Understanding Hadronic Structure -Solving a Puzzle of the Standard Model

Outline

- Hadron Physics and QCD
- Understanding Hadron Structure
 - Form Factors
- Current Facilities Jefferson Lab
 - The Kaon and Pion LT experiments
- Future Facilities and Experiments
 - Future Jefferson Experiments and Lab Facilities

07/02/22

2

- The Electron-Ion Collider
- Outlook

Cover Image - Brookhaven National Lab, https://www.flickr.com/photos/brookhavenlab/

Making Sense of the Universe

- Standard Model is the toolkit we use to describe objects in our universe
 - And their interactions
- Fermions, building blocks of observable objects in the universe
- Bosons, force carriers, mediate interactions between objects

(fermions) (bosons) m 2.2 MeW/rP u С t н G charm top aluon higgs graviton up IENSOR BOSONS S b SCALAR BOS photon down strange bottom a:1.7768 GeV/c3 00.511 MeW/c2 at 105,66 MeW/c3 SON е μ τ electron tau 7 boson muon <0.17 MeV/G <18.2 MeW/c3 Ve ντ Vμ electron muon tau W boson neutrino neutrino neutrino Fermions, Bosons, mediate building blocks interactions

07/02/22

3

Standard Model of Elementary Particles and Gravity

interactions / force carriers

three generations of matter

Image - Modified Wikimedia Commons

University of Regina

Stephen Kay

Making Sense of the Universe

Image - Modified Wikimedia Commons

Stephen Kay University of Regina

07/02/22

Quantum Chromodynamics

- Our theory of the strong interaction is known as Quantum ChromoDynamics (QCD)
- Interactions occur between objects that are "colour" charged, such as quarks, via the exchange of gluons, g
- Analogous to **photons**, γ , in EM interactions
- Small, but crucial, difference, gluons are colour charged
 - Gluons can self interact

07/02/22

Images - Modified Wikimedia Commons

Building Hadrons

• Hadrons are **colour neutral** objects formed of quarks

- Cannot isolate objects with colour charge
- Empirical observation known as **confinement**
- Considering only the valence quarks, two easy ways to make a colour neutral object

07/02/22

6

Image - Modified Wikimedia Commons

The Dual Nature of QCD

Image - Modified from S.J. Brodsky et. al. PRD 81:096010, 2010

Stephen Kay University of Regina

07/02/22

The Proton - More than meets the eye

• Consider the proton, a baryon with *uud* valence quarks

 $m_p pprox 938 \ MeV/c^2,$ $m_u pprox 3 \ MeV/c^2, m_d pprox 6 \ MeV/c^2,$ $(2 \times 3) + 6 = 938?$

07/02/22

8

• Where does the mass come from?

- Massless gluons and nearly massless quarks, through their interactions, generate most of the mass
- \sim 99% of the mass of hadrons \rightarrow most of the visible mass in the universe!

• Can we understand the transition between our two pictures?

Image - A. Deshpande, Stony Brook University

Understanding Dynamic Matter

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay
 - Properties of hadrons are emergent phenomena

<u>07</u>/02/22

- Mechanism known as Dynamical Chiral Symmetry Breaking (DCSB) plays a part in generating hadronic mass
- How do our two distinct regions of QCD behaviour connect?
- Need to account for more than just protons!
- A major puzzle of the standard model to try and resolve!

Image - A. Deshpande, Stony Brook University

Stephen Kay

University of Regina

More Than Just Protons

• Multiple mechanisms at play

- DCSB not experimentally demonstrated
- What quantities can we examine to understand hadron structure?
- The simple $q\bar{q}$ valence structure of mesons makes them an excellent testing ground

07/02/22

10 / 44

Meson Form Factors

- Charged pion (π^{\pm}) and Kaon (K^{\pm}) form factors (F_{π}, F_{K}) are key QCD observables
 - Describe the spatial distribution of partons within a hadron

- Meson wave function can be split into $\phi_{\pi}^{\mathrm{soft}}$ ($k < k_0$) and ϕ_{π}^{hard} , the hard tail
 - Can treat ϕ_{π}^{hard} in pQCD, cannot with ϕ_{π}^{soft}
 - Form factor is the overlap between the two tails (right figure)
- F_{π} and F_{K} of special interest in hadron structure studies
 - π Lightest and simple QCD quark system
 - K Another simple system, contains strange quark

Stephen Kay

University of Regina

07/02/22

Rigorous Predictions for the Pion from pQCD

• At very large four-momentum transfer squared, Q^2 , F_{π} can be calculated using pQCD

