u-Channel Omega Meson Production from the Fpi-2 Experiment

Student: Bill (Wenliang) Li Supervisor: Garth Huber

Hall C Workshop. January, 2017.

Outlook from last year and Outline

- Outline
 - Brief introduction to the experiment
 - Theoretical Justification
 - Preliminary Experimental Results

Fpi-2 E01-004 Experiment

- Fpi-2 (E01-004) 2003
 - Spokesperson: Garth Huber, Henk Blok
 - Standard HMS and SOS (e) configuration
 - Electric form factor of charged 400 through exclusive π production 300
- Primary reaction for Fpi-2
 - p(e, e' π⁺)n
- In addition, we have for free
 - p(e,e' p)ω
- Kinematics coverage
 - W= 2.21 GeV, Q²=1.6 and 2.45 GeV²
 - Two ϵ settings for each Q^2

Coincidence time

epX missing mass

t-Channel π vs *u*-Channel ω^0 Production

Exclusive ω **Electro-Production Data**

Closest data set to ours is the Hall B Morand data

	Q ² GeV ²	W GeV	x	-t GeV²
HERMES (Airapetian et al., 2014)	> 1	3-6.3	0.06-0.14	< 0.2
DESY (Joos et al., 1977)	0.3-1.4	1.7-2.8	0.1-0.3	< 0.5
Zeus (Breitweg et al., 2000)	3-20	40-120	~0.01	< 0.6
Cornell (Cassel et al., 1981)	0.7-3	2.2-3.7	0.1-0.4	<1
JLab Hall C (Ambrozewicz et al., 2004)	~0.5	~1.75	0.2	0.7-1.2
JLab Hall C (Dalton et al., 2005)	5-7	1.5		>4.0
JLab Hall B (Morand et al., 2005)	1.6-5.1	1.8-2.8	0.16-0.64	<2.7
JLab Fpi-2 (2017)	1.6, 2.45	2.21	0.29, 0.38	4.0, 4.74

Regge Trajectory Model by JM Laget

Further motivation: Transition Distribution Amplitude (TDA)

- TDA backward angle analog of GPD
- Interaction of Interest: u-channel pseudocalar and vector π and production
- Extension of the TDA model to describe the backwards vector meson production
- TDA Factorization Made two Predictions (B. Pire, K. Semenov, L. Szymanowski, Phys. Rev. D, 91, 094006 (2015)).
 - The dominance of the transverse polarization of the virtual photon resulting in the suppression of the longitudinal cross section by at least $1/Q^2$: $\sigma_T > \sigma_L$. (We can validate this !)
 - The Characteristic $1/Q^8$ -scaling behaviour of the σ_T for a fixed Bjorken x (We can't test this.)

Analysis: Cuts Applied and Efficiency Study

Cuts Applied

- Detector acceptance cuts
- Cointime-hsbeta cuts (Hsbeta=0 events included)
- PID Cuts
- Diamond cuts
- *u* cut
- Efficiency Results
 - Tracking Efficiency Correction (<3%)
 - Proton Scattering Efficiency (4.7%)
 - Aerogel Cut Efficiency (7.3%)
 - Other standard efficiencies

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

Analysis: e+H Elastic Cross-Section

 Extracted cross section is consistent with Bosted, AMT (Arrington, Melnitchouk, Tjon Phys. Rev. C 76, 035205 (2007)) and Brash empirical e-p elastic cross section parameters.

 ±2.0% (point to point) error from Heep will be the included to the final Omega analysis systematics

Rosenbluth Separation Method

- Rosenbluth Separation method requires
 - Separate measurements are taken at different *e* (virtual photon polarization)
 - All Lorentz invariant physics quantities such as Q², W, t, u, remain constant
 - Beam energy, scattered e angle and virtual photon angle will change as the result, thus event rates are dramatically different

Missing Mass Distribution

0.5

0.6

0.7

0.8

0.9

Iterative Procedure (Recipe) to A Full LT Separation

Missing Mass Distribution Background Extraction

- Bin Exclusion criteria:
 - Radiative tail exceeds 50% total ω sim
 - Less that 100 counts

Background Extraction and Check

Yield Ratio and Simulated Cross-Section

Unseparated Cross Section (Money Plot)

