Deep Exclusive π⁻ Production using a Transversely Polarized ³He Target and

SOLENOIDAL LARGE INTENSITY DEVICE

Garth Huber

CAP Congress

June 9, 2022

Supported by:

SAPIN-2021-00026

Towards 3D Imaging of the Nucleon

Taken from a talk by Rolf Ent, Jefferson Lab

3D Imaging of the Nucleon

Taken from a talk by Rolf Ent, Jefferson Lab

GPDs – A Unified Description of Hadron Structure

University

ofReg

- GPDs interrelate the longitudinal momentum and transverse spatial structure of partons within a fast moving hadron.
- GPDs are universal quantities and reflect nucleon structure independently of the probing reaction.

Leading Twist GPD Parameterization

Leading order QCD predicts:

- Vector meson production sensitive to unpolarized GPDs, *H* and *E*.
- Pseudoscalar mesons sensitive to polarized GPDs, \tilde{H} and \tilde{E} .

Dirac and Pauli elastic form factors. *t*-dependence fairly well known.

Isovector axial form factor. t –dep. poorly known.

Pseudoscalar form factor. Very poorly known.

 $\mathrm{H}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$ $\mathrm{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$ spin avg spin avg no hel. flip helicity flip $\tilde{\mathrm{H}}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$ $\tilde{\mathrm{E}}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$ spin diff spin diff no hel. flip helicity flip $\sum_{q} e_{q} \int_{-1}^{+1} dx \ H^{q}(x,\xi,t) = F_{1}(t)$ $\sum_{q} e_{q} \int_{-1}^{+1} dx \ E^{q}(x,\xi,t) = F_{2}(t)$ $\longrightarrow \sum_{q} e_{q} \int dx \, \tilde{H}^{q}(x,\xi,t) = G_{A}(t)$ $\longrightarrow \sum_{q} e_{q} \int dx \ \tilde{E}^{q}(x,\xi,t) = G_{P}(t)$

Next Generation Study: Polarized GPD \tilde{E}

- \tilde{E} involves a helicity flip:
 - Depends on the spin difference between initial and final quarks.

$$\sum_{q} e_{q} \int_{-1}^{+1} dx \; \tilde{E}^{q}(x,\xi,t) = G_{P}(t)$$

Factorization

 $G_P(t)$ is highly uncertain because it is negligible at the momentum transfer of β -decay.

- \tilde{E} not related to an already known parton distribution \rightarrow essentially unknown.
- Experimental information can provide new nucleon structure information unlikely to be available from any other source.

The most sensitive observable to probe \tilde{E} is the transverse target single-spin asymmetry in exclusive π production:

$$A_{L}^{\perp} = \frac{\sqrt{-t'}}{m_{p}} \frac{\xi \sqrt{1-\xi^{2}} \operatorname{Im}(\tilde{E}^{*}\tilde{H})}{(1-\xi^{2})\tilde{H}^{2} - \frac{t\xi^{2}}{4m_{p}}\tilde{E}^{2} - 2\xi^{2}\operatorname{Re}(\tilde{E}^{*}\tilde{H})}$$

The asymmetry vanishes if \tilde{E} is zero. If \tilde{E} is non–zero, the asymmetry will display a sin(φ – φ _s) dependence.

GPD information in $\mathbf{A}_{\mathsf{L}}^{\perp}$ may be particularly clean

- At Q²=10 GeV², Twist–4 effects can be large, but cancel in A_L^{\perp}
 - (Belitsky & Műller PLB 513(2001)349).
 - At Q²=4 GeV², higher twist effects even larger in σ_L, but still cancel in the asymmetry (CIPANP 2003).

This relatively low value of Q² for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

Transverse Target Single Spin Asymmetry in DEMP

Note: Trento convention used for rest of talk

Unseparated sinβ=sin(φ - φ _s) Asymmetry Moment/

$$A_{UT}^{\sin(\phi-\phi_s)} \sim \frac{d\sigma_{00}^{+-}}{d\sigma_L \begin{pmatrix} ++\\ 00 \end{pmatrix}} \sim \frac{\operatorname{Im}(\tilde{E}^*\tilde{H})}{\left|\tilde{E}\right|^2} \text{ where } \tilde{E} \gg \tilde{H}$$

Ref: M. Diehl, S. Sapeta, Eur.Phys.J. C**41**(2005)515.

L–T Separated versus Unseparated Expts

- Our reaction of interest is $\vec{n}(e, e'\pi^-)p$ from the neutron in transversely polarized ³He.
- It has not yet been possible to perform an experiment to measure A_L[⊥].
 - Conflicting experimental requirements of transversely polarized target, high luminosity, L–T separation and closely controlled systematic uncertainties make this an exceptionally challenging observable to measure.
- The most closely related measurement, of the transverse single-spin asymmetry in $\vec{p}(e,e'\pi^+)n$, without an L–T separation, was published by HERMES in 2010.
 - Significant GPD information was obtained.
 - Our proposed SoLID measurements will be a significant advance over the HERMES data in terms of kinematic coverage and statistical precision.

