Early Science Projections for π^+ Form Factor Studies with ePIC at the EIC

Garth Huber, Love Preet University of Regina Stephen Kay University of York

CAP Congress, Saskatoon, SK June 9, 2025

APP BAR HATTY TIN

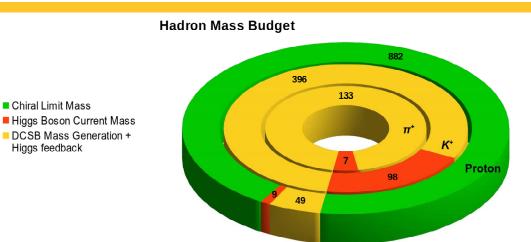
SAPPJ-2025-00040 SAPIN-2021-00026

Center for Frontiers in Nuclear Science

The Big Question

- Hadrons are nature's smallest composite system, composed of quarks and gluons with scale ~10⁻¹⁵m
- Hadron properties arise from unusual features of the QFT (Quantum ChromoDynamics) that governs constituent interactions
- QCD coupling, α_S, runs dramatically with momentum scale, so that quark-gluon interactions become feeble when two quarks are brought close together within a hadron
- QCD gauge boson, the gluon, self-interacts prolifically, so that quark-gluon interactions become enormously strong when quark separation is increased, leading to "*The Confinement Problem*"
- Confinement is crucial because it ensures absolute stability of proton
- In absence of confinement:
 - Hydrogen atom would be unstable
 - Nucleosynthesis would be a rare event
 - No stars, Our universe could not exist

QCD is responsible for most mass

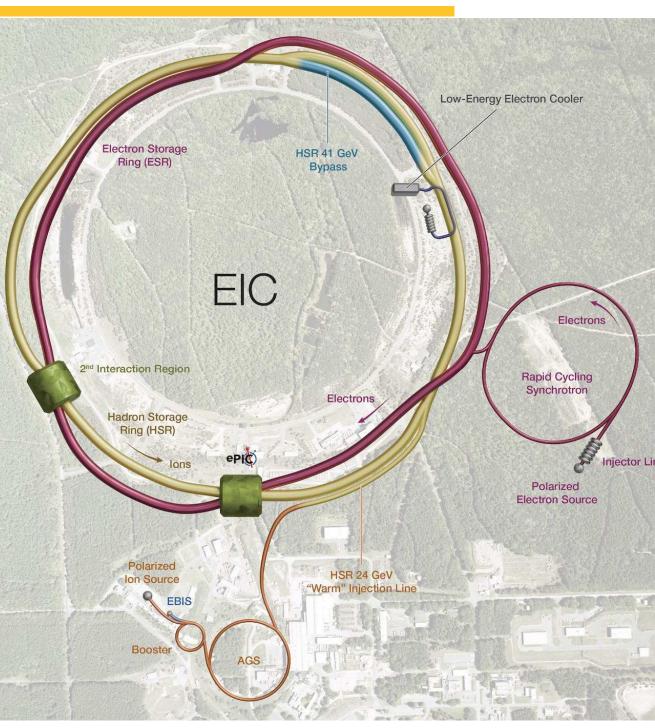


In appearance, QCD is simple, but it is also unique

- It is a fundamental theory with the capacity to sustain massless elementary degrees-of-freedom, *i.e. quarks and gluons*
- Yet, quarks and gluons are predicted to acquire mass dynamically
- The mass of nucleons and almost all hadrons likewise
- <10% of proton's mass is attributable to Higgs mechanism
 Clearly, there is another phenomenon in nature extremely effective in producing mass:
 EMERGENT HADRON MASS (EHM) of QCD produces 94% of proton's mass
 - In QFT, mass and length⁻¹ are effectively interchangeable
 - Thus, asking for the origin of >90% of visible mass in the universe is probably equivalent to asking what is the source of the proton's size
- This is directly linked to the Confinement Scale of QCD
- How can we better understand these fundamental questions?