Separated Cross Section

- Observations:
 - SigT dominate SigL at 2.45 at u~0: validated the TDA prediction (σ_T > σ_L) for Q² =2.45
 - SigT behave differently at different Q².
 - LT and TT are small

Remaining Work

- Reconstruct the focal plane parameters
- Systematics studies:
 - Integration limit dependence
 - Fitting limit dependence
- Demonstrate stability of the separated cross section
- A rebin analysis is on the way
- Compare to the predicted result by TDA model

Future Backward Meson Production Opportunities

- Potential LOI (2018):
 - **Backward** π^0 production at Hall C.
- Other extreme forward angle physics program
- Fpi 12 experiment (for free)

η, η', ω, φ(ss), ρ

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK 5

Thanks You

- Special thanks to Dave Gaskell and Henk Blok.
- Fantastic quality NTuples analyzed by Tanja Horn.
- Gratitude to my graduate student colleagues and my family (specially my wife Noemi)

Fpi-2 E01-004 Experiment

- Fpi-2 (E01-004) experiment: 2nd pion form factor experiment 2001
 - Spokesperson: Garth Huber, Henk Blok, Dave Mack
 - Standard HMS and SOS (e) configuration.
- Using exclusive charged π production to determine the electric form factor from the L/T separated differential cross section

	E_{beam} GeV	$P_{ m SOS}$ GeV/c	$ heta_{ m SOS}$ deg	ϵ	$P_{ m HMS}$ MeV/c	$ heta_q$ deg	$ heta_{ m HMS} - heta_q \ m deg$	x GeV/c	P_m deg	$ heta_{mq}$	-t GeV ² /c ²	-u GeV ² /c ²
Primary reaction for Fpi-2				Ç	$Q^2_{nominal} =$	1.6 Ge	\mathbf{V}^2 W_{nomin}	_{al} = 2.21	GeV			
p(e, e' π ⁺)n and n(e, e' π ⁻)p	3.778	-0.79	43.09	0.328	-9.534	2931	$-1.0 \\ -3.0$	0.2855	0.311 0.367	9.17 24.59	4.014	0.087 0.129
 Through standard <i>t</i>-channel 	4.702	-1.65	25.73	0.5933	-13.281	2931	$0.0 \\ 2.7 \\ -3.0$	0.2855	0.304 0.357 0.367	0.09 22.93 24.61	4.014	0.082 0.121 0.129
In addition, we have (for free)				Q	$_{nominal}^{2}$ =	2.45 Ge	eV^2 W_{nomin}	$a_{nal} = 2.21$	GeV			
■ <i>p</i> (e,e' <i>p</i>)ω	4.210	-0.77	51.48	0.270	-9.190	3336	-1.4 -3.0	0.3796	0.431 0.491	10.57 20.82	4.742	0.184 0.241
Through <i>u</i> -channel	5.248	-1.74	29.43	0.554	-13.606	3336	$0.0 \\ -3.0 \\ 3.0$	0.3796	0.415 0.491 0.490	0.00 20.79 20.75	4.742	0.169 0.241 0.240

- Kinematics coverage
 - Same of Fpi-2 π^+ data
 - Same data set:
 - W= 2.21 GeV, Q²=1.6 and 2.45 GeV²
 - Two ϵ settings for each Q^2

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

 $\omega \text{ (782): } J^{P} = 1^{-}, I^{G} = 0^{-}, \omega : \frac{uu + dd}{\sqrt{2}}$

M_ω =782 MeV.

High -t Data from CLAS Hall B (2005)

Integrated over $-2.7 \text{ GeV}^2 < t < t_0$ where t_0 ranges -0.09 to -1.61 GeV, as x ranges between 0.203 to 0.61 Specialty: Highest -*t* (low *u*) ω meson production data

Excitement:

- Observation: Q² independent cross section at high -t
- Possible interoperation: Virtual photon is more likely to couple to a point-like object as -t increases.

