u-Channel Omega Meson Production from the Fpi-2 Experiment

Bill (Wenliang) Li

Supervisor: Garth Huber

Fpi2 Collaboration

t-channel physics Forward

u-channel physics

Backward

Outline

Motivation

Where the experimental data came from?

Underlying Physics regarding u-channel

Experimental technique and analysis details

Results and Outlook

Mandelstam variables (s,t,u-Channels)

$$\gamma^*(q) + N(p_1) \rightarrow \pi(p_{\pi}) + N(p_2)$$

 $s = (p_1 + q)^2; \quad u = (p_{\pi} - p_1)^2; \quad t = (p_2 - p_1)^2.$

- **s**: invariant mass of the system
- t: Four-momentum-transfer squared between target before and after interaction.
- u: Four-momentum-transfer squared between virtual photon before interaction and target after interaction
- t-channel: -t ~ 0, after interaction
 - Target: stationary,
 - Meson: forward
 - Measure of how forward could the meson go.
- u-channel: -u-0, after interaction
 - Target: forward
 - Meson: stationary
 - Measure of how backward could the meson go

High –t scenario, t channel process becomes u channel process

Standard Physics at Hall C (Jefferson Lab)

s-Channel Physics

t-Channel Physics

All could be parameterized in four Lorentz invariant Quantities: x, $W(\sqrt{s})$, Q^2 and t

What about *u*? Should we include *u*?

Rutherford Experiment

Rutherford Experiment:

Need both forward and backward scattered alpha particles to yield complete atomic structure!

What about nucleons?

- Does t-channel physics contain all the nucleon structure information?
- u-channel physics contain unique information whose meaning is unclear (B. Pire et. al)
- How do we access u-channel physics?

Omega Data Analysis

- Fpi-2 (E01-004) 2003
 - Spokesperson: Garth Huber, Henk Blok
 - Standard HMS and SOS (e) configuration
 - Electric form factor of charged 400 through exclusive π production
- Primary reaction for Fpi-2
 - p(e, e' π+)n
- In addition, we have for free
 - p(e,e' p)ω
- Kinematics coverage
 - $W= 2.21 \text{ GeV}, Q^2=1.6 \text{ and } 2.45$ GeV²
 - Two ϵ settings for each Q²

2003/07/25 08

t-Channel π vs u-Channel ω^0 Production

Nucleon Fragmentation Process

Before interaction

H

Standard nucleon Fragmentation gives a weird picture

Exclusive ω Electro-Production Data

	Q ² GeV ²	W GeV	х	-t GeV ²
HERMES (Airapetian et al., 2014)	> 1	3-6.3	0.06-0.14	< 0.2
DESY (Joos et al., 1977)	0.3-1.4	1.7-2.8	0.1-0.3	< 0.5
Zeus (Breitweg et al., 2000)	3-20	40-120	~0.01	< 0.6
Cornell (Cassel et al., 1981)	0.7-3	2.2-3.7	0.1-0.4	<1
JLab Hall C (Ambrozewicz et al., 2004)	~0.5	~1.75	0.2	0.7-1.2
JLab Hall C (Dalton et al., 2005)	5-7	1.5		>4.0
JLab Hall B (Morand et al., 2005)	1.6-5.1	1.8-2.8	0.16-0.64	<2.7
JLab Fpi-2 (2017)	1.6, 2.45	2.21	0.29, 0.38	4.0, 4.74

High t Data from CLAS Hall B (2005)

- Hall B Experiment e1-6
 - Oct 2001 Jan 2002
 - Beam energy: 5.754 GeV
 - Kinematic coverage:
 - W: 1.8-2.8 GeV
 - Q2: 1.6-5.1 GeV²
 - -t: < 2.7 GeV²
 - *x*: 0.16-0.64
- Event selection:

$$ep \rightarrow ep\pi^+X$$

- Reconstructed e⁻pX missing mass consistent with the ω mass
- Data published in 2005:
 - Morand et al., Eur. Phys. J. A 24, 445 (2005).

High -t Data from CLAS Hall B (2005)

Excitement:

- Observation: Q² independent cross section at high -t
- Q² dependence of 0
- Possible interoperation: Virtual photon is more likely to couple to a point-like object as -t increases.
- Are we really looking at the point charge like structure within the nucleon?
 - -t=2.3 high enough?

