E12-10-006B: Deep Exclusive π^- Production with Transversely Polarized ^3He using SoLID

Co-Spokespersons:
Zafar Ahmed, University of Regina
Garth Huber, University of Regina
Zhihong Ye, Argonne National Laboratory

E12–10–006B Collaborators

 Argonne National Laboratory
 University of Regina
H. Gao, X. Li, T. Liu, C. Peng, W. Xiong, X.F. Yan, Z. Zhao
 Duke University
A. Camsonne, J-P. Chen, S. Covrig-Dusa, D. Gaskell
 Jefferson Lab
T. Brecelj, M. Mihovilovic, S. Sirca, S. Stajner
 Jozef Stefan Institute and University of Ljubljana
K. Aniol – California State University – Los Angeles
M Boer – Los Alamos National Laboratory
D. Dutta, L Ye – Mississippi State University
C.E. Hyde, F.R. Wesselmann – Old Dominion University
P. Markowitz – Florida International University
V. Sulkosky – University of Virginia
E. Voutier – Institut de Physique Nucleaire IN2P3/CNRS Orsay
PDFs: probability of finding a parton with longitudinal momentum fraction x and specified polarization in fast moving hadron.

GPDs: interference between partons with $x+\xi$ and $x-\xi$, interrelating longitudinal momentum & transverse spatial structure of partons within fast moving hadron.

A special kinematic regime is probed in Deep Exclusive Meson Production, where the initial hadron emits $q\bar{q}$ or gg pair.

- No counterpart in usual PDFs.
- Since GPDs correlate different parton configurations in the hadron at quantum mechanical level,
 - GPDs determined in this regime carry information about $q\bar{q}$ and gg-components in the hadron wavefunction.
GPDs require Hard Exclusive Reactions

- **In order to access the physics contained in GPDs, one is restricted to the hard scattering regime.**

- **Factorization property of hard reactions:**
 - Hard probe creates a small size $q\bar{q}$ and gluon configuration,
 - interactions can be described by pQCD.
 - Non-perturbative part describes how hadron reacts to this configuration, or how the probe is transformed into hadrons (parameterized by GPDs).

- **Hard Exclusive Meson Electroproduction** first shown to be factorizable by Collins, Frankfurt & Strikman [PRD 56(1997)2982].
- Factorization applies when the γ^* is longitudinally polarized.
 - corresponds to small size configuration compared to transversely polarized γ^*.
Generalized Parton Distributions (GPDs)

- GPDs interrelate the longitudinal momentum and transverse spatial structure of partons within a fast moving hadron.
- GPDs are universal quantities and reflect nucleon structure independently of the probing reaction.

- At leading twist–2, four quark chirality conserving GPDs for each quark, gluon type.
- Because quark helicity is conserved in the hard scattering regime, the produced meson acts as helicity filter.
 - Pseudoscalar mesons $\rightarrow \tilde{H} \tilde{E}$
 - Vector mesons $\rightarrow H E$.

- Additional chiral–odd GPDs ($H_T, E_T, \tilde{H}_T, \tilde{E}_T$) offer a new way to access the transversity–dependent quark–content of the nucleon.
Links to other nucleon structure quantities

- First moments of GPDs are related to nucleon elastic form factors through model-independent sum rules:

\[
\sum_{q} e_q \int_{-1}^{+1} dx \ H^q (x, \xi, t) = F_1(t) \\
\sum_{q} e_q \int_{-1}^{+1} dx \ E^q (x, \xi, t) = F_2(t) \\
\sum_{q} e_q \int_{-1}^{+1} dx \ \tilde{H}^q (x, \xi, t) = G_A(t) \\
\sum_{q} e_q \int_{-1}^{+1} dx \ \tilde{E}^q (x, \xi, t) = G_P(t)
\]

Dirac and Pauli elastic nucleon form factors.
\(t\)-dependence fairly well known.

Isovector axial form factor.
\(t\) –dep. poorly known.

Pseudoscalar form factor.
Very poorly known.
Spin–flip GPD \tilde{E}

- $G_P(t)$ is highly uncertain because it is negligible at the momentum transfer of β-decay.

