Probing Hadron Structure through $e + p \rightarrow e' + \pi^+ + \Delta^0$ reaction at Jefferson Lab

Ali Usman

On behalf of Kaon-LT / Pion-LT collaboration

CAP Congress (Saskatoon 2025)

Generalized Parton Distributions (GPDs)

- Hadron structure is poorly understood within QCD framework.
- GPDs describe the 3D structure of hadrons via quarkgluon degrees of freedom.
 - Longitudinal momentum distribution (PDFs)
 - Transverse spatial distribution (Form factors)
- → While significant work has been done for the study of ground state nucleon GPDs, little is known about the $N \rightarrow \Delta$ transition GPDs.
 - > Only one measurement from CLAS12 with exclusive $\pi^- \Delta^{++}$ (Diehl et al. PRL 131 021901)
 - → Pioneering theory work on Transition GPDs for exclusive $\pi\Delta$ electroproduction (Kroll, Passek-Kumericki PRD 107, 054009)

Exclusive Pion Electroproduction

Exclusive pion electroproduction reaction

$$e + p \rightarrow e' + \pi^+ + n \text{ or } \Delta^0$$

 \succ Differential cross-section is dictated by virtual photon polarization ϵ .

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi + p \cdot \sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT'}}{dt} \sin\phi$$

 \succ " ϵ " is polarization of virtual photon

$$\epsilon = \left[1 + 2\frac{\left(E_e - E_{e'}\right)^2 + Q^2}{Q^2} \cdot \tan^2 \frac{\theta_{e'}}{2}\right]^-$$

➢ Cross-section, $\sigma_{LT'}$, is extracted using a polarized electron beam.

Beam Spin Asymmetry (BSA)

- > BSA is difference in cross-section based on helicity (+1, -1) of incident electron.
- σ_{LT} interference between transversely and longitudinally polarized virtual photons
 Can be accessed through Beam Spin Asymmetry (A_{LU})

$$A_{LU} = \left[\frac{1}{P}\left(\frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}\right)\right] = \left[\frac{1}{P}\left(\frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}}\right)\right] \propto \frac{\sigma^{LT'}}{\sigma^{0}} \longrightarrow \text{Unpolarized cross-section}$$

Acceptance and efficiencies cancel in the ratio.

> Beam polarization "P" is measured at source ($P = 89^{+1}_{-3}$ % - Gaskell and Wood)

$$\xrightarrow{P}$$

Experimental Hall C @ Jefferson Lab

Kaon-LT Experiment (E12-09-011)

- First dedicated experiment to study exclusive kaon electroproduction reaction.
 - Data collected 2018-2019
- ➢ Ideal dataset to study $p(e, e'π^+)Δ^0$ reaction.
 - > Experiment kinematics are designed to have the Λ missing mass region in center of phase space.

For BSA, only 10.6 GeV data is used.

 \succ This dataset has full azimuthal (ϕ) coverage.

E (GeV)	Q² (GeV²)	W (GeV)	x _B	$\epsilon_{High} / \epsilon_{Low}$
10.6/8.2	5.5	3.02	0.40	0.53/0.18
10.6/8.2	4.4	2.74	0.40	0.72/0.48
10.6/8.2	3.0	2.32	0.40	0.88/0.57
10.6/6.2	3.0	3.14	0.25	0.67/0.39
10.6/6.2	2.115	2.95	0.25	0.79/0.25
4.9/3.8	0.5	2.40	0.09	0.70/0.45

Event Selection

 $rac{} e' - \pi^+$ Coincidence

 $e' - \pi^+ Coin Time = HMS_{time} - SHMS_{time}$

Missing Mass

$$M_m = \sqrt{\left(E_e + m_p - E_{e'} - E_{\pi^+}\right)^2 - (p_e - p_{e'} - p_{\pi^+})^2}$$

 $p(e, e'\pi^+)n$ MC is subtracted by fitting it to the data in the neutron peak region.

 $p(e, e'\pi^+)X$ MC is subtracted by fitting it to the data in the region (1.45-1.60 GeV).

 $p(e, e'\pi^+)\Delta^0$ is fitted to the background subtracted data in the region (1.15-1.30 GeV).

6/10/25

Ali Usman

 $Q^2 = 2.115$, W = 2.95

Δ^0 Shape Study – Combined Fit

 $Q^2 = 2.115$, W = 2.95

Δ^0 Shape Study – Signal Selection

 $Q^2 = 2.115$, W = 2.95

 $-t - \phi$ binning

≻-t binning is dictated by statistics for each kinematic setting.