Pseudoscalar meson (J^P = 0⁻)

Particle name	Particle symbol ¢	Antiparticle symbol	Quark content	Rest mass (MeV/c²) ¢	le ♦	J ^{PC} ¢	S ¢	C ¢	B' \$	Mean lifetime (s) 🗢	Commonly decays to (>5% of decays)
Pion ^[6]	π*	π	ud	139.570 18 ±0.000 35	1-	0-	0	0	0	$(2.6033 \pm 0.0005) \times 10^{-8}$	μ ⁺ + ν _μ
Pion ^[7]	π ⁰	Self	$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$	134.9766 ±0.0006	1-	0-+	0	0	0	(8.52±0.18)×10 ⁻¹⁷	γ + γ
Eta meson ^[8]	η	Self	<u>uū+dd−2sš</u> [ª] √6	547.862 ±0.018	0+	0-+	0	0	0	(5.02 ± 0.19) × 10 ^{−19[0]}	$\gamma + \gamma \text{ or}$ $\pi^{0} + \pi^{0} + \pi^{0} \text{ or}$ $\pi^{+} + \pi^{0} + \pi^{-}$
Eta prime meson ^[9]	η'(958)	Self	<u>uū+dđ+sā</u> [] √3	957.78 ±0.06	0+	0-+	0	0	0	(3.32±0.15) × 10 ^{-21^[0]}	$\pi^{+} + \pi^{-} + \eta \text{ or}$ $(\rho^{0} + \gamma) / (\pi^{+} + \pi^{-} + \gamma) \text{ or}$ $\pi^{0} + \pi^{0} + \eta$
Charmed eta meson ^[10]	η _c (1S)	Self	cc	2 983.6 ±0.7	0+	0-+	0	0	0	(2.04 ± 0.05) × 10 ^{-23[0]}	See η_c decay modes \mathbb{A}
Bottom eta meson ^[11]	η _b (1S)	Self	bb	9 398.0 ±3.2	0+	0-+	0	0	0	Unknown	See η _b decay modes 🐊
Kaon ^[12]	ĸ	ĸ	us	493.677 ±0.016	1∕2	0-	1	0	0	(1.2380 ±0.0021) × 10 ⁻⁸	$\mu^{+} + \nu_{\mu} \text{ or}$ $\pi^{+} + \pi^{0} \text{ or}$ $\pi^{0} + e^{+} + \nu_{e} \text{ or}$ $\pi^{+} + \pi^{+} + \pi^{-}$
Kaon ^[13]	K ⁰	 ⁰	ds	497.614 ±0.024	1⁄2	0-	1	0	0	[0]	[0]

Particle name	Particle symbol ¢	Antiparticle symbol	Quark content	Rest mass (MeV/c²) ¢	I ^G ¢	J ^{PC} ¢	S ¢	C ¢	B' ¢	Mean lifetime (s) 🗢	Commonly decays to (>5% of decays)
Charged rho meson ^[23]	ρ ⁺ (770)	ρ (770)	ud	775.11 ±0.34	1+	1-	0	0	0	$(4.41 \pm 0.02) \times 10^{-24$	π [±] + π ⁰
Neutral rho meson ^[23]	ρ ⁰ (770)	Self	$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$	775.26 ±0.25	1+	1	0	0	0	(4.45 ±0.03) × 10 ^{-24^[7]9]}	π ⁺ + π ⁻
Omega meson ^[24]	ω(782)	Self	$\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}$	782.65 ±0.12	0-	1	0	0	0	(7.75 ±0.07) × 10 ^{-23^Ŋ}	$\pi^+ + \pi^0 + \pi^- \text{ or}$ $\pi^0 + \gamma$
Phi meson ^[25]	ф(1020)	Self	ss	1 019.461 ±0.019	0-	1	0	0	0	(1.54 ±0.01) × 10 ^{-22[™]}	$K^{+} + K^{-} \text{ or}$ $K^{0}_{S} + K^{0}_{L} \text{ or}$ $(\rho + \pi) / (\pi^{+} + \pi^{0} + \pi^{-})$
J/Psi ^[26]	J/ψ	Self	сē	3 096.916 ±0.011	0-	1	0	0	0	$(7.09 \pm 0.21) \times 10^{-210}$	See J/ψ(1S) decay modes 🔈

Equations

$$s + u + t = m_1^2 + m_2^2 + m_3^2 + m_4^2 \qquad x_B = \frac{Q^2}{2pq}$$

$$s + u + t = Q^2 + 2m_p^2 + m_{\omega}^2 \qquad Q^2 = -q^2$$

$$s = W^2 = (p+q)^2$$

$$2pq = W^2 - p^2 - q^2$$

$$= W^2 + Q^2 - p^2$$

$$x = \frac{Q^2}{W^2 + Q^2 - p^2}$$

$$= \frac{Q^2}{W^2 + Q^2 - m_p^2} \text{ (Fixed target)}$$

Regge Trajectory Based Model by JML

Hall B public page

Figure 2: When the impact parameter is large (top), the cross section for ω meson production falls quickly as a function of Q². But when the experiment selects the kinematics corresponding to small impact parameter (bottom), the cross section becomes constant with Q² indicating that the interaction takes place between guarks.

reactions.

