{π}) can be calculated using pQCD

 $Q^2 F_{\pi}$ should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 . \rightarrow Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

 f_{π} =93 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant

Pion Form Factor at Intermediate Q²

At experimentally–accessible Q², both the "hard" and "soft" components (e.g. transverse momentum effects) contribute.

The interplay of hard and soft contributions is poorly understood.

- → Different theoretical viewpoints on whether higher–twist mechanisms dominate until very large momentum transfer or not.
- The pion elastic and transition form factors experimentally accessible over a wide kinematic range.
 - \rightarrow A laboratory to study the **transition** from the soft to hard regime.

Contrasts in Hadron Mass Budgets

Stark Differences between proton, K⁺, π^+ mass budgets

- Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit).
- Conversely, and yet still due to EHM and DCSB, K and π are massless in chiral limit (i.e. they are Goldstone bosons of QCD).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.

Synergy: Emergent Mass and π^+ Form Factor

At empirically accessible energy scales, π^+ form factor is sensitive to emergent mass scale in QCD

Garth Huber, huberg@uregina.ca

Two dressed—quark mass functions distinguished by amount of DCSB

 DCSB emergent mass generation is 20% stronger in system characterized by solid green curve, <u>which is more</u> realistic case

• $F_{\pi}(Q^2)$ obtained with these mass functions

- r_{π} =0.66 fm with solid green curve
- r_{π} =0.73 fm with solid dashed blue curve
- $F_{\pi}(Q^2)$ predictions from QCD hard scattering formula, obtained with related, computed pion PDAs
- QCD hard scattering formula, using conformal limit of pion's twist–2 PDA $\phi_{\pi}^{cl}(x) = 6x(1-x)$

The Charged Kaon – a 2nd QCD test case

In the hard scattering limit, pQCD predicts that the π⁺ and K⁺ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow{Q^2 \to \infty} \frac{f_K^2}{f_\pi^2}$$

 It is important to compare the magnitudes and Q²-dependences of both form factors.

K⁺ properties also strongly influenced by EHM

K⁺ PDA also is broad, concave and asymmetric.

 Q^2 / GeV²

While the heavier s quark carries more bound state momentum than the *u* quark, the shift is markedly less than one might naively expect based on the difference of *u*, *s* current quark masses. (x)[C. Shi, et al., PRD 92 (2015) 014035]. 1.5 $\phi_{\pi}^{DCSB}(x)$ РР $\phi_{\pi}^{cl}(x)$ 0.5 Full calculation 0.0 $Q^{2}F_{K}$ / GeV² 5.0 0.25 0.0 0.50 0.75 1.0 u pQCD+DCSB • F_{κ} DCSB model prediction Conformal limit pQCD for JLab kinematics 0 [F. Guo, et al., arXiv: 1703.04875]. 20 5 10 15 0

Measurement of π^+ Form Factor – Low Q^2

At low Q^2 , F_{π} can be measured <u>model-independently</u> via high energy elastic π^- scattering from atomic electrons in Hydrogen

• CERN SPS used 300 GeV pions to measure form factor up to $O_2^2 = 0.25 Co_1/2$ [Amondalia at al. NDD **277**(1086)168]

Q² = 0.25 GeV² [Amendolia, et al., NPB **277**(1986)168]

• Data used to extract pion charge radius $r_{\pi} = 0.657 \pm 0.012$ fm

Maximum accessible Q² roughly proportional to pion beam energy

Q²=1 GeV² requires 1 TeV pion beam

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$\left| p \right\rangle = \left| p \right\rangle_{0} + \left| n \pi^{+} \right\rangle + \dots$$

- At small –*t*, the pion pole process dominates the longitudinal cross section, $\sigma_{\!L}$
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique
1.Isolating *σ*_L experimentally challenging
2.Theoretical uncertainty in form factor extraction.

University

≝≞≝ University

- L-T separation required to separate σ_L from σ_T .
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole.