- Because of PCAC, $G_P(t)$ alone receives contributions from $J^{PG}=0^-$ states.
 - These are the quantum numbers of the pion, so \tilde{E} contains an important pion pole contribution.

\[
\sum_q e_q \int_{-1}^{+1} dx \, \tilde{E}^q(x, \xi, t) = G_P(t)
\]

For this reason, a pion pole-dominated ansatz is typically assumed:

\[
\tilde{E}^{u,d}(x, \xi, t) = F_\pi(t) \frac{\theta(\xi > |x|)}{2\xi} \phi_\pi \left(\frac{x + \xi}{2\xi} \right)
\]

where F_π is the pion FF and ϕ_π the pion PDF.
How to determine \tilde{E}

- **GPD** \tilde{E} not related to an already known parton distribution.
- Experimental information on \tilde{E} can provide new nucleon structure info unlikely to be available from any other source.
- The most sensitive observable to probe \tilde{E} is the transverse single-spin asymmetry in exclusive π production:

\[
A_L^\perp = \frac{\left(\int_{0}^{\pi} d\beta \frac{d\sigma_L^\pi}{d\beta} - \int_{\pi}^{2\pi} d\beta \frac{d\sigma_L^\pi}{d\beta} \right) \left(\int_{0}^{2\pi} d\beta \frac{d\sigma_L^\pi}{d\beta} \right)}{\pi_\xi \sqrt{1 - \xi^2} \text{Im}(\tilde{E}^* H)} \\
= \frac{\sqrt{-t'}}{2m_p} \pi_\xi \sqrt{1 - \xi^2} \text{Im}(\tilde{E}^* H) - \frac{t \xi^2}{4m_p} \tilde{E}^2 - 2 \xi^2 \text{Re}(\tilde{E}^* H)
\]

$\sigma_L^\pi = $ exclusive π cross section for longitudinal γ^*
$\beta =$ angle between transversely polarized target vector and the reaction plane.

L.L. Frankfurt, et al., PRD 60(1999) 014101
Frankfurt et al. have shown A_L^\perp vanishes if \tilde{E} is zero [PRD 60(1999)014010].

If $\tilde{E}\neq 0$, the asymmetry will produce a $\sin\beta$ dependence.

They also argue that precocious factorization of the π production amplitude into three blocks is likely:

1. overlap integral between γ, π wave functions.
2. the hard interaction.
3. the GPD.

Higher order corrections, which may be significant at low Q^2 for σ_L, likely cancel in A_L^\perp.

A_L^\perp expected to display precocious factorization at moderate $Q^2\sim 2-4$ GeV2.
GPD information in A_L^\perp may be particularly clean

- A_L^\perp is expected to display precocious factorization at only Q^2~2-4 GeV2:
 - At $Q^2=10$ GeV2, Twist–4 effects can be large, but cancel in A_L^\perp (Belitsky & Műller PLB 513(2001)349).
 - At $Q^2=4$ GeV2, higher twist effects even larger in σ_L, but still cancel in the asymmetry (CIPANP 2003).

This relatively low value of Q^2 for the expected onset of precocious scaling is important, because it is experimentally accessible at Jefferson Lab.
Our reaction of interest is $\vec{n}(e, e'\pi^-)p$ from the neutron in transversely polarized 3He.

It has not yet been possible to perform an experiment to measure A_L^\perp.

Conflicting experimental requirements of transversely polarized target, high luminosity, L–T separation and closely controlled systematic uncertainties make this an exceptionally challenging observable to measure.

The most closely related measurement, of the transverse single-spin asymmetry in $\vec{p}(e, e'\pi^+)n$, without an L–T separation, was published by HERMES in 2010.

Significant GPD information was obtained.

Our proposed SoLID measurements will be a significant advance over the HERMES data in terms of kinematic coverage and statistical precision.
Transverse Target Single Spin Asymmetry in DEMP

Unpolarized Cross section

\[2\pi \frac{d^2 \sigma_{UU}}{dt d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi \]

Transversely polarized cross section has additional components

\[\frac{d^3 \sigma_{UT}}{dt d\phi d\phi_s} = -\frac{P_\perp \cos \theta_q}{\sqrt{1 - \sin^2 \theta_q \sin^2 \phi_s}} \]

Gives rise to Asymmetry Moments

\[A(\phi, \phi_s) = \frac{d^3 \sigma_{UT}(\phi, \phi_s)}{d^2 \sigma_{UU}(\phi)} = -\sum_k A_{UT}^{\sin(\mu\phi + \lambda\phi_s)_k} \sin(\mu\phi + \lambda\phi_s)_k \]