Hall B public page: https://www.jlab.org/Hall-B/public/hight_vmweb.html#fig2

Wenliang Li, Dept. of Physics, Univ. of Regina,

Exclusive ω electro-production data

High t Data from CLAS Hall B (2005)

Regge Trajectory Model by JM Laget

- The determination of the dependency against the momentum transfer t of the longitudinal and the transverse parts of the various meson electroproduction channels must be actively pursued at JLab energy range"
- It would be great if JML could make a calculation similar for Fpi-2 kinematics

Extract Response Functions through Iterative Procedure

High -t Data from CLAS Hall B (2005)

Backward Angle (u-Channel) ω Production

$$\gamma^*(q) + p(p_1) \rightarrow \omega(p_\omega) + p(p_2)$$

$$p_{\omega} = (p_1 + q)^2 = (p_{\omega} + p_2)^2$$

$$t = (p_2 - p_1)^2 = (p_{\omega} - q)^2$$

$$w = (p_2 - p_1)^2 = (p_{\omega} - q)^2$$

$$p_1$$
 p_2 $u = (p_\omega - p_1)^2 = (p_2 - q)^2$

E_{beam} GeV	ϵ	$P_{ m SOS}$ GeV/c	$ heta_{ m SOS}$ deg	$P_{ m HMS}$ GeV/c	$ heta_q$ deg	$ heta_{ m HMS} \ m deg$				
$Q_{nominal}^2 = 1.6 \text{ GeV}^2$ $W_{nominal} = 2.21 \text{ GeV}$										
3.778	0.328	-0.79	43.09	2.931	-9.53	$-10.53 \\ -12.53$				
4.702	0.593	-1.65	25.73	2.931	-13.28	-13.28 -10.58 -16.28				
Q	2 nominal	= 2.45 G	eV^2 W	Vnominal	= 2.21 G	leV				
4.210	0.270	-0.77	51.48	3.336	-9.19	-10.59 -12.19				
5.248	0.554	-1.74	29.43	3.336	-13.61	-13.61 -10.61 -16.61				

- Experiment was carried out at Hall C, Jefferson Lab 2004
- HMS (recoiled proton) along the *q*-vector (p_{γ^*})
 - p_{ω} is anti-parallel to p_{γ^*}
- *t:* Comparing *p* before and after interaction
- *u*: Comparing *p* before interaction with *ω* after interaction
- *u*-channel interaction when $u \sim 0$

Analysis: Efficiency Study

Missing Mass Distribution Background Extraction

- Integration limits and fitting limits
- Exclusion criteria
 - Exclude the radiative only omega bins
 - Exclude the low statistics bins

Background Subtraction Checking

Reconstructed the E_m distribution, with missing mass scale factor

Sum of the data from each bin sum of the Omega sim from each bin

u-Channel ω⁰ Production

Christian Weiss: "A proton being knocked out of a proton"									
	N		lout			-			
Γ	q		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			- q - q - q			
<i>p</i>	q q q					$\begin{bmatrix} - \overline{q} \\ - q \end{bmatrix}^{a}$	^{.0}		
E_{beam} GeV	ϵ	$ heta_{ m HMS} - heta_q \ m deg$	x	P_{ω} GeV ² /c ²	$ heta_{\omega q}$ GeV ² /c ²	-t	-u		
	Ç	$Q_{nominal}^2 = 1.0$	$6 { m GeV^2}$	$W_{nominal}$	= 2.21 GeV	V			
3.778	0.328	$-1.0 \\ -3.0$	0.2855	0.311 0.367	9.17 24.59	4.014	0.087 0.129		
4.702	0.593	0.0 2.7	0.2855	0.304 0.357	0.09 22.93	4.014	0.082 0.121		
		$\frac{-3.0}{2}$ - 2.4	$5 \mathrm{GaV}^2$	0.367	-2.21 Co	V	0.129		
	<u> </u>	$n_{nominal} = 2.4$		Wnominal	= 2.21 Ge	V			
4.210	0.270	-1.4 -3.0	0.3796	0.431 0.491	10.57 20.82	4.742	0.184 0.241		
5.248	0.554	0.0 3.0 -3.0	0.3796	0.415 0.490 0.491	0.00 20.75 20.79	4.742	0.169 0.240 0.241		