Regge Trajectory Model by JM Laget

u-Channel Backward

Forward

J. M. Laget, Phys. Rev. D 70, 2004

Transition Distribution Amplitude (TDA)

- TDA backward angle analog of GPD
- Interaction of Interest: u-channel pseudocalar and vector π and production
- Extension of the TDA model to describe the backwards vector meson production
- TDA Factorization Made two Predictions (B. Pire, K. Semenov, L. Szymanowski, Phys. Rev. D, 91, 094006 (2015)).
 - The dominance of the transverse polarization of the virtual photon resulting in the suppression of the longitudinal cross section by at least $1/Q^2$: $\sigma_T > \sigma_L$. (We can validate this!)
 - The Characteristic $1/Q^8$ -scaling behaviour of the σ_T for a fixed Bjorken x (We can't test this.)

Experimental Details

HMS (QQQD)

Angle Acceptance: 6msr

Momentum: 0.5-7.5 GeV/c

■ Momentum Acceptance: +-9%

Angular, Position Resolution: 1mr and 1mm

SOS (QDDbar)

Angle Acceptance: 9msrMomentum: 0.1-1.8 GeV/c

■ Momentum Acceptance: +-20%

High Momentum Spectrometer (SOS)

14

Experimental Setup and Acceptance

HMS detector (focal plane) layout, SOS is very similar Trigger: 3/4 planes of Hodoscopes

PID Cuts

- SOS: select electron
 - Calorimeter cut
 - Cherenkov cut

99% efficiency

- HMS: select proton
 - Coincidence timing cut
 - Hebeta (particle velocity)
 - Aerogel Cut
 - Cherenkov Cut: veto e⁺

Coincidence Subtraction

Random subtraction:

Coincidence proton = Real Events
$$-\left(\frac{\text{Late Random Events} + \text{Early Random Events}}{7}\right)$$

Missing proton due to scattering, absorption: ~7%

Dummy Subtraction

 Dummy target distribution is corrected for the real/dummy target thickness difference before subtracted from the real proton events

0.1

0.05

Analysis: e+H Elastic Cross-Section

- Extracted cross section is consistent with Bosted, AMT (Arrington, Melnitchouk, Tjon Phys. Rev. C 76, 035205 (2007)) and Brash empirical e-p elastic cross section parameters.
- ±2.0% (point to point) error from Heep will be included to the final Omega analysis systematics

Rosenbluth Separation

- Rosenbluth Separation method requires
 - **Separate measurements are taken at different \epsilon (virtual photon polarization)**
 - All Lorentz invariant physics quantities such as Q², W, t, u, remain constant
 - Beam energy, scattered e angle and virtual photon angle will change as the result, thus event rates are dramatically different

Separation Method

$$2\pi \frac{d\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi \blacksquare$$

	$P_{ m SOS}$ GeV/c	$ heta_{ m SOS}$ deg	ϵ	$P_{ m HMS}$ MeV/c	$ heta_q$ deg	$ heta_{ ext{HMS}} - heta_q \ ext{deg}$	x GeV/c	P_m deg	θ_{mq}	$-t$ GeV 2 /c 2	-u GeV ² /c ²
			Ç	$\frac{2}{nominal} =$	1.6 Ge	V^2 W_{nomin}	$a_{al} = 2.21$	GeV			
3.778	-0.79	43.09	0.328	-9.534	2931	$-1.0 \\ -3.0$	0.2855	0.311 0.367	9.17 24.59	4.014	0.087 0.129
4.702	-1.65	25.73	0.5933	-13.281	2931	0.0 2.7 -3.0	0.2855	0.304 0.357 0.367	0.09 22.93 24.61	4.014	0.082 0.121 0.129
	<u> </u>		Q	$l_{nominal} =$	2.45 Ge	${ m eV}^2$ W_{nomin}	$a_{al} = 2.21$	GeV			
4.210	-0.77	51.48	0.270	-9.190	3336	-1.4 -3.0	0.3796	0.431 0.491	10.57 20.82	4.742	0.184 0.241
5.248	-1.74	29.43	0.554	-13.606	3336	0.0 -3.0 3.0	0.3796	0.415 0.491 0.490	0.00 20.79 20.75	4.742	0.169 0.241 0.240

L/T separation

- Requires detailed comparison at high and low epsilon value
- High and low epsilon runs involved

Simple L/T

- $\bullet \quad \sigma_{total} = \sigma_T + \epsilon \sigma_L$
 - Sig_L: difference
 - Sig_T: offset
- H(e,e' p):
 - Over constrained system
 - Determine detector offset

Exclusive channel!