Emergence of Hadron Mass – Contrasts

EIC Meson WG: J.Phys.G **48**(2021)075106


Compare proton, K⁺, π^+ mass budgets

- π and K are massless in chiral limit (i.e. they are Nambu-Goldstone bosons of QCD) \rightarrow No green ring in figure
 - Without the Higgs mechanism, π and K would be indistinguishable
- But they are always distinguishable from the proton!
 - Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit) → Large green ring
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K
- Very few things are empirically known about the structures of π and K
 - Progress in understanding confinement and the origin of most mass relies on our better understanding the π and K

The Electron–Ion Collider (EIC)

- International facility with estimated cost of ~US\$2.5B underway at Brookhaven National Lab (NY)
- Polarized electrons 10-20 GeV
- Polarized light ions (p, d, ³He) and unpolarized nuclei 50-250 GeV
- High luminosity of 10^{33–}10³⁴ cm⁻²s⁻¹
- ~1000x higher luminosity than only previous e-p collider, HERA in 1990's
- The world's first polarized-polarized beam collider
- First collisions ~2032

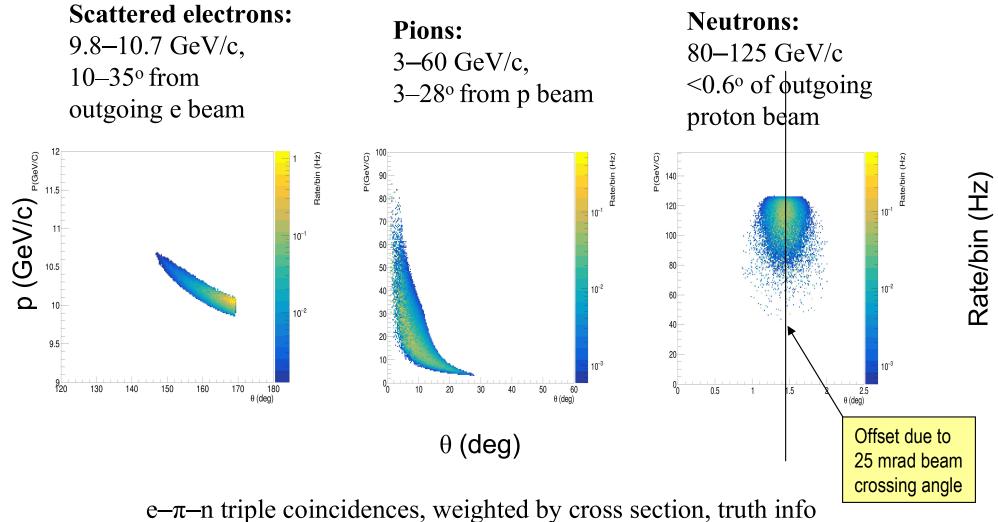
EIC Planned Early Running

- EIC early science program is a current priority and is evolving
- Based on lessons learned from past colliders
- A sequential ramp up of capabilities each year
- Early opportunities for π and K form factor studies

Proposal for EIC Science Program in the First Years

Year - 1	Year 2	Year - 3	Year - 4	Year - 5
Start with Phase 1 EIC New Capability: Commission electron	Phase 1 EIC + electron polanzation New Capability:	Phase 1 EIC + electron polarization + proton polarization	Phase 1 EIC + electron polarization + proton polarization	Phase 1 EIC + electron polarization + proton polarization
Add your preferred science topic	Commission proton polarization in parallel Run: 10 GeV polarized electrons on 130 GeV/u Deuterium Instics: Add your preferred science topic Run:	New Capability: Commission running with hadron spin otators Run: 10 GeV polarized electrons on 130 GeV transverse polarized protons Physic	 + operation of hadron spin rotators New Capability: Commission hadron accelerator to operate with not centered orbits tun: 10 GeV polarized electrons on 100 GeV Au Physics: 	 + operation of hadron spin rotators + operation of hadron beams with not centered orbits Run: 10 GeV polarized electrons on 100 GeV Au Physics: Add your preferred science topic
	Last weeks 10 GeV electrons and 130 GeV polarized protons Physics: Add your preferred science topic	Add your preferred science topic Run: Last weeks switch to longiturinal proton polarization Physics: Add your preferred science topic	Add your preferred science topic Run: 10 GeV electrons on 250 GeV transverse and longitudinal nolarized protons Physics . Add your preferred science topic	Run: 10 GeV electrons on 166 GeV transvers and longitudinal polarized He-3 Physics: Add your preferred science topic