L/T–separation error propagation

Error in $d\sigma_L/dt$ is magnified by $1/\Delta\varepsilon$ \rightarrow To keep magnification factor <5x, need $\Delta\varepsilon$ >0.2, preferably more!

$$\frac{d^{2}\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\,\varepsilon\,(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi_{\pi} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi_{\pi}$$
$$\frac{\Delta\sigma_{L}}{\sigma_{L}} = \frac{1}{(\varepsilon_{1} - \varepsilon_{2})} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{(R + \varepsilon_{1})^{2} + (R + \varepsilon_{2})^{2}} \qquad \text{where } R = \frac{\sigma_{T}}{\sigma_{L}}$$
$$\frac{\Delta\sigma_{T}}{\sigma_{T}} = \frac{1}{(\varepsilon_{1} - \varepsilon_{2})} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\varepsilon_{1}^{2} \left(1 + \frac{\varepsilon_{2}}{R}\right)^{2} + \varepsilon_{2}^{2} \left(1 + \frac{\varepsilon_{1}}{R}\right)^{2}}$$

The relevant quantities for F_{π} extraction are R and $\Delta \varepsilon$

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

 $p(e,e'\pi^+)n$ data are obtained some distance from the $t=m_{\pi}^2$ pole.

- \rightarrow "Chew Low" extrapolation method requires knowing the
 - analytic dependence of $d\sigma_L/dt$ through the unphysical region.

Extrapolation method last used in 1972 by Devenish & Lyth

- Very large systematic uncertainties.
- Failed to produce reliable result.
 - → Different polynomial fits equally likely in physical region gave divergent form factor values when extrapolated to $t=m_{\pi}^{2}$

The Chew–Low Method was subsequently abandoned

Only reliable approach is to use a model incorporating the π^+ production mechanism and the `spectator' nucleon to **extract** F_{π} from $\sigma_{\rm L}$

rsitv

eina

- JLab F_{π} experiments have used the Vanderhaeghen-Guidal-Laget (VGL) Regge model, as it has proven to give a reliable description of σ_L across a wide kinematic domain [Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]
- More models would allow a better understanding of the model dependence of the F_{π} result.
- Some recent model developments, more are welcome!
 - R.J. Perry, A. Kizilersu, A.W. Thomas, PLB 807(2020)135581
 - T.K. Choi, K.J. Kong, B.G. Yu, J.Kor.Phy.Soc. 67(2015) L1089; arXiv: 1508.00969
 - T. Vrancx, J. Ryckebusch, PRC 89(2014)025203

Our philosophy remains to publish our experimentally measured $d\sigma_L/dt$, so that updated values of $F_{\pi}(Q^2)$ can be extracted as better models become available.

JLab Hall C – 12 GeV Upgrade

SHMS:

11 GeV/c Spectrometer
Partner of existing 7 GeV/c HMS

MAGNETIC OPTICS:

- Point-to Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

- Drift Chambers
- Hodoscopes
- Cerenkovs
- Calorimeter

Well-Shielded Detector Enclosure

Rigid Support Structure Rapid & Remote Rotation Provides Pointing Accuracy & Reproducibility

demonstrated in HMS

Luminosity •~ $4x10^{38}$ cm⁻² s⁻¹

Upgraded Hall C has some

similarity to SLAC End Station A,

where the quark substructure of

proton was discovered in 1968.

To bear dump

SHMS

HMS

Office of Science

SHMS Focal Plane Detector System

HMS and SHMS during Data Taking

-JSA

Coincidence measurement between charged pions in SHMS and electrons in HMS.

