Deep Exclusive Meson Production at Jefferson Lab Hall C

Garth Huber University of Regina

CAP Congress, Université de Montréal, May 27, 2013.

Fundamental questions in hadron physics

1950-1960: Does the proton have finite size and structure?

- Elastic electron-proton scattering
 - ⇒ the proton is not a point-like particle but has finite size
 - charge and current distribution in the proton, G_E/G_M

Nobel prize 1961- R. Hofstadter

1960-1990: What are the internal constituents of the nucleon?

Deep inelastic scattering

discover quarks in 'scaling' of structure function and measure their momentum and spin distributions

Nobel prize 1990 - J. Friedman, H. Kendall, R. Taylor

Today: How are the nucleon's charge & current distributions related to the quark momentum & spin distributions?

Beyond form factors and quark distributions – Generalized Parton Distributions (GPDs)

ELASTIC SCATTERING:

Proton form factors, transverse charge & current densities

DEEP EXCLUSIVE SCATTERING:

Correlated quark momentum and helicity distributions in transverse space - GPDs

DEEP INELASTIC SCATTERING:

Structure functions, quark longitudinal momentum & helicity distributions

GPD Studies require Hard Exclusive Reactions

- In order to access the physics contained in GPDs, one is restricted to the hard scattering regime.
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached.

Factorization property of hard reactions:

- Hard probe creates a small size $q\overline{q}$ and gluon configuration,
 - interactions can be described by pQCD.
- Non-perturbative part describes how hadron reacts to this configuration, or how the probe is transformed into hadrons (parameterized by GPDs).

GPD Studies require Longitudinal Virtual Photons

- Hard exclusive meson electroproduction first shown to be factorizable by Collins, Frankfurt & Strikman [PRD 56(1997)2982].
- Factorization applies when the γ^* is longitudinally polarized.
 - corresponds to small size configuration compared to transversely polarized γ^* .

Applicability of the GPD Mechanism

- Determining the bounds of the kinematic regime where the GPD mechanism may apply is a high priority for JLab 12 GeV.
 - GPDs can only be extracted from hard exclusive data where hard-soft factorization applies.
- One of the most stringent tests of factorization is the Q² dependence of the π⁺ or K⁺ electroproduction cross section
 - σ_L scales to leading order as $1/Q^6$.
 - σ_T scales as $1/Q^8$.
 - As Q^2 becomes large: $\sigma_L >> \sigma_T$.

- Contribution of σ_T unknown at higher energies.
- Need to <u>experimentally demonstrate</u> $\sigma_L >> \sigma_T$ at higher Q² \rightarrow not just assume it.
- If transverse contributions are larger than anticipated, the accessible phase space for GPD studies may be limited.

Upgrades to Experimental Hall C

Standard 6 GeV Operation

Hall C's High Momentum Spectrometer, Short Orbit Spectrometer and specialized equipment for studying:

- The strange quark content of the proton.
- Form factors of simple quark systems.
- The transition from hadrons to quarks.
- Nuclei with a strange quark embedded.

Future 12 GeV Operation

Add a Super- High Momentum (11 GeV) Spectrometer for studying:

- Super-fast (high x_{B}) quarks.
- Form factors of simple quark systems.
- The transformation of quarks into hadrons.
- Quark-quark correlations.

SOS Dipole Leaves Hall-C...

...and SHMS Wheels Arrive

Thomas Jefferson National Accelerator Facility

SHMS Focal Plane Detectors

Thomas Jefferson National Accelerator Facility

SHMS+HMS Scaling Experiment Goals

- Measure the Q² dependence of the p(e,e'π⁺)n, p(e,e'K⁺)Λ, p(e,e'K⁺)Σ cross sections at fixed x_B and –t to search for evidence of hard-soft factorization
 - Separate the cross section components: L, T, LT, TT
 - Highest Q² for any L/T separation in π ,K⁺ electroproduction

Our theoretical understanding of hard exclusive reactions will benefit from L/T separated pion and kaon data over a large kinematic range

- Quasi model-independent comparison of pion and kaon data would allow a better understanding of the onset of factorization
- Constraints for QCD model building using both pion and kaon data (flavor degrees of freedom)
- Understanding of basic coupling constants (Σ°/Λ ratio)

SHMS+HMS Scaling Experiment Overview

- Measure separated cross sections for the p(e,e'π⁺)n, p(e,e'K⁺)Λ, p(e,e'K⁺)Σ reactions at three values of x_B.
- Q² coverage is a factor of 3-4 larger compared to 6 GeV.
 - Facilitates tests of the Q² dependence even if L/T is less favorable than predicted.

X	Q² (GeV/c)²	W (GeV)	-t (GeV/c)²
0.31	1.5-4.0	2.0-3.1	0.1
0.40	2.1-5.5	2.0-3.0	0.2
0.55	4.0-9.1	2.0-2.9	0.5

Phase space for L/T separations with SHMS+HMS

Projected $p(e,e^{n+1})n$ **Uncertainties for 1/Qⁿ Scaling**

 $p(e,e'K^+)\Lambda,\Sigma$ measurement scheduled as one of the SHMS+HMS commissioning experiments, to run in 2016-17. \rightarrow First L/T separation involving both spectrometers.