- High statistics settings (3 bins)
- Low statistics settings (1 or 2 bin)
- To get a full φ coverage, data is taken three degrees on the left and right of the Q-vector (in pion arm).
- Measurements are only possible due to small angle capabilities of SHMS (up to 5.5°).
- For beam spin asymmetry, φ dependence is measured by binning the data in 8 equal size ins (for each SHMS setting).

 $Q^2=5.5$, W=3.02

Radial axis – tAzimuthal angle - ϕ

$|A_{LU}$ vs $oldsymbol{\phi}$

Solution BSA is calculated by integrating $p(e, e'\pi^+)\Delta^0$ missing mass (1.11 - 1.40 GeV).

$$A_{LU} = \left[\frac{1}{P} \left(\frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}}\right)\right] \qquad \qquad \delta_{stat} = \frac{2}{P} \sqrt{\frac{Y^{+} \cdot Y^{-}}{(Y^{+} + Y^{-})^{3}}}$$

> Only statistical errors shown here.

$$Q^2 = 3.0 \ GeV^2$$
, $W = 3.14 \ GeV^2$

6/10/25

$$\sigma_{LT'}/\sigma_0$$
 vs -t

 \succ Within limited –*t* coverage, $\sigma_{LT'}/\sigma_0$ show similar trend for both $\pi^+ n$ and $\pi^+ \Delta^0$

> The $\sigma_{LT'}/\sigma_0$ magnitude for $\pi^+\Delta^0$ is approximately double than the $\pi^+ n$ across different settings.

Only statistical errors shown here
 6/10/25

 σ_{LT}' $\sigma_0 VS Q^2$

> The Q²-dependence show polarized cross-section ($\sigma_{LT'}$) drops at same rate as unpolarized σ_0 . > The $\sigma_{LT'}/\sigma_0$ magnitude for $\pi^+\Delta^0$ and $\pi^-\Delta^{++}$ is comparable but opposite sign.

Summary

Studying parton interaction is essential to understanding the hadron internal structure.

- Experimental measurement of exclusive pion electroproduction is a powerful tool for GPD study.
- Kaon-LT Experiment gives access to high statistic exclusive pion electroproduction data at wide range of kinematics.

First ever measurement of Beam Spin Asymmetry for the $p(e, e'\pi^+)\Delta^0$ reaction.

 $\gg \pi^+ \Delta^0$ BSA is approximately double in magnitude than $\pi^+ n$ (both from Kaon-LT) $\gg \pi^+ \Delta^0$ BSA has similar magnitude but opposite sign than $\pi^- \Delta^{++}$ from CLAS12.

Systematic error analysis is currently on-going.

➢ Final publication anticipated in Fall 2025.

Thank You !!!

This research is funded by Natural Sciences and Engineering Research Council of Canada (NSERC) FRN: SAPIN-2021-00026 and the National Science Foundation of USA (NSF), PHY1714133 and PHY2012430

Kaon-LT and Pion-LT Collaboration

Spokespeople

Garth Huber, Dave Gaskell, Tanja Horn, Pete Markowitz

> Key Members

Richard Trotta, Alicia Postuma, Portia Switzer, Stephen Kay, Vijay Kumar, Nathan Heinrich, Muhammad Junaid, Abdennacer Hamidi, Julie Roche

Backup

Particle ID

Pion Selection (SHMS)

Electron Selection (HMS)

P.hgc.npeSum > 2.0	H.cer.npeSum > 3.0
P.aero.npeSum > 3.0	H.cal.etottracknorm > 0.7

 $Q^2 = 2.115$, W = 2.95

Thomas Jefferson National Accelerator Facility

- Consists of two superconducting electron LINACs.
- Capable of delivering high luminosity beam to four experimental halls.
- Variable beam energies and high current.

Hall C

- Specifically designed to measure precise cross-sections.
- Two advanced rotatable magnetic spectrometers (HMS and SHMS).
- Particles of specific momentum are studied by using a magnet system.

Detector Performance – Tracking

- Drift chambers are used for tracking of particles in each spectrometer.
- Electron tracking efficiency in the HMS is stable over a range of rates.
- Pion tracking efficiency in the SHMS shows larger rate dependence.
 - Larger scatter is caused by different experimental conditions (SHMS angle, background rates etc)
- Track parameter optimization study was performed to improve SHMS tracking efficiency.

