Light Meson Structure from Early EIC Physics

Stephen JD Kay University of York

ePIC EDT Meeting 24/03/25

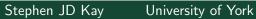
Stephen JD Kay, Garth Huber, Love Preet

Die Ne a ante

Outline

Stephen JD Kay University of York

20/03/25


• Brief Form Factor Recap

Stephen JD Kay University of York

20/03/25

- Brief Form Factor Recap
- Simulation Conditions

20/03/25

Stephen JD Kay

- Brief Form Factor Recap
- Simulation Conditions
- Measuring Meson Form Factors through DEMP

University of York

20/03/25

- Brief Form Factor Recap
- Simulation Conditions
- Measuring Meson Form Factors through DEMP

20/03/25

1 / 15

Analysis Overview/Details

- Brief Form Factor Recap
- Simulation Conditions
- Measuring Meson Form Factors through DEMP
- Analysis Overview/Details
- ePIC Projections Latest Results and Improvements

- Form factors \rightarrow Momentum space distributions of partons
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}

20/03/25

2 / 15

- $\, \bullet \,$ Form factors $\, \to \,$ Momentum space distributions of partons
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}
- A challenging measurement however

Stephen JD Kay

Need clean identification of exclusive reactions

University of York

 $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t

20/03/25

- $\, \bullet \,$ Form factors $\, \to \,$ Momentum space distributions of partons
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t
 - $\circ\,$ Conventional L-T separation not possible \rightarrow low enough $\epsilon\,$ not accessible at the EIC
 - $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{\it uns}/dt$

- $\, \bullet \,$ Form factors $\, \to \,$ Momentum space distributions of partons
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t
 - $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- F_{π} measurement feasibility previously demonstrated

A. Bylinkin. et. al., NIMA 1052 (2023) 168238 https://doi.org/10.1016/j.nima.2023.168238

Stephen JD Kay University of York

20/03/25

- $\, \bullet \,$ Form factors $\, \to \,$ Momentum space distributions of partons
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - Access form factors by isolating σ_L at lowest possible -t
 - $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- F_{π} measurement feasibility previously demonstrated
- Love presented improvements with ePIC previously
 - No 10x130 early science config previously

- $\, \bullet \,$ Form factors $\, \to \,$ Momentum space distributions of partons
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - Access form factors by isolating σ_L at lowest possible -t
 - $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- F_{π} measurement feasibility previously demonstrated
- Love presented improvements with ePIC previously
 - No 10x130 early science config previously
- F_K studies still to be done

Stephen JD Kay

- Promising signs on A reconstruction in ZDC though
- See https://doi.org/10.48550/arXiv.2412.12346

20/03/25

• 10 GeV e^- on 130 GeV p (10x130) is a new configuration

20/03/25

3 / 15

• New simulation, and therefore new input files, needed

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10×130 added as new configuration
 - $\mathcal{L} \approx 0.2629 \times 10^{33} cm^{-2} s^{-1}$
 - Assume $\int \mathcal{L} = 5 \ fb^{-1}$ in projections

Based upon assumptions on per fill $\int \mathcal{L}$ in Elke's slides

Stephen JD Kay University of York

20/03/25

Stephen JD Kay

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10x130 added as new configuration
 - $\mathcal{L} \approx 0.2629 \times 10^{33} cm^{-2} s^{-1}$
 - Assume $\int \mathcal{L} = 5 \ fb^{-1}$ in projections
- Ran $p(e, e'\pi^+ n)$ and $p(e, e'K^+\Lambda)$, split into three Q^2 ranges
 - $\,\circ\,$ 3 < Q^2 < 10, 10 < Q^2 < 20 and 20 < Q^2 < 35
 - Based upon kinematic region parameterised in DEMPgen
 - $\,\circ\,$ Roughly ${\sim}100k$ generated per Q^2 range

Technically, actually a cut on the range of $\theta_{e'}$ values, directly feeds into Q^2