Electron-Pion CTime Distribution $\times 10^3$ Events 160 Easy to isolate 140 Prompt exclusive channel Accidental SHMS+HMS 120 coincidences coincidences 100 Excellent particle 80 identification 60 40 CW beam minimizes 20 "accidental" coincidences -20 10 20 $e \pi$ Coin Time (ns) Missing Mass Distribution Missing mass resolution Events 14000 $e+p \rightarrow e'+\pi^++n$ easily excludes 2-pion 12000 10000 contributions 8000 2π threshold 6000 PionLT experiment E12–19–006 Data 4000 Q²=1.60, *W*=3.08, *x*= 0.157, ε=0.685 2000 E_{beam}=9.177 GeV, P_{SHMS}=+5.422 GeV/c, θ_{SHMS}= 10.26° (left) 0.85 0.9 0.95 1.05 MM_{rr} (GeV/c^2)

Plots by Muhammad Junaid (Regina)

18

PionLT (E12–19–006) t–φ Coverage

•Measure σ_{LT} , σ_{TT} by taking data at three pion spectrometer (SHMS) angles, +2°, 0°, -2°, with respect to *q*-vector

Example t– ϕ plots from: Q²=3.85, W=3.07, High ϵ

Plots by Nathan Heinrich (Regina)

- •To control systematics, an excellent understanding of spectrometer acceptances is required
 - Over–constrained *p(e,e'p)* reaction, and inelastic e+¹²C, used to calibrated spectrometer acceptances, momenta, kinematic offsets, efficiencies.
 - Control of point–to–point systematic uncertainties crucial due to $1/\Delta\epsilon$ error amplification in σ_{I}

19

The different pion arm (SHMS) settings are combined to yield φ -distributions for each *t*-bin

• Extract σ_1 by simultaneous fit of L,T,LT,TT using measured azimuthal angle (ϕ_{π}) and knowledge of photon polarization (ϵ)

High ε=0.67 Low ε=0.30

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

• Feynman propagator $\left(\frac{1}{t - m_{\pi}^{2}}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_π, Λ_ρ (trajectory cutoff).

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small –*t*, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2.$

Current and Projected F_{π} **Data**

SHMS+HMS will allow measurement of F_{π} to much higher Q^2

No other facility worldwide can perform this measurement

Data taking completed September 2022 (E12–19–006: G. Huber, D. Gaskell and T. Horn, spokespersons)

y–positions of projected points are arbitrary

Error bars are calculated from obtained statistics and projected systematic uncertainties

The ~10% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

The pion form factor is the clearest test case for studies of QCD's transition from non-perturbative to perturbative regions

Model / Intepretation Issues

 A common criticism of the electroproduction technique is the difficulty to be certain one is measuring the "physical" form factor.

> "What is at best measured in electroproduction is the transition amplitude between a mesonic state with an effective space-like mass $m^2 = t < 0$ and the physical pion. It is theoretically possible that the off-shell form factor $F_{\pi}(Q^2, t)$ is significantly larger than the physical form factor because of its bias towards more point-like $q\bar{q}$ valence configurations within its Fock state structure." -S.J. Brodsky, Handbook of QCD, 2001.

What tests/studies can we do to give confidence in the result?

- Check consistency of model with data.
- Extract form factor at several values of $-t_{min}$ for fixed Q^2 .
- Test that the pole diagram is really the dominant contribution to the reaction mechanism.
- Verify that electroproduction technique yields results consistent with π^+ e elastic scattering at same Q^2 .

Check of Pion Electroproduction Technique

of Regina

- Does electroproduction really measure the on-shell formfactor?
- Test by making p(e,e'π⁺)n measurements at same kinematics as π⁺e elastics.
- Can't quite reach the same Q², but electro–production appears consistent with extrapolated elastic data.

Data for new test acquired in Summer 2019: small Q² (0.375, 0.425) competitive with DESY Q²=0.35 -t closer to pole (=0.008 GeV²) vs. DESY 0.013 Expecting results to be finalized soon — V. Kumar (Regina)

• A similar test for F_{K+} (KaonLT) is under analysis — A. Hamdi (Regina)

Verify that σ_L is dominated by *t*-channel process

- π⁺ t-channel diagram is purely isovector.
- Measure

$$\mathbf{Q}_{L} = \frac{\sigma_{L}[n(e, e' \pi^{-})p]}{\sigma_{L}[p(e, e' \pi^{+})n]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

using a deuterium target.