Next Generation Study: Polarized GPD \tilde{E}

• \tilde{E} involves a helicity flip:

Depends on the spin difference between initial and final quarks.

$$\sum_{q} e_q \int_{-1}^{+1} dx \ \tilde{E}^q(x,\xi,t) = G_P(t)$$

 $G_P(t)$ is highly uncertain because it is negligible at the momentum transfer of β -decay.

- \tilde{E} not related to an already known parton distribution \rightarrow essentially unknown.
- Experimental information can provide new nucleon structure information unlikely to be available from any other source.

Polarized GPD \tilde{E}

The most sensitive observable to probe \tilde{E} is the transverse single-spin asymmetry in exclusive π production:

Requires both an L/T separation and a transversely polarized target. \rightarrow Very challenging measurement!

GPD information in A_L^{\perp} may be particularly clean

- GPD formalism is restricted to regime where hard & soft contributions factorize.
- A[⊥] is especially interesting because it is expected to display precocious factorization at only Q²~2-4 GeV².
- Argument by Frankfurt et al. [PRD 60(1999)014010]
 - Precocious factorization of the π production amplitude into three blocks is likely:
 - 1. overlap integral between γ , π wave functions.
 - 2. the hard interaction.
 - 3. the GPD.

Higher order corrections, which may be significant at low Q², likely cancel in the asymmetry ratio.

Cancellation of Higher Twist Corrections in A_L^{\perp}

Belitsky and Müller GPD based calc. reinforces this expectation:

- At Q²=10 GeV², NLO effects can be large, but cancel in the asymmetry, A[⊥]_L
 (PL B513(2001)349).
- At Q²=4 GeV², higher twist effects even larger in σ_L , but still cancel in asymmetry (CIPANP 2003).

This relatively low value of Q² for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

L/T Separations Essential to A_L^{\perp}

- In hard meson electroproduction, factorization can only be applied to longitudinal photons.
- Unlike other ongoing or proposed experiments, where dominance of longitudinal contribution is simply assumed, JLab's unique contribution to this field is in:
 - ability to take measurements at multiple beam energies.
 - unambiguous isolation of A_L^{\perp} using Rosenbluth separation.
- A JLab A[⊥] measurement could thus establish the applicability of the GPD formalism, and precocious scaling expectations, for other A[⊥] experiments.

High Luminosity Essential to A_L^{\perp}

- **Physics case for a measurement of A_L^{\perp} is compelling.**
- High luminosity required:
 - σ_L is largest in parallel kinematics, where $A_L^{\perp}=0$.
 - σ_L is small where A_L^{\perp} is maximal.
- The measurement has long been considered to be impossible because of the lack of a polarized target that can handle the required high luminosity.

Recent advancements in polarized ³He target technology may allow the measurement to proceed via the n(e,e³π⁻)p reaction.

Hall A Polarized ³He Target: FOM(P²L)=0.22E+36

UNH/Xemed Target Loop Concept: P²L=0.55E+38

- Compress polarized ³He and deliver to aluminum target cell
- Non-ferrous diaphragm compressor achieves 3000 psi (~200 bar)
- Returns through a pressure-reducing orifice

Requires two ports, entrance and exit

³He Polarized Target Rationale

- By providing optical pumping repolarization rates that keep ahead of beam depolarization rates, we propose development of a scalable polarized ³He target system that:
 - provides a ³He target thickness as high as 0.5 g/cm² in 10 cm
 - accepts the full 80µA polarized beam current at Jefferson Laboratory, and
 - maintains 65% polarization at luminosity of 10³⁸ e-nucleons/cm².
- By relocating critical components of the polarizer system in a loop outside the beam enclosure, we can incorporate redundancy and eliminate single points-of-failure.

Working Large-Scale ³He Polarizer Prototype

Assembled, Operating ³He Polarizer

- Spin-up curve measured by laserpolarization-inversion.
- Spin-up rate ~15%/hr.

April 23, 2012

- 8.5L aluminosilicate glass cell.
- Pressure-vessel enclosure.
- Operation up to 20 atm.
- Hybrid pumping with K:Rb.
- Spectrally narrowed 2.5kW laser.

High Luminosity Polarized ³He Target Status

Many of the hardest technological hurdles have been demonstrated through working prototypes.

- 1. <u>Large-scale ³He polarizer</u> can operate at temperatures, pressures and laser-beam intensities that replace spins (much) faster than they will be destroyed by the beam at $L=5\times10^{37}$ cm⁻²s⁻¹.
- 2. Capability to develop and produce industrial-quality <u>compressor pumps</u> from non-ferrous materials.

Next phase of development:

- 1. Need to demonstrate high polarization (inadvertent contamination has limited asymptotic polarization <50%).
- 2. Need to make a cell with inlet and exit ports.
- 3. Need to measure ³He depolarization in a loop that includes pump and orifice.

JLab PAC39 Comments, June 2012

- **PR12-12-005:** *"The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Electroproduction",* D.J. Gaskell, F.W. Hersman, G.M. Huber, D. Dutta, Spokespersons
- The scientific case is really worthwhile. However, in view of many technical issues for this very challenging high luminosity polarized ³He target, the proposed experiment cannot be part of the top half of the priority list of experiments to be established for the first 5 years of 12 GeV operations.

The PAC encourages the group to purse all these technical efforts to provide a new generation of high luminosity polarized ³He target from which several other experiments can benefit."