- p(e,e' p)ω
- We donot detect any part of decayed ω
- Contain physics background

Proof: These are not Elastic Events!

- Good News!
 - We see other Scalar and Vector Mesons: ρ , η , η , two- π phasespace
- Bad News!
 - Channel is not clean!
- **■** Worse News!
 - We can't use Polynomial fit !!

Missing Mass Distribution

- Most Challenging Issue: Background Subtraction!
- Omega is not always in the center
- Four sets of Monte-Carlo is used fit the data
 - $\omega + \rho$ + Phase-space + η or η

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

Physics Background Subtraction

Iterative Procedure (Recipe) to A Full LT Separation

$$2\pi \frac{d\sigma}{dtd\phi} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

Missing Mass Distribution Background Extraction

- Fitting Limits (red dashed line):
 - Not fixed, fit 95% data distribution
 - Integration Limits (blue dashed line):
 - Fixed for all u-phi bins!
- Bin Exclusion criteria:
 - Radiative tail exceeds 50% total ω
 sim
 - Less that 100 raw counts

Yield Ratio and Simulated Cross-Section

Unseparated Cross Section (Money Plot)

$$2\pi \frac{d\sigma}{dtd\phi} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

Separated Cross Section

Observations:

- SigT dominate SigL at 2.45 at u~0: validated the TDA prediction $(\sigma_T > \sigma_L)$ for $Q^2 = 2.45$
- SigT behave differently at different Q².
- LT and TT are small

TDA Prediction (Private Communication)

■ Top: separated cross section at W=2.21,Q²=2.45

 Bottom:TDA calculation for cross section at W=2.21 Q²=2.45 (private communication)

Future Backward Meson Production Opportunities

- Potential LOI (2018):
 - Backward π⁰ production at Hall C.
- Other extreme forward angle physics program
 - Some u-channel ω data from 6 GeV
 - 12 GeV Commissioning experiment at Hall C include Kaon Form Factor experiments.
- Fpi 12 experiment (for free)
 - \blacksquare $\eta, \eta', \omega, \phi(s\overline{s}), \rho$
 - ω , $\phi(s\bar{s})$ production ratio would yield valuable information.

Thank You

- Greatest gratitude to the TDA group providing the calculation to fit our data and inspiring inputs from Christian Weiss. Valuable comments from Kijun Park were very important during analysis.
- Data Nturple were generated by Tanja Horn, Great work
- Many thanks to my graduate student colleagues
- Fantastic support from colleagues, staff scientist and technicians from Regina and Jefferson Lab
- Special thanks to my wife: Noemi Ochoa Gamboa

Hall C Configuration

Noble Gas Cerenkov Detector

- e/π separation at high momentum.
- Wire-chamber (Focal point)
 - Momentum Determination
- Hodoscopes
 - Trigger
- Heavy Gas Cherenkov Detector
 - π/K separation for p>3.4 GeV/c.
- Aerogel Cerenkov Detector
 - Depending on material K/p separation or π/K at low momentum.
- Lead Glass Calorimeter
 - e/π Separation

Detector Design

My Role on the detector R&D projects

- Only graduate student on the.
 - **Good**: complete exposure to a successful detector R&D project. Involvement at every single stage of the project. Interact and learn from other experts/technicians. Share responsibility which is unusual for a master student.
- Helping with project management: making manufactural inquiries, double checking blue prints and budgets. Help keeping track of project schedule. Jump through administrative and safety red tapes. (2010-2013)
- Complete variety of sub projects R&D (2010-2013)
- Software simulation: developing and maintaining the detector Geant4 simulation to simulate detector performance. (2010-present)
- Retired from R&D front line, tutoring summer and new students (2014-present).
- Listed as the HGC detector expert for Hall C (carry unique responsibility).