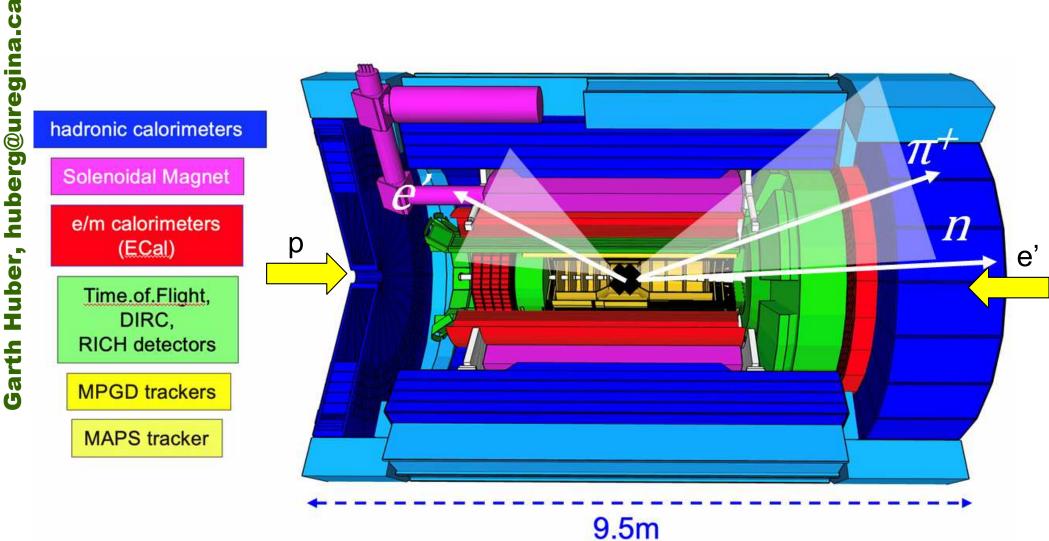
Low Divergence	Lumi per Fill (5 h)	Lumi per Year
5 GeV e x 250 GeV p	6.81 pb ⁻¹	4.78 fb ⁻¹
10 GeV e x 250 GeV p	8.8 pb ⁻¹	6.19 fb ⁻¹
5 GeV e x 130 GeV p	5.8 pb ⁻¹	4.1 fb ⁻¹
10 GeV e x 130 GeV p	7.1 pb ⁻¹	4.95 fb ⁻¹



$p(e,e'\pi^+n)$ Particle Kinematics

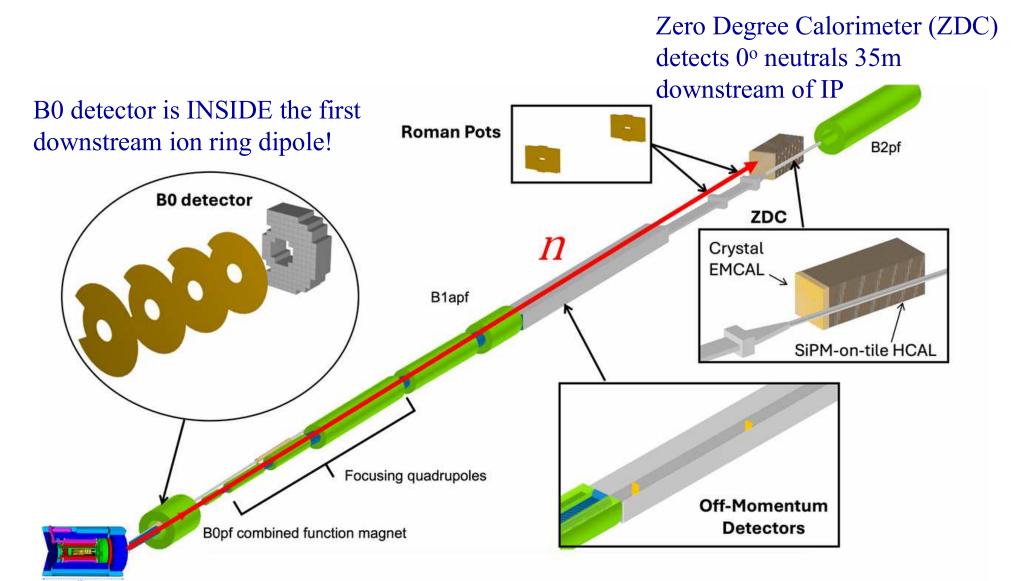
Assure exclusivity of $p(e,e'\pi^+n)$ reaction by detecting all 3 particles

10(e⁻) x 130(p) GeV Collisions



Garth Huber, huberg@uregina.ca

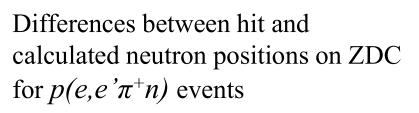
$p(e,e'\pi^+n)$ Particle Kinematics


- e' and π^+ hit the central detector
- The high energy neutron escapes down the ion ring exit

