Transverse Target
Asymmetry in Exclusive
Charged Pion Production
at 11 GeV

Garth Huber, University of Regina
Dipangkar Dutta, Mississippi State
Dave Gaskell, Jefferson Lab

Hall C Summer Workshop, Jefferson Lab, August 27, 2010.
Over the last decade, tremendous progress has been made on the theory of generalized parton distributions (GPD).

PDFs: Squared hadronic wavefunctions = probability of finding a parton with specified longitudinal momentum fraction and polarization in fast moving hadron.

GPDs: interference between wavefns of parton with momentum fraction $x+\xi$ and parton with momentum fraction $x-\xi$.

- In addition to x and ξ, GPDs depend also on $t=-(p-p')^2$.
 - t is independent of x, ξ since p, p' may differ in either their longitudinal or transverse components.
- GPDs interrelate the longitudinal and transverse momentum structure of partons within a fast moving hadron.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
A special kinematic regime is probed in deep exclusive meson production, where initial hadron emits a $q\bar{q}$ or gg pair. This has no counterpart in usual PDFs. Since GPDs correlate different parton configurations in the hadron at the quantum mechanical level, GPDs determined in this regime carry information about $q\bar{q}$ and gg-components in the hadron wavefunction.
GPDs require Hard Exclusive Reactions

- In order to access the physics contained in GPDs, one is restricted to the hard scattering regime.

- Factorization property of hard reactions:
 - Hard probe creates a small size $q\bar{q}$ and gluon configuration,
 - interactions can be described by pQCD.
 - Non-perturbative part describes how hadron reacts to this configuration, or how the probe is transformed into hadrons (parameterized by GPDs).

- Hard exclusive meson electroproduction first shown to be factorizable by Collins, Frankfurt & Strikman [PRD 56 (1997) 2982].

- Factorization applies when the γ^* is longitudinally polarized.
 - corresponds to small size configuration compared to transversely polarized γ^*.
Leading Twist GPD Parameterization

- GPDs are universal quantities and reflect nucleon structure independently of the probing reaction.
 - At leading twist-2, four quark chirality conserving GPDs for each quark, gluon type.
 - Because quark helicity is conserved in the hard scattering regime, the produced meson acts as a helicity filter.

Leading order QCD predicts:
- Vector meson production sensitive to unpolarized GPDs, H and E.
- Pseudoscalar mesons sensitive to polarized GPDs, \tilde{H} and \tilde{E}.
First moments of GPDs are related to nucleon elastic form factors through model-independent sum rules:

\[\sum_q e_q \int_{-1}^{+1} dx \, H^q(x, \xi, t) = F_1(t) \]

Dirac and Pauli elastic nucleon form factors.
\(t \) -dependence fairly well known.

\[\sum_q e_q \int_{-1}^{+1} dx \, E^q(x, \xi, t) = F_2(t) \]

Isovector axial form factor.
\(t \) –dep. poorly known.

\[\sum_q e_q \int_{-1}^{+1} dx \, \tilde{H}^q(x, \xi, t) = G_A(t) \]

Pseudoscalar form factor.
Very poorly known.
Spin-flip GPD \tilde{E}

- $G_P(t)$ is highly uncertain because it is negligible at the momentum transfer of β-decay.
- Because of PCAC, $G_P(t)$ alone receives contributions from $J^{PG}=0^-$ states.
 - These are the quantum numbers of the pion, so \tilde{E} contains an important pion pole contribution.

![Pion pole contribution to $G_P(t)$](image1)

For this reason, a pion pole-dominated ansatz is typically assumed:

$$\tilde{E}^{u,d}(x, \xi, t) = F_\pi(t) \frac{\Theta(\xi > |x|)}{2\xi} \phi_\pi \left(\frac{x + \xi}{2\xi} \right)$$

where F_π is the pion FF and ϕ_π the pion PDF.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
How to determine \tilde{E}

- GPD \tilde{E} not related to an already known parton distribution.
- Experimental information on \tilde{E} can provide new nucleon structure info unlikely to be available from any other source.
- The most sensitive observable to probe \tilde{E} is the transverse single-spin asymmetry in exclusive π production:

$$A_{\perp} = \frac{\int_{0}^{\pi} d\beta \frac{d\sigma_{L}^{\pi}}{d\beta} - \int_{0}^{2\pi} d\beta \frac{d\sigma_{T}^{\pi}}{d\beta}}{\int_{0}^{2\pi} d\beta \frac{d\sigma_{L}^{\pi}}{d\beta}}$$

$d\sigma_{\pi}^{L}$ = exclusive π cross section for longitudinal γ^*
β = angle between transversely polarized target vector and the reaction plane.
Single Spin Asymmetry in Exclusive π Production

- Frankfurt et al. [PRD 60(1999)014010] have shown the A_L^\perp asymmetry vanishes if \tilde{E} is zero.
 - If $\tilde{E} \neq 0$, the asymmetry will display a $\sin\beta$ dependence.