Sub Project 1: Mirrors

- Machine a metal mold
- Place pre-cut glass onto the mold
- Place mold into the oven
- Glass gradually slumps to the mold curvature
- Select the best mirrors for the HGC detector
- 15 mirrors ordered

Sub Project 1: Mirror Selection

Classification of curvature using telescope equation:

$$z = \frac{(x - x_{off})^2 + (y - y_{off})^2}{R + \sqrt{R^2 - (1 - \kappa)[(x - x_{off})^2 + (y - y_{off})^2]}} + z_{off}$$

R: Radius of Curvature

K: Conic Constant

K = 0: Sphere

K < 0: Prolate Ellipsoid

K > 0: Oblate Ellipsoid

- Mirrors are classified based on their fitted R and K values
- Difference between fit and real mirror measurement is along the edges and corners

Sub Project 2: Mirror Aluminization Reflectivity

evapsales@evapcoat.com www.evaporatedcoatings.com

Why Aluminization?

- Manufacture choices:
 - @ Cern: \$5000/piece
 - @ ECI: \$4000/lot (6 mirrors)
- Generated Cherenkov photon wavelength
 - 180-600 nm

- Mirror reflectivity setup @
 Jefferson Lab were used
- Aluminized mirror requirement
 - 70% Reflectivity @ 200nm
 - 90% Reflectivity @ 300nm

Sub Project 2: Reflectivity Setup

Sub Project 3: PMTs

Basic working principle

- Photoelectric effect: convert photon to analog signa
- Widely used by Particle physics detectors for many years: hodoscopes, calorimeters, etc

Hamamatsu 5" PMT

- Cost: \$4400 each (2009); over \$10k (now)
- Recommended Voltage: -3000 V
- Good:
 - High cathod sensitivity, constraint on quantum efficiency
 - Good photon electron resolution

Bad:

Come with some wired problem! **Discharge** and **Ringing**

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

WAVELENGTH (nm)

Sub Project 3: PMT Modifications

Discharge

characteristics:

Ringing

Tape

- Solutions:
 - Add more insulation to eliminate the discharge

Aluminum

Aluminum

- Modified the base circuit board to suppress the ringing
- R1584 from 20 years ago do not have these characteristics

arXiv:1311.6761v1

Sub Project 4: Detector Alignment

- LED alignment Array (Xmas tree)
 - Colored LEDs: Red, Blue and Green
 - Replicate photon envelope
 - Compared to MC
- Significantly helped us aligning the detector

43

Student Projects Under My Assistance in Supervision

Alex Fisher (2012)

- Studying and measuring gain of Hamamatsu PMTs
- HallC-doc-738-v1

Thomas Fitz-Gerald (2013)

Help the HGC assembly at Jefferson Lab

Matt Stugari (2016)

- Detector performance simulation with CO₂ and C₄F₁0
 - e/pi performance
 - Pi/K performance
- HallC-doc-804-v2
- HallC-doc-804-v2

Fantastic work! **Turned HGC to CO2 GC**

(b) CO_2 @ P = 0.50atm & p = 3GeV/c

(b) C_4F_{10} @ P = 0.95atm & p = 3GeV/c

Detector Status and Updates

- April, 2013 Hydroforming completed
- June, 2013: Detector finished aligned and assembled at Regina
- July, 2013: Detector was shipped to Jefferson Lab
- August, 2013: Detector was reassembled at Jefferson Lab
 - April, 2015: Detector installed
- March 2017: Calibration underway by new grad student: Ryan Ambrose
- Remain as one of HGC detector expert throughout 12 GeV era

Wenliang Li, Dept. of Physics, Univ. บา กะยูแนล, กะยูแนล, จก จนจบนน, บลเนื้อนั้น.

45

Thank you

HGC Construction Team at UofR

■ Leader: Garth Huber

Grad-Student: Wenliang (Bill) Li

Technician: Derek and Keith

Undergraduate Students: Thomas, Lee, Alex, Paul, Matt

Success Project, strong leadership by Garth, fantastic group Effort! Great support from Hall C staff scientists and Technicians

I would love to provide detailed information on any R&D sub project

Backup slides

PMT Modification

Credit to Keith and Dr Andrei Semenov

0.01μF Capacitors added on recommendation of Dr. A. Semenov, Dept. of Physics, U of R.
51Ω resistor is a common impedence matching technique.