- Isoscalar backgrounds (such as b₁(1235) contributions to the *t*-channel) will dilute the ratio.
- We will do the same tests at Q²=1.60, 3.85, 6.0 GeV².

University

Because one of the many problems encountered by the historical data was isoscalar contamination, this test will increase the confidence in the extraction of $F_{\pi}(Q^2)$ from our σ_L data.

F π –2 VGL $p(e,e'\pi^+)n$ model check

Only statistical and t-uncorrelated systematic uncertainties shown

- Deficiencies in model may show up as *t*-dependence in extracted $F_{\pi}(Q^2)$ values.
- Resulting F_{π} values are insensitive (<2%) to *t*-bin used.
- Lends confidence in applicability of VGL model to the kinematical regime of the JLab data, and the validity of the extracted $F_{\pi}(Q^2)$ values.

E12–19–006 Optimized Run Plan

Points along vertical lines allow *F_π* values at different distances from pion pole, to check model properly accounts for: *π*⁺ production mechanism
spectator nucleon
off-shell (*t*-dependent) effects

Points along red curves allow $1/Q^n$ scaling tests at fixed x_B

For more details, visit Pion-LT RedMine: <u>https://redmine.jlab.org/projects/hall-c/wiki/</u>

Measurement of *K*⁺ **Form Factor**

Similar to π⁺ form factor, elastic
 K⁺ scattering from electrons
 used to measure charged kaon
 form factor at low Q²

[Amendolia, et al., PL **B178** (1986) 435]

- Can "kaon cloud" of the proton be used in the same way as the pion to extract kaon form factor via p(e,e'K⁺)A?
- Kaon pole further from kinematically allowed region

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_K^2)} g_{K\Lambda N}^2(t) F_K^2(Q^2,t)$$

 Many of these issues are being explored in JLab E12–09–011

Kaon Form Factor Experiment Goals

- Measure the –t dependence of the p(e,e'K⁺)Λ,Σ° cross section at fixed Q² and W>2.5 GeV to search for evidence of K⁺ pole dominance in σ_L
 - Separate the cross section components: L, T, LT, TT
 - First L/T measurement above the resonance region in K⁺ production
- If warranted by the data, extract the Q² dependence of the kaon form factor to shed new light on QCD's transition to quark–gluon degrees of freedom.

Even if we cannot extract the kaon form factor, the measurements are important.

- K⁺Λ and K⁺Σ[°] reaction mechanisms provide valuable information in our study of hadron structure
- Flavor degrees of freedom provide important information for QCD model building and understanding of basic coupling constants

$p(e,e'K^+)\Lambda(\Sigma^0)$ Experiment

Isolate Exclusive Final States via Missing Mass

$$M_{X} = \sqrt{(E_{det} - E_{init})^{2} - (p_{det} - p_{init})^{2}}$$

- Spectrometer coincidence acceptance allows for simultaneous studies of Λ and Σ° channels.
- Kaon-pole dominance test through

$$\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda^0)}$$

• Should be similar to ratio of $g_{pK\Lambda}^2/g_{pK\Sigma}^2$ coupling constants if t-channel exchange dominates.

Projected Uncertainties for K⁺ Form Factor

- First measurement of F_{K} well above the resonance region.
- Measure form factor to $Q^2=3 \text{ GeV}^2$ with good overlap with elastic scattering data.
 - Limited by $-t < 0.2 \text{ GeV}^2$ • requirement to minimize non-pole contributions.
- Data will provide an important second $q\bar{q}$ system for theoretical models, this time involving a strange quark.