20/03/25

<u>3</u> / 15

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10x130 added as new configuration
 - $\mathcal{L} \approx 0.2629 \times 10^{33} cm^{-2} s^{-1}$
 - Assume $\int \mathcal{L} = 5 \ fb^{-1}$ in projections
- Ran $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda)$, split into three Q^2 ranges
 - 3 < Q^2 < 10, 10 < Q^2 < 20 and 20 < Q^2 < 35
 - Based upon kinematic region parameterised in DEMPgen
 - Roughly ~ 100 k generated per Q^2 range
- For π , processed with high acceptance (lower divergence) and high divergence (lower acceptance) beam profiles
 - Only pion high acceptance analysed so far
- Submit as a request to simulation campaign, but also ran independently
 - Used 10×130 epic-craterlake detector config

• Recently picked this up where Love left off

• Working with analysis Love had as a starting point

20/03/25

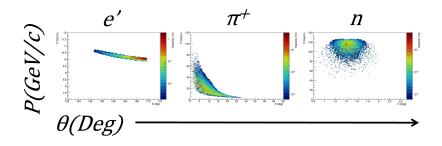
4 / 15

- Recently picked this up where Love left off
 - Working with analysis Love had as a starting point
- Focus recently has been on modifying generator for 10×130
 - Also needed to generate and analyse files
 - New JLab job creation scripts

- Recently picked this up where Love left off
 - Working with analysis Love had as a starting point
- Focus recently has been on modifying generator for 10×130
 - Also needed to generate and analyse files
 - New JLab job creation scripts
- Aware that additional validation plots needed
 - These will be my next focus and priority
- Will look to create independent analysis script

- Recently picked this up where Love left off
 - Working with analysis Love had as a starting point
- Focus recently has been on modifying generator for 10x130
 - Also needed to generate and analyse files
 - New JLab job creation scripts
- Aware that additional validation plots needed
 - These will be my next focus and priority
- Will look to create independent analysis script
 - Verify earlier work, build in validation plots from the start

DEMP Kinematics - Truth Distributions


• Generated 10 GeV electrons on 130 GeV protons (10x130)

20/03/25

5 / 15

DEMP Kinematics - Truth Distributions

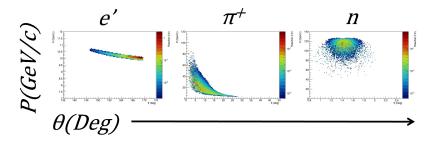
- Generated 10 GeV electrons on 130 GeV protons (10x130)
- e' and π^+ hit the central detector, neutron in FF detectors
 - ZDC in particular critical for low -t neutrons

20/03/25

5 / 15

Beam effects not removed here.

Note, in η the ranges are $-1.15 < \eta_{e'} < -2.45$, 0 $< \eta_{\pi^+} <$ 0.9 and 4 $< \eta_n <$ 5.1.

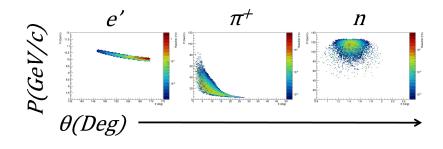

DEMP Kinematics - Truth Distributions

- Generated 10 GeV electrons on 130 GeV protons (10x130)
- $\circ~e'$ and π^+ hit the central detector, neutron in FF detectors
 - ZDC in particular critical for low -t neutrons

University of York

• Note that the Z scale is a rate in Hz

Stephen JD Kay

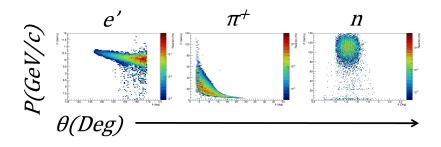


20/03/25

DEMP Kinematics - Reconstructed Distributions

University of York

• Processed same 10×130 events through ElCrecon



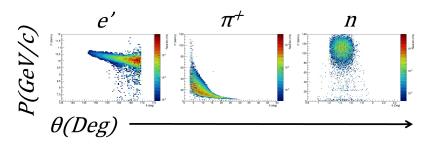
20/03/25

6 / 15

DEMP Kinematics - Reconstructed Distributions

- Processed same 10x130 events through ElCrecon
- Selected events with E > 40 GeV in 1 cluster the ZDC
 - Used the "HCalFarForwardZDCClusters" branch
 - Also applied a cut on θ^*