Expected Performance

K and P should not Cherenkov

- Not directly
- 250000 Event at 7GeV momentum
- Delta radiation is possible

Simulation at 7 GeV:

π: 250000

p: 100000 Events

K: 100000 Events

Performance at 7 GeV:

- Cut at 10 photo-e:
- 98% detected pion
- 0.8% detected Kaon
- No Proton
- 1% missing pion

Lock-in Technique

- MC 100 Optical Chopper:
 - Chop the light signal
 - gate Generation for SR 530
- AXUV-100 Photo-diode
- SR530 Lock-in amplifier:
 - Output: Signal Subtraction (A-B)

The lock-in technique is used to measure very small AC signals in large background at narrow bandwidth.

Advantages:

- Measure Reflectivity at any possible on the Mirror
- No PMT
- No Dark Box required
 - Requires a constant background
- No Vacuum Chamber required
- If N₂ is used, lower wavelength is possible.

Spherical vs Oblate Mirrors

Oblate Mirror has larger focus spot

Oblate vs Spherical Mirrors

- Spot Size is slightly worse
- Detection Efficiency is slightly worse
- Oblate mirrors (slumped): \$8k/lot
- Spherical mirrors (polished) : \$100k/lot (Hall B number)
 - Conclusion: Oblate mirror is sufficient for the threshold Cherenkov detector
 - Concern: corner optical aberration

Cherenkov @ Jefferson Lab: Hall C

Cherenkov Threshold

$$v > \frac{c}{\sqrt{\epsilon_r(\omega)}} = \frac{c}{n(\omega)}$$

Cherenkov Angle

$$\cos \theta_C = \frac{1}{\beta \sqrt{\epsilon_r(\omega)}} = \frac{1}{\beta n}$$

- Spectrometer Momentum is define by the dipole setting
- Cherenkov medium: C₄F₁₀O gas
- Refractive Index to Pressure:

$$P = \frac{(n-1)}{(n_{1 \text{atm}} - 1)}$$

- Detector Pressure
 - 1 atm for 3–7 GeV/c Momenta
 - Reduced pressured at 7GeV/c or higher Momenta

Sub Project 1: Optical Test & Overall Results

3.51	200/ 71	000/ 71			D1 0	
Mirror	90% Fit	90% Fit	# of Failed	FR/2-FL	Blue-Green	Overall
#	R (cm)	κ	Criterion	(cm)	Ratio	Ranking
1	118.397	1.95	5	1.15	0.09	Bad
2	113.124	1.06	5	2.24	0.39	Average
3	117.110	1.70	5	2.99	0.70	Average
4	122.392	2.29	6	4.80	0.08	Bad
5	113.331	0.76	5	-0.14	0.14	Average
6	112.906	0.94	2	-0.36	0.15	Good
7	113.538	1.13	3	0.79	0.12	Reserve
8	114.325	1.26	4	1.01	0.15	Average
9	114.372	1.30	4	1.62	0.12	Reserve
10	112.035	0.42	0	-0.79	0.14	Good
11	111.766	0.75	1	0.73	0.12	Good
12	112.117	0.84	1	0.24	0.12	Good
13	122.464	2.43	6	3.19	0.01	Bad
14	117.964	1.59	6	3.41	0.14	Bad
15	113.674	1.17	5	2.10	0.18	Average

Optical (defused Laser Beam) Test

- Measured focused spot distance and obtained focal length. Then the focal length is compared with the fitted radius.
- Photographic processing obtained Blue-Green Pixel Ratio

Overall Results

- Mirrors with better fitted K and R values had better reflected spot in the optical test.
- Best 4 mirrors has *0*<*K*<*1* (Oblate) and 110cm <*R* < *115cm*

Sub Project 1: Mirror

4 Aluminized Mirrors

Dimension: 60cm x 55cm.

Curvature Radius: 110cm

Top two mirrors: 16 degree

 Bottom two mirrors: 20 degree to the vertical plane

Manufacturing technique:

Slumped Glass: \$8k (15 pieces)

Pro: cheap

Con: quality may vary

Polished Plastic: \$100k (4 pieces)

Pro: perfect quality

Con: expensive

Missing Mass Distribution Background Extraction

- Integration limits and fitting limits
- Exclusion criteria
 - Exclude the radiative only omega bins
 - Exclude the low statistics bins

Bin Exclusion criteria

Low Statistics

Radiative Tail

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

Background Extraction and Check