- A_L^\perp is also expected to display precocious factorization at moderate $Q^2 \sim 2-4$ GeV2.

 - Precocious factorization of the π production amplitude into three blocks is likely:
 1. overlap integral between γ, π wave functions.
 2. the hard interaction.
 3. the GPD.

 - Higher order corrections, which may be significant at low Q^2, likely cancel in the asymmetry ratio.
Cancellation of Higher Twist Corrections in A_L^\perp

- Belitsky and Müller GPD based calc. reinforces this expectation:
 - Even at $Q^2=10$ GeV2, NLO effects can be large, but cancel in the asymmetry, A_L^\perp (PL B513(2001)349).
 - At $Q^2=4$ GeV2, higher twist effects even larger in σ_L, but still cancel in asymmetry (CIPANP 2003).

This relatively low value of Q^2 for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
L/T Separations Essential

- In hard meson electroproduction, factorization can only be applied to longitudinal photons.

- Unlike other ongoing or proposed experiments, where dominance of longitudinal contribution is simply assumed, JLab’s unique contribution to this field is in:
 - ability to take measurements at multiple beam energies.
 - unambiguous isolation of A_L^\perp using Rosenbluth separation.

- A JLab A_L^\perp measurement could thus establish the applicability of the GPD formalism, and precocious scaling expectations, for other A^\perp experiments.
Require Target Polarization Parallel to $\hat{q} \times \hat{p}_\pi$

- Target polarization components (P_x, P_y) are defined relative to reaction plane.
- $\beta =$ azimuthal angle between (transverse) target polarization and reaction plane
- $P_x = P_\perp \cos \beta$ and $P_y = P_\perp \sin \beta$
- $P_y \parallel \hat{q} \times \hat{p}_\pi$ uniquely defined only in non-parallel kinematics.

Unpolarized Cross section

$$\frac{d\sigma}{d\Omega} = \sigma_T + \epsilon \sigma_L + \sqrt{\frac{1}{2} \epsilon (\epsilon + 1) \sigma_{LT} \cos \phi + \epsilon \sigma_{TT} \cos 2\phi}$$

$$A_\perp = \frac{1}{P_\perp \pi} \frac{2}{\epsilon} 2\sigma_L^y$$

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
SHMS+HMS Kinematic Considerations

SHMS and HMS have their largest acceptances in vertical direction.

- **Scattered e\(^-\) detected at some vertical angle in the HMS.**
 - Forces scattering plane and q-vector to be non-horizontal.

- **π\(^-\)** is detected in SHMS.
 - Either above or below q-vector, depending if scattered e\(^-\) is detected above or below horizontal plane.

- **Target polarization is horizontal, parallel to \(\hat{q} \times \hat{p}_\pi\).**
 - Nearly transverse to \(\vec{q}\) for all angles between the scattering and reaction planes.
High Luminosity Essential

- Physics case for a measurement of A_L^\perp is compelling.
- High luminosity required:
 - σ_L is largest in parallel kinematics, where $A_L^\perp=0$.
 - σ_L is small where A_L^\perp is maximal.

- We have performed numerous studies, but the measurement has not been feasible to date because of the lack of a polarized target that can handle the required high luminosity.

- Recent advancements in polarized 3He target technology may allow the measurement to proceed via the $n(e,e'\pi^-)p$ reaction.
XeMed/UNH Target Loop Concept

- Compress polarized 3He and deliver to 40cm long titanium target cell
- Commercial compressors achieve >3500 psi (238 bar)
- Requires compression ratio ~16, immersion in magnetic field, rubidium-free gas leaving polarizer, entrance and exit, <3% polarization loss

Requirements:
- 14 atm
- 200 atm
- Requires two ports, entrance and exit

Recirculating at 1.0 scfm

1 cm x 40 cm titanium target cell
Getter purifier? RGA?
<table>
<thead>
<tr>
<th>Property</th>
<th>Hall A</th>
<th>UNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization (%)</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Beam Current (µA)</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Pressure (atm)</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Cell type</td>
<td>Glass/sealed</td>
<td>Ti/continuous flow</td>
</tr>
<tr>
<td>“Spin UP” time (h)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Beam Relaxation (h⁻¹)</td>
<td>41</td>
<td>0.1</td>
</tr>
<tr>
<td>Laser Power (W)</td>
<td>150</td>
<td>1500-2500</td>
</tr>
<tr>
<td>Thickness (cm⁻²)</td>
<td>1.07E+22</td>
<td>1E+24</td>
</tr>
<tr>
<td>FOM (P²L)</td>
<td>0.22E+36</td>
<td>0.55E+38</td>
</tr>
</tbody>
</table>
SHMS+HMS Kinematics