Unseparated \(\sin \beta = \sin(\phi - \phi_s) \) Asymmetry Moment

\[A_{UT}^{\sin(\phi - \phi_s)} \sim \frac{d\sigma_{00}^{++}}{d\sigma_L^{++}} \sim \frac{\text{Im}(\tilde{E}^* \tilde{H})}{|\tilde{E}|^2} \text{ where } \tilde{E} \gg \tilde{H} \]

Note: Trento convention used for rest of talk

HERMES $\sin(\beta=\phi-\phi_s)$ Asymmetry Moment

- Exclusive π^+ production by scattering 27.6 GeV positrons or electrons from transverse polarized 1H without L/T separation. [PLB 682(2010)345].
- Analyzed in terms of 6 Fourier amplitudes for ϕ_{π}, ϕ_s.
- Asymmetry is diluted by $\sim 50\%$.
- $\langle x_B \rangle = 0.13$, $\langle Q^2 \rangle = 2.38$ GeV2, $\langle -t \rangle = 0.46$ GeV2.

- Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences [Eur Phys.J. C65(2010)137].

- Nonetheless, the HERMES data are consistent with GPD models based on the dominance of \widetilde{E} over \widetilde{H} at low $-t$.
 - In fact, the sign crossing in the model curve at $-t \approx 0.5$ GeV2 is due to the large contribution from \widetilde{E} demanded by the data.
Asymmetry Dilution with SoLID

- Calculation of cross section components and $\sin(\beta-\phi_s)$ asymmetry moment in handbag approach by Goloskokov & Kroll for our kinematics.
 - Although their calculation tends to underestimate σ_L values measured by JLab F_{π^-2}, their model is in reasonable agreement with unseparated $d\sigma/dt$.
- Similar level of $A_{UT}^{\sin(\phi-\phi_s)}$ asymmetry dilution as observed by HERMES is expected in SoLID measurement.
- SoLID measurement at higher Q^2 than HERMES, will cover a wide range of $-t$ (and ξ) with good statistical precision.
While most of the theoretical interest and the primary motivation of our experiment is the \(\sin(\varphi - \varphi_s) \) asymmetry moment, there is growing interest in the \(\sin(\varphi_s) \) moment, which may be interpretable in terms of the transversity GPDs.

In contrast to the \(\sin(\varphi - \varphi_s) \) modulation, which has contributions from LL and TT interferences, the \(\sin(\varphi_s) \) modulation measures only the LT interference.

The HERMES \(\sin(\varphi_s) \) modulation is large and nonzero at \(-t' = 0\), giving the first clear signal for strong contributions from transversely polarized photons at rather large values of \(W \) and \(Q^2 \).

Goloskokov and Kroll calculation [Eur.Phys.J. C65(2010)137] assumes the transversity GPD \(H_T \) dominates and that the other three can be neglected.
\[\sin(2\phi - \phi_s) \text{ Asymmetry Moment} \]

- \(<Q^2> = 2.38 \text{ GeV}^2, <W> = 3.99 \text{ GeV}. \)
- Experimental values and model calculation are both small.

\[
\begin{align*}
\text{Handbag approach calculation by Goloskokov & Kroll} \\
\end{align*}
\]

- \(\sin(2\phi - \phi_s) \) modulation has additional LT interference amplitudes contributing that are not present in \(\sin(\phi_s) \).

- Improvement to calculation to reproduce sign change would require a more detailed modeling of these smaller amplitudes.
- This would also improve description of other amplitude moments. **In this sense, different moments provide complementary amplitude term information.**

- The remaining \(\sin(\phi + \phi_s), \sin(2\phi + \phi_s), \sin(3\phi - \phi_s) \) moments are only fed by TT interference and are even smaller.
Complementarity of Hall C and SoLID Expts

SHMS+HMS:
- HMS detects scattered e’.
 SHMS detects forward, high momentum π.
- Expected small systematic uncertainties to give reliable L/T separations.
- Good missing mass resolution to isolate exclusive final state.
- Multiple SHMS angle settings to obtain complete azimuthal coverage up to 4° from q-vector.
- It is not possible to have complete azimuthal coverage at larger $-t$, where A_L^\perp is largest.
- PR12-12-005 by GH, D. Dutta, D. Gaskell, W. Hersman based on next generation polarized 3He target (e.g. UNH).