12

• As $Q^2 \rightarrow \infty$, the pion distribution amplitude, ϕ_{π} becomes -

$$\phi_{\pi}(x)
ightarrow rac{3f_{\pi}}{\sqrt{n_c}} x(1-x) \; f_{\pi} = 93 \; MeV, \; \pi^+
ightarrow \mu^+
u$$
 decay constant

• F_{π} can be calculated with pQCD in this limit to be -

$$Q^2 F_{\pi} \xrightarrow[Q^2 \to \infty]{} 16\pi \alpha_s(Q^2) f_{\pi}^2$$

- This is a rigorous prediction of pQCD
- Q^2 reach of existing data doesn't extend into transition region

• Need unique, cutting edge experiments to push into this region

07/02/22

Eqns - G.P. Lepage, S.J. Brodsky, PLB 87, p359, 1979

Connecting Pion Structure and Mass Generation

- ϕ_{π} as shown before has a broad, concave shape
- Previous pQCD derivation (conformal limit) did not include DCSB effects
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA
- Pion structure and hadron mass generation are interlinked

L. Chang, et al., PRL110(2013) 132001, PRL111(2013), 141802

13 / 44

Stephen Kay University of Regina

07/02/22

What About the Kaon?

- K^+ PDA (ϕ_K) is also broad and concave, but asymmetric
- Heavier s quark carries more bound state momentum than the u quark

- Form factors are not the only quantity we can examine
- How can we measure F_{π} or F_{K} at high Q^{2} anyway?

07/02/22

14 / 44

C. Shi, et al., PRD 92 (2015) 014035, F. Guo, et al., PRD 96(2017) 034024 (Full calculation)

Examining Meson Form Factors at Current Facilities

07/02/22

15 / 44

How can we access F_{π} at high Q^2 experimentally?

- At high Q^2 , must measure F_{π} indirectly
 - $\,\circ\,$ Scatter e^- off the "pion cloud" of the proton
 - Exchange a virtual photon γ^* , produce a real pion $p(e, e'\pi^+)n$
- In a simple theoretical picture, can link F_{π} to a part of the cross-section, σ_L , for this reaction

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)}g^2(t)F_\pi^2(Q^2,t)$$

- σ_L is the longitudinal cross section
- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction

 \rightarrow Model dependent

(smaller dependency at low -t)

Isolating σ_L

Stephen Kay

• The physical cross section for the electroproduction process is given by -

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon
ightarrow$ Virtual photon polarisation

- L-T separation required to isolate σ_L from σ_T
- Where can we do a measurement like this?
 - Thomas Jefferson
 National Accelerator
 Facility, Jefferson Lab

Scattering Plane Reaction Plane θ_{π} e' ψ_{π} $-Q^2 = (p_e - p_e')^2$ $W^2 = (p_{\gamma} + p_p)^2$ $t = (p_{\gamma} - p_{\pi})^2$

17

44

07/02/<u>22</u>

University of Regina

Jefferson Lab - JLab

Stephen Kay University of Regina

07/02/22

Jefferson Lab - JLab

Stephen Kay University of Regina

07/02/22

Meson Form Factors - JLab Program

- Two major form factor experiments in JLab Hall C
- Measure pion and kaon electroproduction reactions to extract form factors
- High impact experiments, previous F_π experiment papers cited hundreds of times
- E12-09-011 (Spokespeople: T. Horn, G Huber, P. Markowitz)
 - Ran in 2018-2019, analysis in progress
 - LT separated kaon cross section, will attempt to extract F_K
- E12-19-006 (Spokespeople: D. Gaskell, T. Horn, G. Huber)
 - Low Q^2 part ran in June/July 2019
 - Large experimental run in 2021 and ongoing in 2022
 - LT separated pion cross section, F_{π} to high Q^2 (8.5 GeV²)

Hall C in the 12 GeV era

Stephen Kay University of Regina

07/02/22

Hall C in the 12 GeV era

Stephen Kay University of Regina

07/02/22

Hall C in the 12 GeV era

University of Regina

Stephen Kay

07/02/22

Hall C in the 12 GeV era - Pion/KaonLT Experiment

Stephen Kay University of Regina

07/02/22

Hall C in the 12 GeV era - Pion/KaonLT Experiment

Stephen Kay University of Regina

07/02/22 25 / 44

Measuring $\frac{d\sigma_L}{dt}$ at JLab

- Rosenbluth separation required to isolate σ_L
 - Fix W, Q^2 and -t, measure cross section at two beam energies
 - $\circ\,$ Carry out simultaneous fit at two different ϵ values to determine interference terms
- Careful control of point-to-point systematics crucial, 1/Δε error amplification in σ_L
- Spectrometer acceptance, kinematics and efficiencies must all be carefully studied and understood

Figure - T. Horn, et al., PRL 97(2006) 192001

d²σ/dtdφ (μb/GeV² 2 $Q^2 = 1.59 (GeV^2/c)$ σ_{HIGH} 21 GeV JOW 0 0 50 100 250 150 200 300 350 (deg)

Stephen Kay

University of Regina

07/02/22 26

Current and Projected JLab F_{π} Data

- JLab 12 GeV program includes measurements of F_{π} to higher Q^2
- JLab Hall C is the only facility worldwide that can perform this measurement
- Projected error bars show on plot, *y* positioning of points arbitrary
- Models all disagree!