HERMES sin(ϕ – ϕ_S) Asymmetry Moment

- Exclusive π⁺ production by scattering 27.6 GeV positrons or electrons from transverse polarized ¹H [PL B682(2010)345].
- Analyzed in terms of 6 Fourier amplitudes for φ_π,φ_s.
- $\langle x_{B} \rangle = 0.13, \langle Q^{2} \rangle = 2.38 \text{ GeV}^{2}, \\ \langle -t \rangle = 0.46 \text{ GeV}^{2}.$

- Since there is no L/T separation, $A_{UT}^{sin(\varphi-\varphi s)}$ is diluted by the ratio of the longitudinal cross section to the unseparated cross section.
- Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences [Eur Phys.J. C65(2010)137].
- Because no factorization theorems exist for exclusive π production by transverse photons, these data cannot be trivially interpreted in terms of GPDs.

HERMES sin(φ_s) Asymmetry Moment

- Additional chiral-odd GPDs ($H_T E_T \tilde{H}_T \tilde{E}_T$) offer a new way to access transversity-dependent quark-content of nucleon
- While most theoretical interest and the primary motivation of our experiment is sin(φ–φ_s) asymmetry moment, there is growing interest in sin(φ_s) moment, which may be interpretable in terms of transversity GPDs

- HERMES sin(φ_S) modulation large and nonzero at -t'=0, giving first clear signal for strong contributions from transversely polarized photons at rather large values of W and Q²
- Goloskokov and Kroll calculation [Eur.Phys.J. C65(2010)137] assumes H_T dominates and the other three can be neglected

Solution (2) 12 GeV JLab: the QCD Intensity Frontier

SoLID will maximize the science return of the 12-GeV CEBAF upgrade by combining...

Research at **SoLID** will have the *unique* capability to explore the QCD landscape while complementing the research of other key facilities

- Precision lepto-quark couplings at unique mass and sensitivity scales
- 3D momentum imaging of a relativistic strongly interacting confined system (<u>nucleon spin</u>)
- Superior sensitivity to the differential electro- and photo-production cross section of J/ψ near threshold (proton mass)

Synergizing with the pillars of EIC science (proton spin and mass) through high-luminosity valence quark tomography and precision J/ψ production near threshold

Solution Optimized for High Luminosity Science

Sol D State-of-the-Art Technology

Quantum Leap Science Requirements are Challenging

- High Luminosity (10³⁷-10³⁹)
 - beam currents ~100 microA) on
 ~10 cm liquid targets
 - beam currents of ~50 microA on ~30cm polarized ³He target
- Solenoidal field provides access to azimuthal asymmetry
- High data rate (~100 KHz)
- High background (~ GHz)
- Low systematic uncertainties
- High Radiation
- Broad kinematic coverage
- Flexibility in configuration

SoLID pre-conceptual design began "ground up" with the latest available advanced technologies to ensure every piece of sub-systems can meet the challenging requirements

- GEM tracking
- Shashlik Electron Calorimetry
- High Performance Cerenkovs
- Pipeline DAQ
- Rapidly Advancing Computational Capabilities
- Parity beamline
- Advanced polarimetry
- High power and polarized targets

Solution Detector Technologies

PVDIS: Baffle 3xGEMS LGC 2xGEMs EC

Pre-R&D items: LGC, HGC, GEM's, DAQ/Electronics, Magnet

Sol D High Performance Cherenkovs

State of the art design:

- Electron/pion (LGC) and pion/kaon (HGC) separation with good rejection factors while maintaining good detection efficiencies
- Provide input at trigger level in a 2π, highluminosity, non-negligible magnetic field environment while minimizing complexity and cost
- Exceeds the PID requirements for SoLID science

Pixelized photodetector arrays:

- · Allows for flexibility in the trigger design
- Provides data for use in signal pattern recognition
- Efficient photon detection in magnetic fields of ~100 Gauss

High-Rate Test:

- Photodetector arrays and front-end electronics successfully tested in Hall C in 2020
- Analysis confirms the efficacy of SoLID electronics
- Data collected will help with calibration/verification of simulation

Sol D High Performance Cherenkovs

State of the art design:

- Electron/pion (LGC) and pion/kaon (HGC) separation with good rejection factors while maintaining good detection efficiencies
- Provide input at trigger level in a 2π, highluminosity, non-negligible magnetic field environment while minimizing complexity and cost
- Exceeds the PID requirements for SoLID science

Pixelized photodetector arrays:

- Allows for flexibility in the trigger design
- Provides data for use in signal pattern recognition
- Efficient photon detection in magnetic fields of ~100 Gauss