20/03/25


6 / 15

 θ^* is after a rotation of 25 mRad around the proton axis to remove the crossing angle University of York

DEMP Kinematics - Reconstructed Distributions

- Processed same 10x130 events through ElCrecon
- Selected events with E > 40 GeV in 1 cluster the ZDC
 - Used the "HCalFarForwardZDCClusters" branch
 - Also applied a cut on θ^*
- ZDC performance and -t reconstruction critical

University of York

20/03/25

6 / 15

• Need to select out e', π^+, n triple coincidence events

20/03/25

7 / 15

• To begin, require that simultaneously we have -

- Need to select out e', π^+, n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')

<u>20</u>/03/25

7 / 15

- One positively charged track in the +z direction (π^+)
- A high energy reconstructed neutron in the ZDC
 - $E_n > 40 \text{ GeV}$
 - $\theta_n^* < 4 mrad$

Stephen JD Kay

 $\theta^{\,*}$ is after a rotation of 25 mRad around the proton axis to remove the crossing angle

University of York

- Need to select out e', π^+, n triple coincidence events
- To begin, require that simultaneously we have -

University of York

- One negatively charged track in the -z direction (the e')
- One positively charged track in the +z direction (π^+)
- A high energy reconstructed neutron in the ZDC
 - $E_n > 40 \text{ GeV}$
 - $\theta_n^* < 4 mrad$
- Cut on difference between ZDC hit and "corrected" neutron track angles

20/03/25

7 / 15

•
$$-0.09^{\circ} < \theta < 0.14^{\circ}$$

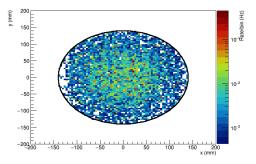
• $|\Delta \phi| < 45^\circ$

More on the neutron track correction in a second

- Need to select out e', π^+, n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')
 - One positively charged track in the +z direction (π^+)
 - A high energy reconstructed neutron in the ZDC
 - $E_n > 40 \ GeV$
 - $\theta_n^* < 4 mrad$
- Cut on difference between ZDC hit and "corrected" neutron track angles

20/03/25

7 / 15


- $-0.09^{\circ} < \theta < 0.14^{\circ}$
- $\circ ~|\Delta \phi| < 45^\circ$
- $\,\circ\,$ When not utilising the B0, cut on -t < 0.4~GeV/c too

University of York

- Need to select out e', π^+, n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')
 - One positively charged track in the +z direction (π^+)
 - A high energy reconstructed neutron in the ZDC
 - $E_n > 40 \ GeV$
 - $\theta_n^* < 4 mrad$
- Cut on difference between ZDC hit and "corrected" neutron track angles
 - $-0.09^{\circ} < \theta < 0.14^{\circ}$
 - $\circ ~|\Delta \phi| < 45^\circ$
- $\,\circ\,$ When not utilising the B0, cut on -t < 0.4~GeV/c too
- Will be reviewing and refining cuts/analysis soon

- Selected reconstructed neutrons should actually hit the ZDC
 - Quick to check!
- Events all fall on face of ZDC
- Hexagonal pattern seen, consequence of ZDC reconstruction algorithm
- Next step, reconstruct -t

Stephen JD Kay

• 10x130 high acceptance AB config

University of York

20/03/25

DEMP Analysis Overview - -t Reconstruction

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is

$$-t_{rec} = \left(\vec{p} - \vec{n}_{Corr}\right)^2$$

20/03/25

DEMP Analysis Overview - -t Reconstruction

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is

Stephen JD Kay

$$-t_{rec} = \left(\vec{p} - \vec{n}_{Corr}\right)^2$$

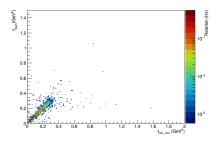
• \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track

20/03/25

9 / 15

I.e. it is a neutron, so set the mass to the neutron mass. $\vec{P}_{Miss} = (\vec{e} + \vec{p}) - (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$ University of York