(E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons)

- Data under analysis, expecting final results next year
 - R. Trotta (CUA/Virginia)

F_{π} and F_{K} Studies to Higher Q² at EIC

Physics Motivation:

- π⁺ and K⁺ structure studies are important for understanding QCD's transition from "weak" and "strong" domains, and understanding DCSB's role in generating hadron properties
- Definite answers to these questions require high Q² data well beyond JLab's reach, the EIC may provide these data

Experimental Issues:

- The DEMP cross section is small, can the exclusive p(e,e'π⁺)n and p(e,e'K⁺)Λ channels be cleanly identified?
 - Count rates, Detector Acceptances?
- Is the detector resolution sufficient to reliably reconstruct (Q², W, t)?
- How to measure the longitudinal cross section $d\sigma_L/dt$ needed for form factor extraction?

DEMP π^+/K^+ **Event Generator**

- Regge-based p(e,e'π⁺)n model of T.K. Choi, K.J. Kong, B.G. Yu (CKY) [J.Kor.Phys.Soc. <u>67</u>(2015)1089]
 - Created a MC event generator by parameterizing CKY σ_L , σ_T for 5<Q² (GeV²)<35 2.0<W (GeV)<10 0<-t (GeV²)<1.2
- Extended to p(e,e'K⁺)Λ[Σ⁰] by parameterizing Regge-based model of M. Guidal, J.M. Laget, M. Vanderhaeghen (VGL) [PRC 61 (2000) 025204]
- New paper describing our generator arXiv:2403.06000

DEMP Particle Kinematics

Assure exclusivity of $p(e,e'\pi^+n)$ reaction by detecting all 3 particles

IR6: 5(e⁻) x 100(p) GeV Collisions $\rightarrow E_{cm}$ =44.7 GeV **Scattered electrons: Neutrons: Pions:** 5-6 GeV/c, 65–98 GeV/c 3–40 GeV/c, 25–50° from <0.7° of outgoing 3–40° from p beam outgoing e beam proton beam e' truth θ vs P n truth θ vs P π^+ truth θ vs P nTruthw eTruthw Thethap piTruthw Thethap 2200000 200000 Entries 01 Råte/bin Rate/bin (Hz 1.493 30.72 Mean 155.3 35.59 5.474 4.942 Mean v p (GeV/c) Mean 0.4181 3.485 Std Dev x 14.27 Std Dev x Std Dev x 3.902 Std Dev y 0.1555 Std Dev y 3.784 5.4 5.2 20 15-10-7 2 θ (deg) Offset due to θ (deg) 25 mrad beam $e-\pi$ -n triple coincidences, weighted by cross section, truth info crossing angle

34 Plots by Love Preet (Regina)

EIC Far Forward Detectors

• Vital to isolate exclusive $p(e,e'\pi^+n)$ process from competing inclusive reactions

EIC measurement impossible unless recoil high momentum neutron is efficiently detected

Neutron Reconstruction in ZDC

S. Paul. M. Arratia arXiv:2308.06939

36

$p(e,e'\pi^+n)$ Neutron reconstruction in ZDC

n clusters ($\theta^* < 4.0$ mRad)

- 5x41 e+p collisions w/ ePIC
- High proportion of neutron hits have multi–clusters
 - Results use latest ReconstructedFarForward ZDCNeutrons algorithm
- (x,y) acceptance of ZDC fully filled
- Apply >10 GeV/cluster cut to select good neutrons

37

Isolating Exclusive $p(e,e'\pi^+n)$ **Events**

- Can we isolate a clean sample of exclusive p(e,e'π⁺n) events by detecting the neutron, or are other requirements needed in addition?
- For a source of background p(e,e'π⁺)X events we used the EIC SIDIS generator written by Tianbo
 - Iocated on JLab farm at /work/eic/evgen/SIDIS_Duke/e5p100
- Since the generator does not output the neutron momentum, we use the missing momentum as a proxy
 - The SIDIS and DEMP event generators are used to create LUND format files
 - Generated events are fed into ECCE Geant4 simulation to study acceptance and resolution requirements