Detector Performance – Hodoscopes

- Hodoscopes are primary detectors for trigger in both spectrometers.
- HMS hodoscope efficiency is very stable and high.

> Due to lower rates and larger forward angle.

- SHMS hodoscope efficiency fluctuates between 98-100%.
 - Quartz plane has lower efficiency.
 - ➢ High rates and lower forward angle.

Detector Performance – Cherenkovs

- Cherenkovs are used as PID detectors in both spectrometers.
- HMS Cherenkov efficiency study was unfeasible on physics data.
 - Due to high background rates.
- Elastic singles H(e,e')p data was used with lower background rates.
 - ➢ Light leak is the source of ~2.5% inefficiency.
- SHMS aerogel efficiency study was performed for all physics data.
 - Overall results show high efficiency for pions
 - Small fluctuations caused by different index of refraction aerogel trays

Monte Carlo Resolution Correction

- Hall C Monte Carlo (SIMC) drift chamber resolution has been optimized.
- Resolution difference b/w data and MC vary for different kinematics.
 - A global correction factor is used for all data.
- A systematic uncertainty is ongoing to evaluate the remaining resolution difference.

 $Q^2 = 2.115$, W = 2.95

-t-binning

The –t dependence is sensitive to different production mechanisms.

- Multiple t-bins for 3 of the 5 settings
 - High statistics settings (3 bins)
 - Low statistics settings (1 or 2 bin)

 $Q^2=3.0$, W=3.14Ali Usman

Systematic Error Analysis

Systematic error analysis (currently in-progress) is divided into three main categories.

Beam Polarization Error

Fixed error $\binom{+1}{-3}$ %) calculated during the measurement of beam polarization.

Fitting dependent Error

- \blacktriangleright Recalculate asymmetry using $\pi^+ \Delta^0$ simulation yields instead of background subtracted data.
- \blacktriangleright Recalculate asymmetry by varying the $\pi^+ n$ and π^+ -SIDIS background

Cut dependent Error

- Recalculate asymmetry by varying the SHMS Heavy Gas cut
- Recalculate asymmetry by varying missing mass selection cut

Preliminary results show fitting dependent error has the largest contribution to the total error.

A_{LU} vs $oldsymbol{\phi}$

Solution BSA is calculated by integrating $p(e, e'\pi^+)\Delta^0$ missing mass (1.11 - 1.40 GeV).

$$A_{LU} = \left[\frac{1}{P} \left(\frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}}\right)\right] \qquad \qquad \delta_{stat} = \frac{2}{P} \sqrt{\frac{Y^{+} \cdot Y^{-}}{(Y^{+} + Y^{-})^{3}}}$$

> Only statistical errors shown here.

$$Q^2 = 2.1 \ GeV^2, W = 2.95 \ GeV$$

6/10/25

$|A_{LU}$ vs $oldsymbol{\phi}$

 \blacktriangleright BSA is calculated by integrating $p(e, e'\pi^+)\Delta^0$ missing mass (1.11 - 1.40 GeV).

$$A_{LU} = \left[\frac{1}{P} \left(\frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}}\right)\right] \qquad \qquad \delta_{stat} = \frac{2}{P} \sqrt{\frac{Y^{+} \cdot Y^{-}}{(Y^{+} + Y^{-})^{3}}}$$

> Only statistical errors shown here.

$$Q^2 = 3.0 \ GeV^2$$
, $W = 2.32 \ GeV^2$

6/10/25

A_{LU} vs $oldsymbol{\phi}$

 \blacktriangleright BSA is calculated by integrating $p(e, e'\pi^+)\Delta^0$ missing mass (1.11 - 1.40 GeV).

$$A_{LU} = \left[\frac{1}{P} \left(\frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}}\right)\right] \qquad \qquad \delta_{stat} = \frac{2}{P} \sqrt{\frac{Y^{+} \cdot Y^{-}}{(Y^{+} + Y^{-})^{3}}}$$

>Only statistical errors shown here.

6/10/25

Beam Polarization

Beam Polarization

- > No dedicated measurement in Hall C during the Kaon-LT experiment
- > Compared polarization measurements at the injector and dedicated measurement in Hall B
- Injector Measurement via Mott polarimeter
 - > 90.13% +/- 0.51% (stat.) +/- 0.90% (sys.)
- Hall B Measurement via Moller polarimeter
 - > 89.37% +/- 1.56% (stat.) +/- 3% (sys.)
- Error in the Hall C beam polarization comes from
 - Source uncertainty
 - Beam energy uncertainty
 - Linac imbalance