DEMP Analysis Overview - -t Reconstruction

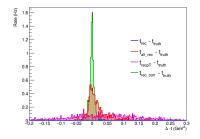

University of York

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is

$$-t_{rec} = \left(\vec{p} - \vec{n}_{Corr}\right)^2$$

- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track
- -t_{rec} calculated in this way correlates well with truth

Stephen JD Kay


20/03/25

DEMP Analysis Overview - -t Reconstruction

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is

$$-t_{rec} = \left(\vec{p} - \vec{n}_{Corr}\right)^2$$

- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track
- -t_{rec} calculated in this way correlates well with truth
- Far better than methods using uncorrected neutron track and methods utilising electron information and electron P_T info

20/03/25

DEMP Analysis Overview - $\Delta \theta$ and $\Delta \phi$ Cuts

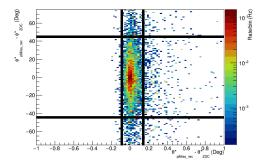
- P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, *P_{Miss}* vector should <u>not</u> correspond to a ZDC hit

20/03/25

10 / 15

• Effectively an additional "exclusivity" constraint

 $\Delta \theta = \theta_{PMiss} - \theta_{ZDC}$ and $\Delta \phi = \phi_{PMiss} - \phi_{ZDC}$


Stephen JD Kay University of York

DEMP Analysis Overview - $\Delta \theta$ and $\Delta \phi$ Cuts

Stephen JD Kay

- P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, *P_{Miss}* vector should <u>not</u> correspond to a ZDC hit
 - Effectively an additional "exclusivity" constraint
- Select $-0.09^\circ < \Delta heta < 0.14^\circ$ and $-45^\circ < \Delta \phi < 45^\circ$

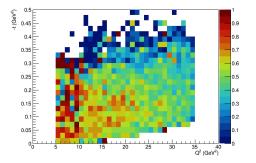
University of York

20/03/25

DEMP Analysis Overview - Detection Efficiency

• What is the detection efficiency like for DEMP?

• All previous cuts applied and $5 < Q^2 < 35$ required


20/03/25

11 / 15

Stephen JD Kay University of York

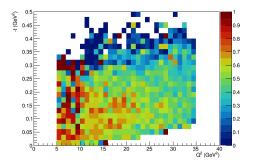
DEMP Analysis Overview - Detection Efficiency

- What is the detection efficiency like for DEMP?
 - All previous cuts applied and $5 < Q^2 < 35$ required
- Detection efficiency is good, comparable to previous results
 - Crucially, efficiency is highest in low -t region

20/03/25

11 / 15

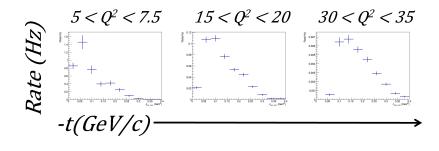
Stephen JD Kay


DEMP Analysis Overview - Detection Efficiency

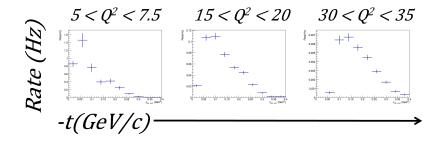
Stephen JD Kay

• What is the detection efficiency like for DEMP?

University of York


- All previous cuts applied and $5 < Q^2 < 35$ required
- Detection efficiency is good, comparable to previous results
 - Crucially, efficiency is highest in low -t region
- $\bullet\,$ Slightly less smooth looking than previous plots $\to\,$ low stats in some bins?

<u>20/03</u>/25

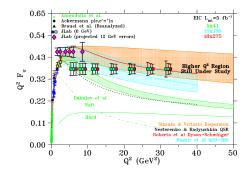

DEMP Analysis Results - Q^2 , -t Binning

- After applying cuts, bin in Q^2 and -t
 - -t bins 0.04 GeV/c wide
 - Q^2 bins 2.5 GeV^2 wide below 10 GeV^2 , 5 GeV^2 above

DEMP Analysis Results - Q^2 , -t Binning

- After applying cuts, bin in Q^2 and -t
 - -t bins 0.04 GeV/c wide
 - Q^2 bins 2.5 GeV^2 wide below 10 GeV^2 , 5 GeV^2 above
- From rate per bin, extrapolate to number of events with $\int \mathcal{L} = 5 \ fb^{-1}$, project to F_{π}