80 9 DEMP o . SIDIS o

(GeV/c)

Background (arbitrarily normalized, actually much larger than DEMP)

39

70 80 90 DEMP p. SIDIS p

(GeV/c)

Another Cut to Remove Background

Make use of high angular resolution of Zero Degree Calorimeter (ZDC) to further reduce background events

- Compare hit (θ, φ) positions of energetic neutron on ZDC to calculated position from p_{miss}
- If no other particles are produced (i.e. exclusive reaction) these quantities should be highly correlated
- Energetic neutrons from inclusive background processes will be less correlated, since additional lower energy particles are produced

Differences between hit and calculated neutron positions on ZDC for DEMP events

Cuts applied: $|\Delta \theta| < 0.1^{\circ} |\Delta \phi| < 3.0^{\circ}$, in addition to triple coincidence and $\theta_n < 4.0^{\circ}$, $E_n > 10$ GeV cuts

Plot by Love Preet (Regina)

of **Regina**

Improving *neutron* reconstruction resolution

- Exclusive *p(e,e'π⁺n)* event selection requires exactly one high energy ZDC hit as a veto
- Since the neutron hit position from ZDC is known to high accuracy, this information can be used to "correct" the missing momentum track $p_{miss} = \left| \vec{p}_e + \vec{p}_p \vec{p}_{e'} \vec{p}_{\pi^+} \right|$
- Use ZDC hit positions

 θ_{ZDC}, φ_{ZDC} instead of
 calculated θ_{miss}, φ_{miss} angles

 E_{miss} also adjusted to
 - reproduce neutron mass
- After these adjustments, the neutron track momentum was reconstructed to <1% of "true" momentum

Reconstructing Mandelstam *t*

• Extraction of pion form factor from $p(e, e'\pi^+n)$ data requires t to be reconstructed accurately, as we need to verify dominance of the *t*–channel process from the dependence of $d\sigma/dt$ upon t

42

Detection efficiency per (Q²,t) bin

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 Q^2 (GeV²)

Separating $\boldsymbol{\sigma}_{\mathsf{L}}$ from $\boldsymbol{\sigma}_{\mathsf{T}}$ in e–p Collider

- Systematic uncertainties in σ_L are magnified by $1/\Delta\epsilon$.
 - Desire $\Delta \varepsilon > 0.2$.
- **To access \varepsilon<0.8, one needs y>0.5.**
 - This can only be accessed with small s_{tot} ,
 - i.e. low proton collider energies (5–15 GeV), where luminosities are too small for a practical measurement.
- A conventional L–T separation is impractical, need some other way to identify σ_L

Isolate $d\sigma_L/dt$ using a Model

- In the hard scattering regime, QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$.
- At high Q^2 , *W* accessible at EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t.
- The most practical choice might be to use a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$.
- In this case, it is very important to confirm the validity of the model used.

- T. Vrancx, J. Ryckebusch, PRC **89**(2014)025203.
- Predictions are for $\varepsilon > 0.995 Q^2, W$ kinematics shown earlier.

Using π^{-}/π^{+} ratios to confirm $\sigma_{L} \gg \sigma_{T}$

- Exclusive ${}^{2}H(e,e'\pi^{+}n)n$ and ${}^{2}H(e,e'\pi^{-}p)p$ in same kinematics as $p(e,e'\pi^{+}n)$
- π *t*-channel diagram is purely isovector (G-parity conservation).

$$R = \frac{\sigma[n(e, e' \pi^{-} p)]}{\sigma[p(e, e' \pi^{+} n)]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

- The π^-/π^+ ratio will be diluted if σ_T is not small, or if there are significant non-pole contributions to σ_L .
- **Compare measured** π^-/π^+ ratio to model expectations.