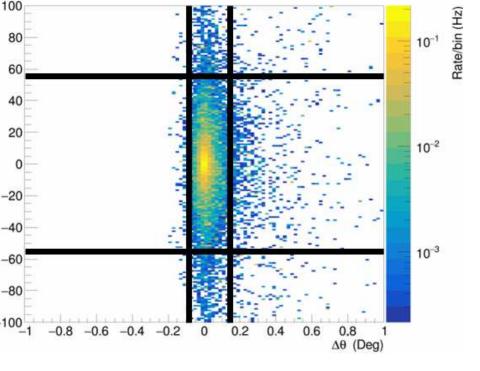
$p(e,e'\pi^+n)$ Particle Kinematics

- One of the lessons learned from HERA is to integrate hermetic detector coverage with the accelerator from the outset, as it is being designed
- Neutrons are very forward focused, hit ZDC or B0 detectors

Selecting Exclusive $p(e,e'\pi^+n)$ Events

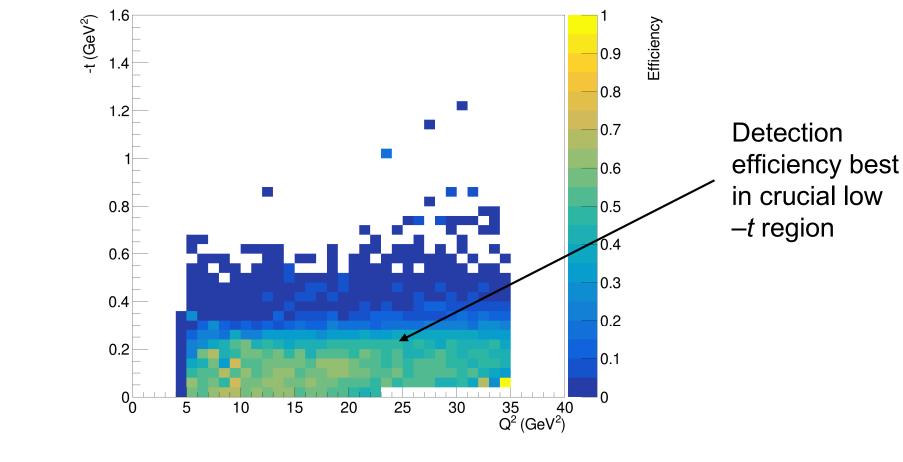

- Need to cleanly identify e' π⁺ n triple coincidence events in midst of large inclusive e' π⁺ coincidence background
- To begin, require that simultaneously we have:
 - 1 negatively charged track in -z direction (e')
 - 1 positively charged track in +z direction (π^+)
 - 1 high energy reconstructed neutral cluster in ZDC
 - E_n>40 GeV
 - $\theta_n^* < 4 \text{ mrad}$
- The ZDC has excellent position (θ,φ) resolution, but much poorer energy resolution
 - If the detected neutron is from an exclusive event, the ZDC should be near the location predicted from momentum conservation
 - i.e. the location calculated via $\vec{p}_{miss} = \vec{p}_e + \vec{p}_p \vec{p}_{e'} \vec{p}_{\pi^+}$
 - This condition only true if there are NO other emitted particles, i.e. the event is from an EXCLUSIVE $p(e,e'\pi^+n)$ reaction

Example $p(e,e'\pi^+n)$ Exclusivity Cut


Δφ (Deg)

Make use of high angular resolution of ZDC to reduce non-exclusive background events

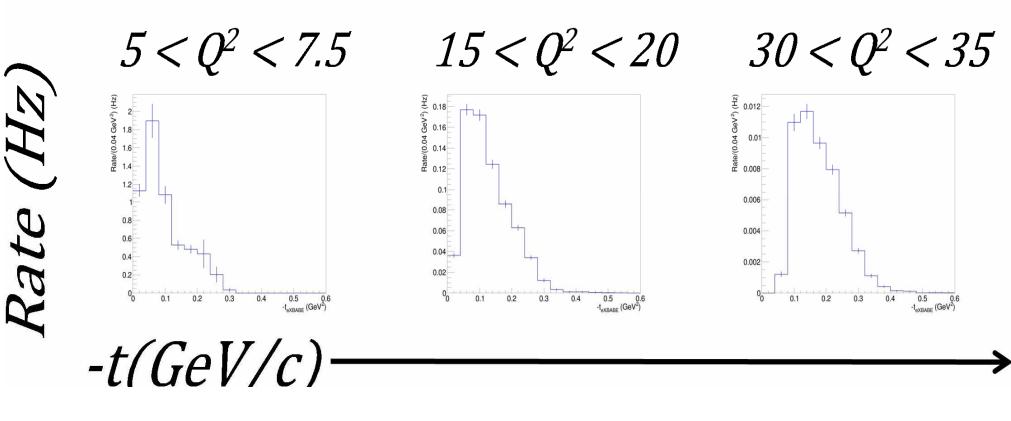
- Compare hit (θ,φ) positions of energetic neutron on ZDC to calculated position from p_{miss}
- If no other particles are produced (i.e. exclusive reaction) these quantities should be highly correlated
- Energetic neutrons from inclusive background processes will be less correlated, since additional lower energy particles are produced