High-Rate Test:

- Photodetector arrays and front-end electronics successfully tested in Hall C in 2020
- Analysis confirms the efficacy of SoLID electronics
- Data collected will help with calibration/verification of simulation

Measure DEMP with SoLID – Polarized ³He

Hall A Polarized ³He Target: FOM(P²L)=0.22E+36

Asymmetry Moment Modeling

 Q^2

4.11

5.14

6.05

6.89

- Event generator incorporates
 A_{UT} moments calculated by
 Goloskokov and Kroll for
 kinematics of this experiment.
- GK handbag approach for π⁻ from neutron:
 - Eur.Phys.J. C65(2010)137.
 - Eur.Phys.J. A**47**(2011)112.
- Simulated data for target polarization up and down are subjected to same Q²>4 GeV², W>2 GeV, 0.55<ε<0.75 cuts.

SoLID Acceptance and Projected Rates

- Event generator is based on data from HERMES, Halls B,C with VR Regge+DIS model used as a constraint in unmeasured regions.
- Generator includes electron radiation, multiple scattering and ionization energy loss.
- Every detected particle is smeared in (P,θ,φ) with resolution from SoLID tracking studies, and acceptance profiles from SoLID-SIDIS GEMC study applied.

Q²>4 GeV², W>2 GeV, 0.55<ε<0.75 cuts applied.

Example Cuts to Reduce Background

Two different background channels were simulated:

- SoLID–SIDIS generator $p(e, e'\pi)X$ and $n(e, e'\pi)X$, where we assume all X fragments contain a proton (over-estimate).
- $en \rightarrow \pi^- \varDelta^+ \rightarrow \pi^- \pi^0 p$ where the \varDelta^+ (polarized) decays with l=1, m=0angular distribution (more realistic).

Kinematic Coverage and Binning

- We binned the simulated data in 7 t-bins.
- In actual data analysis, we will consider alternate binning.
- All JLab data cover a range of Q², x_{Bj} values.
 - x_{Bj} fixes the skewness (ξ).
 - Q^2 and x_{Bj} are correlated. In fact, we have an almost linear dependence of Q^2 on x_{Bj} .
- HERMES and COMPASS experiments are restricted kinematically to very small skewness (ξ<0.1).
- With SoLID, we can measure the skewness dependence of the relevant GPDs over a fairly large range of ξ.

Unbinned Maximum Likelihood (UML)

Same method used by HERMES in their DEMP analysis [PLB 682(2010)345].

Instead of dividing the data into (φ,φ_s) bins to extract the asymmetry moments, UML takes advantage of full statistics of the data, obtains much better results when statistics are limited.

. Construct probability density function

$$f_{\uparrow\downarrow}(\phi,\phi_s;\mathbf{A}_k) = \frac{1}{C_{\uparrow\downarrow}} \begin{pmatrix} 1 \pm \frac{|P_T|}{\sqrt{1 - \sin^2(\theta_q)\sin^2(\phi_s)}} \\ \times \sum_{k=1}^5 \mathbf{A}_k \sin(\mu\phi + \lambda\phi_s) \end{pmatrix}$$

where A_k are the asymmetries that can minimize the likelihood function.

2. Minimize negative log-likelihood function: $-\ln L(A_k) = -\ln L_{\uparrow}(A_k) - \ln L_{\downarrow}(A_k)$

$$=\sum_{l=1}^{N_{MC}^{\uparrow}} \left[w_l^{\uparrow} \cdot \ln f_{\uparrow}(\phi_l, \phi_{s,l}; A_k) \right] - \sum_{m=1}^{N_{MC}^{\downarrow}} \left[w_m^{\downarrow} \cdot f_{\downarrow}(\phi_m, \phi_{s,m}; A_k) \right]$$

where w_{l} , w_{m} are MC event weights based on cross section & acceptance.

3. As an illustration, reconstruct azimuthal modulations & compare:

E12–10–006B Projected Uncertainties

Summary

- $A_{UT}^{sin(\phi-\phi s)}$ transverse single-spin asymmetry in exclusive π production is particularly sensitive to the spin-flip GPD \tilde{E} . Factorization studies indicate precocious scaling to set in at moderate $Q^2 \sim 2-4$ GeV², while scaling is not expected until $Q^2 > 10$ GeV² for absolute cross section.
- $A_{UT}^{sin(\phi s)}$ asymmetry can also be extracted from same data, providing powerful additional GPD–model constraints and insight into the role of transverse photon contributions at small –*t*, and over wide range of ξ .
- High luminosity and good acceptance capabilities of SoLID make it well-suited for this measurement. It is the only feasible manner to access the wide -t range needed to fully understand the asymmetries.
- SoLID measurement is also important preparatory work for EIC.