SoLID:
- Complete azimuthal coverage (for π) up to $\theta = 24^\circ$.
- High luminosity, particle ID and vertex resolution capabilities well matched to the experiment.
- L/T separation is not possible, the $\sin(\varphi - \varphi_s)$ asymmetry moment is “diluted” by LL, TT contributions.
- The measurement is valuable as it is the only practical way to obtain $A_{UT}\sin(\varphi - \varphi_s)$ over a wide kinematic range.
- We will also measure $A_{UT}\sin(\varphi_s)$ and its companion moments, as was done by HERMES.
- Provides vital GPD information not easily available in any other experiment prior to EIC.
SoLID Polarized 3He SIDIS Configuration

$\bar{n}(e,e'\pi^-)p$ with transversely polarized 3He
- Proton is tagged, but we do not assume the momentum information is very useful.

$$\langle A_{UT} \rangle = \frac{1}{P \cdot \eta_n \cdot d} \left(\frac{N^\uparrow - N^\downarrow}{N^\uparrow + N^\downarrow} \right)$$

Run in parallel with E12-10-006:
E$_0$ = 11.0 GeV (48 days)
Luminosity = 10^{36} cm$^{-2}$s$^{-1}$ (per nucleon)

<table>
<thead>
<tr>
<th>Target</th>
<th>3He</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>40 cm</td>
</tr>
<tr>
<td>Polarization</td>
<td>\sim60%</td>
</tr>
<tr>
<td>Dilution</td>
<td>\sim90%</td>
</tr>
<tr>
<td>Effective Neutron</td>
<td>86.5%</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>\sim3%</td>
</tr>
</tbody>
</table>
SoLID-SIDIS Detector Configuration

Large-Angle:
- Detect electrons and protons

Forward-Angle:
- Detect electrons, pions, protons

Coincidence Trigger:
- Electron Trigger + Hadron Trigger (pions)

Offline Analysis:
- Identify (tag) protons and form triple-coincidence e/π^\pm

Coverage:
- Forward-Angle: $0<\phi<2\pi$, $8^\circ<\theta<14.8^\circ$, $1<P<7$ GeV/c for e/π^\pm
- Large-Angle: $0<\phi<2\pi$, $16^\circ<\theta<24^\circ$, $3.5<P<7$ GeV/c for e only

Proton Coverage:
- Same as e/π^\pm at FA and LA

Resolution:
- $\delta P/P \sim 2\%$, $\delta \theta \sim 0.6$ mrad, $\delta \phi \sim 5$ mrad

Coincidence Trigger: Electron Trigger + Hadron Trigger (pions)
Offline Analysis: Identify (tag) protons and form triple-coincidence e/π^\pm
Recoil Particle Detection: Time of Flight

\[^3\text{He}(e, e' \pi^- p) pp_{sp} \]

- Need >5\(\sigma\) timing resolution to identify protons from other charged particles

Exisiting SoLID Timing Detectors:

- MRPC & FASPC at Forward-Angle: cover 8°~14.8°, >3 ns separation.
- LASPD at Large-Angle: cover 14°~24°, >1 ns separation.

- The currently designed timing resolution is sufficient for proton identification using TOF.
Acceptance and Projected Rates

<table>
<thead>
<tr>
<th>$Q^2 > 1 \text{ GeV}^2$</th>
<th>$W > 2 \text{ GeV}$</th>
<th>$Q^2 > 4 \text{ GeV}^2$</th>
<th>$W > 2 \text{ GeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMP: $n(e,e'\pi p)$ Triple Coin (Hz)</td>
<td>4.95</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>SIDIS: $n(e,e'\pi)X$ Double Coin (Hz)</td>
<td>1425</td>
<td>35.8</td>
<td></td>
</tr>
</tbody>
</table>

- Event generator is based on data from HERMES, Halls B,C with VR Regge+DIS model used as a constraint in unmeasured regions.
- Generator includes electron radiation, multiple scattering and ionization energy loss.
- Every detected particle is smeared in (P, θ, ϕ) with resolution from SoLID tracking studies, and acceptance profiles from SoLID-SIDIS GEMC study applied.