Cuts applied: $-0.09^{\circ} < \Delta \theta < 0.14^{\circ}$ $-55^{\circ} < \Delta \phi < 55^{\circ}$ in addition to triple coincidence cuts

$p(e,e'\pi^+n)$ Detection Efficiency per (Q^2,t) bin

Require EXACTLY two tracks:

- One positively charged track in +z direction (π^+)
- One negatively charged track in –z direction (e')


AND at least one hit in Zero Degree Calorimeter (ZDC)

• For 10x130 events, require the hit has Energy Deposit > 40 GeV

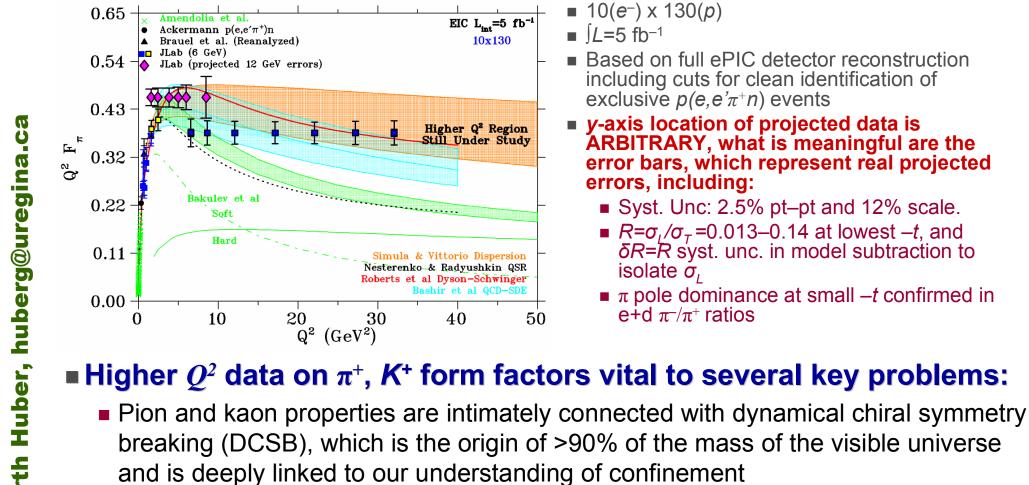
Predicted $p(e,e'\pi^+n)$ rates per Q^2 -t bin

- Rates after applying cuts, binned in Q² and t for 10x130 beam combo with L=4.48 x 10³³ cm⁻²s⁻¹
- Q^2 bins: 2.5 GeV² wide for $Q^2 \le 10$ GeV², 5 GeV² wide for $Q^2 > 10$ GeV²
- From rate/bin, calculate #events for $\int L = 5$ fb⁻¹, project to F_{π} uncertainties

F₂ EIC Early Running Projections

EIC L_{int}=5 fb⁻¹

10x130


Higher Q² Region Still Under Study

Simula & Vittorio Dispersion Nesterenko_& Radyushkin QSR

40

Roberts et al Dyson-Schwinger Bashir et al QCD

Next steps include:

20

 \tilde{Q}^2 (GeV²)

• Extension of $p(e,e'\pi^+n)$ event generator to higher Q^2

30

Simulation of e+d 10x130 collisions to be available in Year 2 of EIC running

50

• Refinements to event simulation/reconstruction, such as π^+ PID in Forward DIRC, and Far Forward event reconstruction algorithms

14

- $10(e^{-}) \times 130(p)$
- $\int L = 5 \text{ fb}^{-1}$
- Based on full ePIC detector reconstruction including cuts for clean identification of exclusive $p(e, e'\pi^+n)$ events
- y-axis location of projected data is ARBITRARY, what is meaningful are the error bars, which represent real projected errors, including:
 - Syst. Unc: 2.5% pt-pt and 12% scale.
 - $R = \sigma_L / \sigma_T = 0.013 0.14$ at lowest -t, and $\delta R = R$ syst. unc. in model subtraction to isolate σ_{i}
 - π pole dominance at small -t confirmed in e+d π^{-}/π^{+} ratios