Exploring the Electromagnetic Structure of the Charged Pion and Kaon

Garth Huber
University of Regina

CAP Congress, Ottawa, ON. June 14, 2016.
The pion is attractive as a QCD laboratory:
- Simple, 2 quark system

Electromagnetic form factor can be calculated exactly at very large momentum transfer (small distances).
- For moderate Q^2, it remains a theoretical challenge.
 - “the positronium atom of QCD”

Downside for experimentalists:
- No “free” pion targets.
- Measurements at large momentum transfer difficult.
Measurement of F_π via Electroproduction

Above $Q^2>0.3$ GeV2, F_π is measured indirectly using the “pion cloud” of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + ...$$

- At small $-t$, the pion pole process dominates the longitudinal cross section, σ_L
- In Born term model, F_π^2 appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g^2_{\pi NN}(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique:
1. Isolating σ_L experimentally challenging.
2. The F_π values are in principle dependent upon the model used, but this dependence is expected to be reduced at sufficiently small $-t$.
• 2 F_π experiments have been carried out at JLab
 (spokespersons H. Blok, G. Huber, D. Mack)
 • F_π -1: $Q^2=0.6$-1.6 GeV2 with 4 GeV beam, 1997-2001.
\[
2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon (\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi
\]

Virtual-photon polarization:
\[
\varepsilon = \left(1 + 2 \left(\frac{E_e - E_{e'}}{E_e} \right)^2 + \frac{Q^2}{Q^2} \tan^2 \theta_{e'} \right)^{-1}
\]

- **L-T separation required to separate** σ_L **from** σ_T.
- **Need to take data at smallest available** $-t$, **so** σ_L **has maximum contribution from the** π^+ **pole.**
F_π Extraction from JLab data

- Model is required to extract F_π from σ_L
- JLab F_π experiments used the VGL Regge model [Vanderhaeghen, Guidal, Laget, PRC 57, 1454 (1998)]
 - Propagator replaced by π and ρ Regge trajectories
 - Most parameters fixed by photoproduction data
 - 2 free parameters: Λ_π, Λ_ρ
 - At small $-t$, σ_L only sensitive to Λ_π

\[
F_\pi(Q^2) = \frac{1}{1 + Q^2 / \Lambda_\pi^2}
\]

Horn et al, PRL97, 192001, 2006

The model of: T.K. Choi, K.J. Kong, B.G. Yu [arXiv: 1508.00969] may soon become available as a second way to extract F_π from data.
F_π-2 VGL p(e,e’π\^+)n model check

- To check whether VGL Regge model properly accounts for:
 - \(\pi^+\) production mechanism.
 - spectator nucleon.
 - other off-shell (t-dependent) effects.

extract \(F_\pi\) values for each \(t\)-bin separately, instead of one value from fit to all \(t\)-bins.

![Error band based on fit to all \(t\)-bins.]

- Deficiencies in model may show up as \(t\)-dependence in extracted \(F_\pi(Q^2)\) values.
- Resulting \(F_\pi\) values are insensitive (<2%) to \(t\)-bin used.
- Lends confidence in applicability of VGL model to the kinematical regime of the JLab data, and the validity of the extracted \(F_\pi(Q^2)\) values.

G. M. Huber et al., PRC 78(2008)045203.

Only statistical and \(t\)-uncorrelated systematic uncertainties shown.
\(\pi^-/\pi^+ \) data to check \(t \)-channel dominance

- \(\pi^+ \) \(t \)-channel diagram is purely isovector (G-parity conservation).

\[
R_L = \frac{\sigma_L[n(e,e'\pi^-)p]}{\sigma_L[p(e,e'\pi^+)n]} = \left| A_V - A_S \right|^2 / \left| A_V + A_S \right|^2
\]

- Isoscalar backgrounds (such as \(b_1(1235) \) contributions to \(t \)-channel) will dilute ratio.

- Qualitatively in agreement with our \(F_\pi \)-1 analysis:
 - We found evidence for small additional contribution to \(\sigma_L \) at \(W=1.95 \) GeV not taken into account by the VGL model.
 - We found no evidence for this contribution at \(W=2.2 \) GeV.

![Graphs showing \(\sigma_L/\sigma_L(e^+e^-) \) and \(\sigma_T/\sigma_T(e^+e^-) \) vs. \(-t \) for different \(Q^2 \) and \(W \) values.]

Vranckx-Ryckebusch Model:
- VR extend VGL with hard DIS process of virtual photons off nucleons.

[PRC 89(2014)025203]

\(R_L = 0.8 \) consistent with \(|A_S/A_V| < 6\% \).
Current Experimental Status

JLab results in a region of Q^2 where model calculations begin to diverge.

Bethe-Salpeter/Dyson-Schwinger:
- B-S equation is conventional formalism for relativistic bound states.
- D-S expansion in terms of dressed quark propagators, consistent w/ confinement.
- Model parameters fixed from f_π and m_π, then r_π and F_π predicted.

Constituent Quark Model:
[C-W. Hwang, Phys.Rev.D 64(2001)034001]
- Relativistic constituent quarks and effective interaction on the light front
- Consistent treatment of quark spins.
- Wave function parameters determined from f_π and $\pi^0\rightarrow\gamma\gamma$ decay width, then charge and transition FF’s and π^0 branching ratios predicted.