- **n(e,e’π-)p Kinematics at Q^2=4.0 GeV^2, W=2.8 GeV**

<table>
<thead>
<tr>
<th></th>
<th>(E_{e'}) (GeV)</th>
<th>(\theta_{e'}) (deg)</th>
<th>(p_\pi) (GeV/c)</th>
<th>(\theta_\pi) (deg)</th>
<th>(\Theta_{\pi q}) (deg)</th>
<th>(-t) (GeV^2)</th>
<th>(x)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (\varepsilon=0.745) Setting, (E_{beam}=11.00) GeV</td>
<td>5.160</td>
<td>15.25</td>
<td>5.744</td>
<td>-12.70</td>
<td>0</td>
<td>0.175</td>
<td>0.365</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.666</td>
<td>±3</td>
<td>0.322</td>
<td>0.365</td>
<td>0.970</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.531</td>
<td>±5</td>
<td>0.576</td>
<td>0.365</td>
<td>0.947</td>
<td></td>
</tr>
<tr>
<td>Low (\varepsilon=0.200) Setting, (E_{beam}=6.60) GeV</td>
<td>0.860</td>
<td>49.23</td>
<td>5.744</td>
<td>-6.06</td>
<td>0</td>
<td>0.175</td>
<td>0.365</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.666</td>
<td>±3</td>
<td>0.322</td>
<td>0.365</td>
<td>0.970</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.531</td>
<td>±5</td>
<td>0.576</td>
<td>0.365</td>
<td>0.947</td>
<td></td>
</tr>
</tbody>
</table>

- Near peak of Figure of Merit in Belitsky’s calculation

- **Scattered electron in HMS, \(\pi^-\) in SHMS.**
- **\(\Theta_{\pi q}\) is \(\pi^-\) lab angle wrt \(\vec{q}\), mostly above or below scattering plane.**
- **For \(Q^2=4\) GeV^2, \(x=0.365\) \(\rightarrow\) \(-t_{max} \approx 1-(M^2x^2/Q^2)=0.97\) GeV^2.**

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Simulated SHMS+HMS Acceptance

\[n(e,e'\pi \, p) \]

low \(\varepsilon \) high \(\varepsilon \) \(\Delta \varepsilon = 0.55 \)

Q\(^2\)-W acceptance at high and low \(\varepsilon \).

Azimuthal angle of (transversely) polarized target wrt hadron reaction plane.

SHMS+HMS acceptance covers 0.1\(\leq \psi \leq 0.7 \) GeV\(^2\) at nearly fixed \(x_{\text{BJ}} \).

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Reliable L/T Separations require shorter ^3He cells

- For reliable L/T separations, an 8cm ^3He cell seems optimal.
- The UNH target is designed for nominal 40cm cells, but Bill Hersman does not believe shorter cells will cause any problem.
- In fact, by cooling the entrance and exit lines of the cell with LN$_2$ he believes he can reduce the wall thickness by \simX3 or increase the pressure while keeping the wall thickness same.
- These issues need closer investigation to better understand target cell backgrounds for UNH target.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Estimated Rates and Uncertainties

- Simulated error bars after 18 days:
 - 12 days @ low ε, 5k evts in largest $-t$ bin.
 - 6 days @ high ε, 30k evts in largest $-t$ bin.
- Luminosity = $1.2 \times 10^{37}/cm^2/s$ (8cm tgt).
- $P_{\text{targ}} = 65\% \rightarrow P_n = 55.3\%$.
 - No target dilution since exclusive π^- can be only from neutron.
- 2% random systematic uncertainties
 - slightly larger than assumed for Fpi-12.
- σ_L/σ_T values similar to pionCT 1H data.

<table>
<thead>
<tr>
<th>$Q^2=4.0$, $W=2.8$, $x=0.365$</th>
<th>$-t$ (GeV2)</th>
<th>$R=\sigma_L/\sigma_T$</th>
<th>A_L^\perp</th>
<th>δA_L^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
<td>1.0</td>
<td>0.2</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1.0</td>
<td>0.5</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Solid: asymptotic pion distribution amp.
Dashed: CZ pion dist. amp.

$t = -0.5$ GeV2
$t = -0.3$ GeV2
$t = -0.1$ GeV2

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Summary

PAC24 Comments on our 2003 6 GeV LOI:

- The experiment is extremely challenging since it requires first the isolation of a Fourier component in the polarized target cross section and then, by Rosenbluth techniques, the separation of the cross section for longitudinally polarized photons.

- The measurement may allow for an extraction of further information on GPDs and is complementary to DVCS. Deep virtual electroproduction of pions is sensitive only to the GPDs \(\tilde{H} \) and \(\tilde{E} \); \(H \) and \(E \) do contribute.

- Moreover, since the asymmetry requires proton helicity flip, the experiment may allow the extraction of \(\tilde{E} \), one of the two GPDs not constrained by knowledge of ordinary parton distributions. The measurement is therefore very important.

- The lack of a transversely polarized cryotarget that can handle the required high luminosity has precluded our development of this experiment since 2003.

- A transversely polarized \(^3\)He target based on the UNH design offers the best hope of measuring this observable.