$Q^2 > 4 \text{ GeV}^2$, $W > 2 \text{ GeV}$, $0.55 < \varepsilon < 0.75$ cuts applied.
As requested in last year’s TAC review, we performed a 2nd set of simulations to better model the lowest momentum recoil protons.

- GEMC flux tree used to see if a particle hits a specific detector.
- Good agreement with 1st set of simulations.
- Detected proton momentum shifted upward slightly, \(\sim300-350\) MeV/c, partly due to change in plotting variables.
Missing Mass and Missing Momentum

- We have been very conservative in our estimations.
- Although we will detect the recoil proton to separate the exclusive channel events, in this analysis we do not assume that the proton momentum resolution is sufficiently good to provide an additional constraint.
- Thus, we compute the missing mass and momentum as if the proton were not detected:

\[
M_{\text{miss}} = \sqrt{(E_e + m_n - E_{e'} - E_{\pi^-})^2 - (\vec{p}_e - \vec{p}_{e'} - \vec{p}_{\pi^-})^2}
\]

\[
p_{\text{miss}} = |\vec{p}_e - \vec{p}_{e'} - \vec{p}_{\pi^-}|
\]

- Of course, in the actual analysis, we will try to reconstruct the proton momentum as accurately as possible.
- If the resolution is sufficiently good, this would allow additional background discrimination, as well as the effect of Fermi momentum to be removed from the asymmetry moments on an event-by-event basis.
Two different background channels were simulated:

- SoLID-SIDIS generator $p(e,e'\pi^-)X$ and $n(e,e'\pi^-)X$, where we assume all X fragments contain a proton (over-estimate).
- $en\to\pi^-\Delta^+\to\pi^-\pi^0p$ where the Δ^+ (polarized) decays with $l=1$, $m=0$ angular distribution (more realistic).

Apply $P_{\text{miss}}>1.2$ GeV/c cut

Background remaining after P_{miss} cut

Scattering & radiation but no resolution smearing
Asymmetry Moment Modeling

- Event generator incorporates A_{UT} moments calculated by Goloskokov and Kroll for kinematics of this experiment.
- GK handbag approach for π^\pm from neutron:
- Simulated data for target polarization up and down are subjected to same $Q^2 > 4$ GeV2, $W > 2$ GeV, $0.55 < \varepsilon < 0.75$ cuts.

<table>
<thead>
<tr>
<th>Q^2</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>3.17</td>
</tr>
<tr>
<td>5.14</td>
<td>2.80</td>
</tr>
<tr>
<td>6.05</td>
<td>2.72</td>
</tr>
<tr>
<td>6.89</td>
<td>2.56</td>
</tr>
</tbody>
</table>
Kinematic Coverage and Binning

- For this proposal, we binned the data in 7 t-bins.
- In actual data analysis, we will consider alternate binning.
- All JLab data cover a range of Q^2, x_{Bj} values.
 - x_{Bj} fixes the skewness (ξ).
 - Q^2 and x_{Bj} are correlated. In fact, we have an almost linear dependence of Q^2 on x_{Bj}.
- HERMES and COMPASS experiments are restricted kinematically to very small skewness ($\xi < 0.1$).
- With SoLID, we can measure the skewness dependence of the relevant GPDs over a fairly large range of ξ.
Unbinned Maximum Likelihood (UML) Method

1. Construct probability density function

\[
f_{\uparrow\downarrow}(\phi_s, \phi; A_k) = \frac{1}{C_{\uparrow\downarrow}} \left(1 \pm \frac{|P_T|}{\sqrt{1 - \sin^2(\theta_q)\sin^2(\phi_s)}} \right) \times \sum_{k=1}^{5} A_k \sin(\mu \phi + \lambda \phi_s)
\]

where \(A_k\) are the asymmetries that can minimize the likelihood function.

2. Minimize negative log-likelihood function:

\[
-\ln L(A_k) = -\ln L_{\uparrow}(A_k) - \ln L_{\downarrow}(A_k)
\]

\[
= \sum_{l=1}^{N_{MC}^{\uparrow}} w_{l}^{\uparrow} \cdot \ln f_{\uparrow}(\phi, \phi_s, l; A_k) - \sum_{m=1}^{N_{MC}^{\downarrow}} w_{m}^{\downarrow} \cdot f_{\downarrow}(\phi_m, \phi_{s,m}; A_k)
\]

where \(w_{l}, w_{m}\) are MC event weights based on cross section & acceptance.