$$\gamma^{*}(q) + p(p_{1}) \rightarrow \omega(p_{\omega}) + p(p_{2})$$

$$s = (p_{1} + q)^{2} = (p_{\omega} + p_{2})^{2}$$

$$t = (p_{2} - p_{1})^{2} = (p_{\omega} - q)^{2}$$

$$u = (p_{\omega} - p_{1})^{2} = (p_{2} - q)^{2}$$

- t: Comparing p before and after interaction
- *u*: Comparing *p* before interaction with *ω* after interaction
- *u*-channel interaction when *u*~0
- High t corresponds to low u

$$|u|_{\min} = 0$$

Kinematics Table

E_{beam} GeV	ϵ	$P_{ m SOS}$ GeV/c	$ heta_{ m SOS}$ deg	$P_{ m HMS}$ GeV/c	$ heta_q$ deg	$ heta_{ m HMS} \ m deg$				
$Q_{nominal}^2 = 1.6 \text{ GeV}^2$ $W_{nominal} = 2.21 \text{ GeV}$										
3.778	0.328	-0.79	43.09	2.931	-9.53	-10.53 -12.53				
4.702	0.593	-1.65	25.73	2.931	-13.28	-13.28 -10.58 -16.28				
Q	2 nominal	= 2.45 G	eV^2 W	Vnominal	= 2.21 G	eV				
4.210	0.270	-0.77	51.48	3.336	-9.19	-10.59 -12.19				
5.248	0.554	-1.74	29.43	3.336	-13.61	-13.61 -10.61 -16.61				

E_{beam} GeV	ϵ	$ heta_{ m HMS} - heta_q \ m deg$	x	P_{ω} GeV/c	$ heta_{\omega q} \\ ext{deg}$	-t GeV ² /c ²	-u GeV ² /c ²	$ heta_{\omega}^{*}$	θ_p^*
		Q^2_{nom}	_{inal} = 1.6	GeV^2	W_{nomin}	nal = 2.21 C	∂eV		
3.778	0.330	-0.9 -3.0	0.2855	0.311 0.367	8.8 24.3	4.014	0.088 0.129	176.0 167.4	-3.8 -12.7
4.702	0.593	0.0 2.7 -3.0	0.2855	0.304 0.357 0.367	0.1 -22.9 24.6	4.014	0.082 0.121 0.129	180.0 -168.4 167.2	0.0 11.4 -12.6
		Q^2_{nomi}	_{nal} = 2.45	5 GeV ²	W_{nomi}	nal = 2.21 (GeV		
4.210	0.270	-1.4 -3.0	0.3796	0.431 0.491	10.5 20.8	4.742	0.184 0.242	173.4 165.4	-6.8 -14.5
5.248	0.554	0.0 3.0 -3.0	0.3796	0.415 0.490 0.491	0.0 20.7 -20.7	4.742	0.170 0.241 0.241	180.0 -165.2 165.3	0.0 14.3 -14.3

High -t Data from CLAS Hall B (2005)

TDA Prediction (Private Communication)

 $Q^2 = 2.45$ GeV ², W = 2.21 GeV

KS model

u =	-0.184	GeV ²	$d^2\sigma/d\Omega_{\omega}$ =326.22	[nb /sr]
u =	-0.242	GeV ²	$d^2\sigma/d\Omega_{\omega}$ =331.877	[nb /sr]
u =	-0.17	GeV ²	$d^2\sigma/d\Omega_{\omega}$ =326.234	[nb /sr]
11 =	– N.241	GeV ²	$d^2\sigma/d\Omega_{\odot} = 331.703$	[nb/sr]