Stephen Kay

• Contributions from sea quarks and gluons highly uncertain at high Q²

• A world leading, high impact measurement

University of Regina

07/02/22

27

Current and Projected JLab F_K Data

- Data has all been acquired and analysis is in progress
- Projected errors bars, y positioning of points arbitrary
- No existing data above $Q^2 \sim 2.25 \ GeV^2$
- Error bars on sparse existing data are very large
- Kaon structure even more poorly known than the pion
 - New experiments and facilities on the horizon
 - New opportunities

07/02/22

28

Hadron Structure at Future Facilities

07/02/22

29 / 44

The Solendoial Large Intensity Device (SoLID)

- SoLID is an upcoming high acceptance detector at JLab
 - To be installed after MOELLER in Hall A
 - Expected to be operational before the end of this decade
- Two different detector configurations

University of Regina

- Semi-Inclusive Deep Inelastic Scattering (SIDIS)
- Parity Violating Deep Inelastic Scattering (PVDIS)
- Deep Exclusive Meson Production (<u>DEMP</u>) reactions allow us to probe a different aspect of hadron structure with SoLID
 - Can examine Generalised Parton Distributions (GPDs)

07/02/22

30 / 44

Image - SoLID Collaboration

Stephen Kay

Taking JLab Into the Future - JLab20

- Could upgrade energy of JLab accelerator again
- Replace some arcs with a Fixed Field Alternating Gradient (FFA) arcs, new injector
- Could push energy to the 20 24 *GeV* range
- Fixed target experiments still useful, facility has unique capabilities
 - What can we do with existing equipment?
 - New equipment?

Stephen Kay

• But, what about entirely new facilities?

Proposed replacement of two arcs with FFA arcs, new injector not shown.

• If this goes ahead, will be beyond 2030.

31 /

Image - Alex Bogacz, 20-24 GeV FFA CEBAF Energy Upgrade

07/02/22

University of Regina

The Electron-Ion Collider

Stephen Kay

- Major announcement in January 2020
 - Brookhaven National Lab (BNL) was chosen as the site of the future Electron-Ion Collider (EIC)
 - BNL is situated on Long Island, New York

University of Regina

• Existing site of the Relativistic Heavy Ion Collider (RHIC) and the Alternating Gradient Synchrotron (AGS)

07/02/22

32

Putting (Another) Ring on it - eRHIC

Image - Brookhaven National Lab

Stephen Kay

Use existing RHIC

- Up to 275 *GeV* polarised proton beams
- Existing tunnel, detector halls, hadron injector complex (AGS)
- New 18 GeV electron linac
 - New high intensity electron storage ring in existing tunnel
- Achieve high \mathcal{L} , high E e-p/A collisions with full acceptance detectors
- High *L* achieved by state of the art beam cooling techniques

33 / 44

University of Regina

07/02/22

Putting (Another) Ring on it - eRHIC

Image - Brookhaven National Lab

Stephen Kay

Use existing RHIC

- Up to 275 *GeV* polarised proton beams
- Existing tunnel, detector halls, hadron injector complex (AGS)
- New 18 GeV electron linac
 - New high intensity electron storage ring in existing tunnel
- Achieve high \mathcal{L} , high E e-p/A collisions with full acceptance detectors
- High *L* achieved by state of the art beam cooling techniques

34 / 44

University of Regina

07/02/22

- JLab measurements push the Q^2 reach of data considerably
- Still cannot answer some key questions regarding the emergence of hadronic mass however
- Can we get quantitative guidance on the emergent pion mass mechanism?

ightarrow Need F_{π} data for $Q^2=10-40~GeVc^{-2}$

- What is the size and range of interference between emergent mass and the Higgs-mass mechanism? \rightarrow Need F_K data for $Q^2 = 10 - 20 \ GeVc^{-2}$
- Beyond what is possible at JLab in the 12 GeV era
 - Need a different machine → The Electron-Ion Collider (EIC)