3. As an illustration, reconstruct azimuthal modulations & compare:

![Images of plots showing azimuthal modulations](image-url)
Fermi Momentum Effects

- If the recoil proton momentum resolution is sufficiently good, it will be possible to correct for Fermi momentum on an event-by-event basis.
- For the purposes of the proposal, we take the more conservative view that the resolution is not good enough, even though the removal of the Fermi momentum effect would simplify the physics interpretation of our data.
- To estimate the impact of Fermi momentum, we ran the generator in a variety of configurations and repeated our analysis:
 - Multiple scattering, energy loss, radiation effects ON/OFF.
 - Fermi momentum ON/OFF.
- The effect of Fermi momentum is about -0.02 on the $\sin(\varphi-\varphi_s)$ moment, and about -0.04 on the $\sin(\varphi_s)$ moment.
- We hope this estimate of Fermi momentum effects at an early stage will encourage theorists to calculate them for a timely and correct utilization of our proposed data, as suggested in last year’s Theory review.
- 2017 Theory review appeared to be satisfied with this response.
Projected Uncertainties

All effects on.
Includes all scattering, energy loss, resolution and Fermi momentum effects.

Only Fermi momentum off.
Includes all scattering, energy loss, resolution effects. Similar to where proton resolution is good enough to correct for Fermi momentum effects.

All effects off.
- Agreement between input and output fit values is very good. Validates the UML procedure.

Average input asymmetry per bin.
Acceptance Effects vs. \((\phi, \phi_s)\)

- Expected yield as function of \(\phi, \phi_s\) for \(t\)-bins:
 - #1 (0.05-0.20)
 - #4 (0.40-0.50)
- Acceptance fairly uniform in \(\phi_s\).
- Some drop off on edges of \(\phi\) distribution, since \(q\) is not aligned with the solenoid axis.
 - Critical feature is that \(\phi\) drop off is same for target pol. up, down.

- UML analysis shows that sufficient statistics are obtained over full \((\phi, \phi_s)\) plane to extract asymmetry moments with small errors.
Final State Interaction (FSI) Effects

- To estimate FSI effects, we used an empirical (phase-shift) parameterization of π^-N differential cross sections.

- Based on this model, and the fact that there are only two proton spectators in the final state to interact with, we anticipate about 1% of events will suffer FSI interactions. The FSI fraction is weakly-dependent on Q^2, rising to about 1.2% for $Q^2>5$ GeV2 events. Of these, a large fraction of FSI events are scattered outside the triple-coincidence acceptance, reducing the FSI fraction to ~0.4%. This will be further reduced by analysis cuts such as $P_{\text{miss}}<1.2$ GeV/c.

- Over the longer term, we will consult with theoretical groups for a more definitive FSI effect study.

 - e.g. Del Dotto, Kaptari, Pace, Salme and Scopetta recent study of FSI effects in SIDIS from a transversely polarized 3He target [arXiv:1704.06182] showed that extracted Sivers and Collins asymmetries are basically independent of FSI. A similar calculation for DEMP, after this proposal is accepted, would be a natural extension of their work.

Summary

- $A_{UT}^{\sin(\varphi-\varphi_s)}$ transverse single-spin asymmetry in exclusive π production is particularly sensitive to the spin-flip GPD E. Factorization studies indicate precocious scaling to set in at moderate $Q^2 \sim 2-4$ GeV2, while scaling is not expected until $Q^2 > 10$ GeV2 for absolute cross section.

- $A_{UT}^{\sin(\varphi_s)}$ asymmetry can also be extracted from same data, providing powerful additional GPD-model constraints and insight into the role of transverse photon contributions at small $-t$, and over wide range of ξ.

- High luminosity and good acceptance capabilities of SoLID make it well-suited for this measurement. It is the only feasible manner to access the wide $-t$ range needed to fully understand the asymmetries.

- We propose to analyze the E12-10-006 event files off-line to look for $e^-\pi^-p$ triple coincidence events. To be conservative, we assume the recoil proton is only identified, and its momentum is not used to further reduce SIDIS (and other) background.

- We used a sophisticated UML analysis to extract the asymmetries from simulated data in a realistic manner, just as was used in the pioneering HERMES data. The projected data are expected to be a considerable advance over HERMES in kinematic coverage and statistical precision.

- SoLID measurement is also important preparatory work for future EIC.