For details see: G.M. Huber et al., PRC 78(2008)045203.

Dispersion Relation with QCD Constraint:
- Uses constraints posed by causality and analyticity to relate the timelike and spacelike domains of the pion form factor on the complex plane.
- Additional constraints, such as behavior of F_π in asymptotic region, imposed.
12 GeV era – Hall C with SHMS and HMS

SHMS:
- 11 GeV/c Spectrometer
- Partner of existing 7 GeV/c HMS

MAGNETIC OPTICS:
- Point-to-Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:
- Drift Chambers
- Hodoscopes
- Cerenkovs
- Calorimeter
- All derived from existing HMS/SOS detector designs

Well-Shielded Detector Enclosure

Rigid Support Structure
- Rapid & Remote Rotation
- Provides Pointing Accuracy & Reproducibility demonstrated in HMS

SHMS:
- dQQQD

SHMS (New)

HMS:
- QQQD

HMS (Exists)

SHMS = Super High Momentum Spectrometer

HMS = High Momentum Spectrometer
JLab 12 GeV upgrade will allow measurement of F_π up to $Q^2 = 6 \rightarrow 8.5$ GeV2

No other facility worldwide can perform this measurement.

New overlap point at $Q^2=1.6$ will be closer to pole to constrain $-t_{min}$ dependence.

New low Q^2 point will provide best comparison of the electroproduction extraction of F_π vs elastic π^+e^- data.

Approved with “A” scientific rating and identified by JLab PAC41 as “high impact”. (E12-06-101: GH, D. Gaskell, spokespersons)

Extension to $Q^2=8.5$ GeV2 submitted to PAC44 (GH, D. Gaskell, T. Horn, spokespersons)
The Charged Kaon – a second QCD test case

- In the hard scattering limit, pQCD predicts that the π^+ and K^+ form factors will behave similarly

\[
\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow{Q^2 \to \infty} f_K^2
\]

- It is important to compare the magnitudes and Q^2-dependences of both form factors.
Measurement of K^+ Form Factor

- Similar to π^+ form factor, elastic K^+ scattering from electrons used to measure charged kaon for factor at low Q^2

 [Amendolia et al, PLB 178, 435 (1986)]

- Can “kaon cloud” of the proton be used in the same way as the pion to extract kaon form factor via $p(e,e'K^+)$△?

- Kaon pole further from kinematically allowed region.

- Can we demonstrate that the “pole” term dominates the reaction mechanism?
Isolate Exclusive Final States via Missing Mass

\[M_X = \sqrt{(E_{\text{det}} - E_{\text{init}})^2 - (p_{\text{det}} - p_{\text{init}})^2} \]

- SHMS+HMS missing mass resolution expected to be very good.
- Spectrometer coincidence acceptance allows for simultaneous studies of \(\Lambda \) and \(\Sigma^0 \) channels.
- Kaon-pole dominance test through
 \[\frac{\sigma_L(\gamma^* p \rightarrow K^+ \Sigma^0)}{\sigma_L(\gamma^* p \rightarrow K^+ \Lambda^0)} \]
- Should be similar to ratio of \(g_{pK\Lambda}^2 / g_{pK\Sigma}^2 \) coupling constants if t-channel exchange dominates.

Simulation at \(Q^2=2.0 \text{ GeV}^2 \), \(W=3.0 \) and high \(\varepsilon \)
Projected Uncertainties for K^+ Form Factor

- First measurement of F_K well above the resonance region.

- Measure form factor to $Q^2=3$ GeV2 with good overlap with elastic scattering data.
 - Limited by $-t<0.2$ GeV2 requirement to minimize non-pole contributions.

- Data will provide an important second $qar{q}$ system for theoretical models, this time involving a strange quark.

Scheduled as an early SHMS commissioning experiment: LT-separation. (E12-09-011: T. Horn, G. Huber and P. Markowitz, spokespersons)
Hall C Meson Form Factors Timeline

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHMS superconducting magnet installation and testing</td>
<td>Until Sept, 2016</td>
</tr>
<tr>
<td>SHMS front detector installation</td>
<td>July – Aug, 2016</td>
</tr>
<tr>
<td>SHMS commissioning with beam</td>
<td>Dec 6 – 21, 2016</td>
</tr>
<tr>
<td>First physics-quality runs in Hall C</td>
<td>Feb 11 – May 7, 2017</td>
</tr>
<tr>
<td>First p(e,e’K+) run</td>
<td>May 31 – June 20, 2017</td>
</tr>
</tbody>
</table>

Data Reconstruction Software (hcana)
- Z. Ahmed (PDF), completed

SHMS Detector Checkout & Commissioning
- W. Li (Ph.D.), S. Basnet (M.Sc.), work underway

p(e,e’K+)Λ Kaon Form Factor
- L/T commissioning experiment (2017 – 2018)

Pion Form Factor and π+ QCD-Scaling Experiments
- Interleaved run-plans (2018 – 2020)

Garth Huber, huberg@uregina.ca