07/02/22

35 / 44

DEMP Studies at the EIC

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC have the potential to extend the Q^2 reach of F_{π} measurements even further
- A challenging measurement however
 - Need good identification of $p(e, e'\pi^+n)$ triple coincidences
 - $\,\circ\,$ Conventional L-T separation not possible \rightarrow would need lower than feasible proton energies to access low ϵ
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- Utilise EIC software framework to assess the feasibility of the study with updated design parameters
 - Feed in events generated from UoR DEMP event generator
 - Multiple detector concepts to evaluate
- Event generator being modified to generate kaon events

EIC Detector Overview

- Feed generator output into detector simulations
- Various detector concepts
- All share common elements
- Current simulation effort has been focused on the EIC Comprehensive Chromodynamics Experiment (ECCE)

07/02/22

37

• https://www.ecce-eic.org/

EIC Simulation Results for ECCE

- My recent work has focused on EIC simulations
- Work showed importance of a large, high quality Zero Degree Calorimeter
- Examined detection efficiency for DEMP events
- Efficiency = $\frac{\text{Accepted}}{\text{Thrown}}$

Stephen Kay

• Simulation results utilised for form factor projections

- Detection efficiency highest for low -t
- Nearly independent of Q^2
- Dictated by size of ZDC

University of Regina

07/02/22

EIC F_{π} Data - Reaching for Some Answers

- ECCE appears to be capable of measuring F_{π} to $Q^2 \sim 32.5 \ GeV^2$
- Error bars represent real projected error bars
- Overlap with JLab data at the low end of the Q² range
- Data pushes into region where we can distinguish between models
- Data here can address mass generation questions

Stephen Kay

 One of the key science questions for the EIC!

 Results look promising, need to test other detector concepts

39 / 44

• More details in upcoming ECCE analysis note

University of Regina

07/02/22

Form Factors at the EIC - Outlook

- EIC has the potential to push the Q^2 reach of F_{π} measurements
 - Can we measure F_K too?
- F_{π} work already featured in the EIC yellow report
- Now working closely with detector proto-collaborations
 - Carrying out feasibility studies
 - UoR DEMP event generator utilised
 - Kaon event generator update and simulations in progress
 - Activities are a priority for the ECCE Diffractive and Tagging group

07/02/22

40 / 44

- Results from simulation have been written up in an ECCE analysis note
 - Expect to see this soon!
- $\, \bullet \,$ Could also examine the GPD \tilde{E} at the EIC

R. Abdul Khalek et al. EIC Yellow Report. 2021. arXiv:2103.05419, Sections 7.2.1 and 8.5.1

Closing Remarks - Future Plans

Stephen Kay University of Regina

07/02/22

Short Term Plans - JLab Hall C and EIC Prep

- Numerous projects and opportunities in the 1-3 year term
- Hall C form factor experiments are ongoing
- A lot of data to analyse
 - Can extract more than just form factors from the data
 - $\bullet\,$ Beam helicity asymmetries, u-channel analysis, η and η' cross sections...
- Planning and preparation for the EIC already ongoing
- Detector collaboration formation expected soon
 - EIC-Canada can play an important role
 - Revisit pion form factors with updated simulations
- New studies and projects
 - Kaon form factors at the EIC
 - \tilde{E} at the EIC
 - Detector design?

Intermediate Term Plans - Hall A, Hall C and the EIC

- In the 3-10 year term, many new opportunities to explore
- Many exciting experiments in Hall A within this time period
 - MOELLER
 - SoLID
- Preparation and planning for future SoLID experiments
 - \tilde{E} GPD studies
 - Involvement in the PVDIS program?
- EIC project ramping up significantly in this time period
 - Experiment planning, simulations, projections
 - Detector construction?
- Opportunities in Hall C too
 - $\circ\,$ If results from Kaon LT are promising, build on this
 - Considerable theoretical interest in the Kaon form factor
 - Even with the EIC, Hall C will be our only source of L/T separated cross section data

07/02/22

Long Term Plans - The EIC

- Dominating the horizon into the next decade is the EIC
- The US National Academy of Sciences summarises the potential of the EIC better than I can!
- An EIC can uniquely address three profound questions about nucleons...
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?

07/02/22

44

- "... the science it will achieve is unique and world leading"
- The EIC is an exciting opportunity for the next generation of physicists Expected program: 2030-2060
- Canada is well positioned to contribute to this program

Thanks for listening, any questions?

The University of Regina is situated on the territories of the nehiyawak, Anihsināpēk, Dakota, Lakota, and Nakoda, and the homeland of the Métis/Michif Nation. The University of Regina is on Treaty 4 lands with a presence in Treaty 6.

With thanks to all of my colleagues in the SoLID, JLab HallC, Meson Structure Working Group and EIC-Canada Collaborations

Research featured in this talk was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPIN-2021-00026