EIC Kinematic Reach (projection)

Assumptions:

- 5(*e*⁻) x 100(*p*).
- Integrated L=20 fb⁻¹/yr.
- Clean identification of exclusive p(e,e'π⁺n) events.
- Syst. Unc: 2.5% pt-pt and 12% scale.
- $R = \sigma_L / \sigma_T = 0.013 0.14$ at lowest -t from VR model, and $\delta R = R$ syst. unc. in model subtraction to isolate σ_L .
- π pole dominance at small -t confirmed in ²H π^{-}/π^{+} ratios.

Dec 2022 ECCE projections shown Projections to be updated soon using latest ePIC detector simulation

Garth Huber, huberg@uregina.ca

$p(e,e'K^+\Lambda)$ Event Reconstruction

- Significantly more challenging than $p(e,e'\pi^+n)$ reconstruction
- Need to efficiently identify $\Lambda \rightarrow n\pi^0 \rightarrow n\gamma\gamma$ decay (~33%)
 - Neutral products take straight line paths
 - Cleanly distinguishing n from γ clusters is main challenge
- Dominant $\Lambda \rightarrow p\pi^-$ channel (~67%) has its own challenges
 - Avoids issue of distinguishing n from γ clusters
 - Main issue is that p, π⁻ are deflected in opposite directions by proton ring magnetic elements. Can be detected in Off-Momentum Detectors, but detection efficiency needs study
- Additional reconstruction issue:
 - Do not know Λ decay vertex when reconstructing $\pi^0 \rightarrow \gamma \gamma$ decay
 - SiPM will provide enough information about spatial extent of showers to extract incident angle of γ on EMCAL to enable full 4–vector reconstruction of π^{0.} Is it sufficiently good?

Some ZDC Design Choices

- $\Lambda \rightarrow n\pi^0 \rightarrow n\gamma\gamma$ reconstruction studies will inform ZDC design choices
- 1. 20cm EMCAL + SiPM–on–Tile: E resolution is very good, but lose γ angular information needed for Λ reconstruction
- ~10cm EMCAL + SiPM-on-Tile: EMCAL can act as a sort of "pre-shower" while still enabling γ angular information
- 3. SiPM-on-Tile ONLY: Allows best γ angular reconstruction, but might lose low-E photon capability, potentially more difficult hadronic/EM shower separation

Later Stage $p(e,e'K^+\Lambda[\Sigma^0])$ Reconstruction

- Far Forward large acceptance is even more important for K⁺ form factor than for π⁺ form factor
- Detection of e'K⁺Λ[Σ⁰] triple coincidence over wide range of –t essential for identification of K–pole process, needed for K⁺ form factor extraction from data
 - $\Lambda \rightarrow n\pi^0 \rightarrow n2\gamma$ and $\Sigma \rightarrow \Lambda\gamma \rightarrow n3\gamma$ identification over wide -t only possible if ZDC calorimeter acceptance is extended with addition of a B0 calorimeter
 - Not only essential for F_K, but also would improve forward acceptance for u–channel DVCS, and nuclear coherent diffraction studies

Possible B0 Calorimeter

Greatly extends acceptance!

Summary

- Higher Q² data on π⁺ and K⁺ form factors are vital to our better understanding of hadronic physics
 - Pion and kaon properties are intimately connected with dynamical chiral symmetry breaking (DCSB), which explains the origin of more than 98% of the mass of visible matter in the universe
 - F_π is our best hope to directly observe QCD's transition from confinement-dominated physics at large length–scales to perturbative QCD at short length-scales
- PionLT (E12–19–006) has for the first time, since the pioneering measurements at Cornell in 1970's, acquired the high quality data needed to test these theoretical developments with authority
- KaonLT (E12–09–011) partially completed. First results hopefully out next year
- Measurement of F_{π} at EIC seems feasible
 - Efficient identification of *p(e,e'π⁺n)* triple coincidences with sufficient resolution is feasible according to our simulations
- Measurement of F_K at EIC very challenging
 - A reconstruction studies are likely to inform ZDC design choices