20/03/25


13 / 15

• ePIC opens up high Q² regime

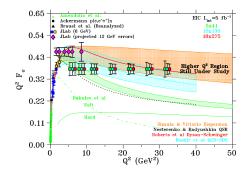
Stephen JD Kay University of York

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest –*t* from VR model

University of York

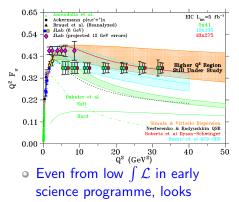
20/03/25

13 / 15


Stephen JD Kay

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model

University of York


- Uncertainties dominated by *R* at low *Q*²
- Statistical uncertainties dominate at high Q^2

Stephen JD Kay

20/03/25

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model
- Uncertainties dominated by *R* at low *Q*²
- Statistical uncertainties dominate at high Q^2

promising!
How high in Q² will be possible?

20/03/25

13 / 15

Stephen JD Kay

• Will have a quick look at high divergence setting

University of York

<u>20/03/25</u>

14 / 15

- Need to look at 10x250 setting and revisit 5x41 too
- Planning to take a closer look at B0 information too
 - Access to higher -t

Stephen JD Kay

DEMP Analysis - Next Steps

- Will have a quick look at high divergence setting
- Need to look at 10x250 setting and revisit 5x41 too
- Planning to take a closer look at B0 information too
 - Access to higher -t

Stephen JD Kay

- Garth is recruiting a new student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50~GeV^2$ will be a priority, for pion and kaon channels

20/03/25

14 / 15

• Also need a deuteron module in DEMPgen

University of York

• Needed for π^+/π^- ratio model validation tests

DEMP Analysis - Next Steps

- Will have a quick look at high divergence setting
- Need to look at 10x250 setting and revisit 5x41 too
- Planning to take a closer look at B0 information too
 - Access to higher -t
- Garth is recruiting a new student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50~GeV^2$ will be a priority, for pion and kaon channels
- Also need a deuteron module in DEMPgen
 - Needed for π^+/π^- ratio model validation tests
- Will write independent analysis script in coming weeks
 - Verify Love's results independently, make additional QA plots

20/03/25

DEMP Analysis - Next Steps

- Will have a quick look at high divergence setting
- Need to look at 10x250 setting and revisit 5x41 too
- Planning to take a closer look at B0 information too
 - Access to higher -t

Stephen JD Kay

- Garth is recruiting a new student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50~GeV^2$ will be a priority, for pion and kaon channels
- Also need a deuteron module in DEMPgen
 - Needed for π^+/π^- ratio model validation tests
- Will write independent analysis script in coming weeks
 - Verify Love's results independently, make additional QA plots
- $K^+\Lambda$ channel is on the agenda for later in the year

University of York

20/03/25

Stephen JD Kay

- \bullet 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int {\cal L} = 5 \ {\it fb}^{-1}$

University of York

• Need further generator updates to determine how high in Q^2 is actually viable

20/03/25

Stephen JD Kay

- \bullet 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$

University of York

• Need further generator updates to determine how high in Q^2 is actually viable

20/03/25

15 / 15

• Still need deuteron studies

Stephen JD Kay

- ${\circ}$ 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$
 - Need further generator updates to determine how high in Q^2 is actually viable
- Still need deuteron studies
- Also need to revisit $K^+\Lambda$
 - New ZDC reconstruction algorithm expected in main ePIC simulation soon

20/03/25

15 / 15

- $\,\circ\,$ Λ reconstruction in ZDC looks very promising
- Expect rapid results when it is available

Stephen JD Kay

- ${\circ}$ 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$
 - Need further generator updates to determine how high in Q^2 is actually viable
- Still need deuteron studies
- Also need to revisit $K^+\Lambda$
 - New ZDC reconstruction algorithm expected in main ePIC simulation soon

20/03/25

- $\,\circ\,$ Λ reconstruction in ZDC looks very promising
- Expect rapid results when it is available
- New student will need some onboarding time

Thanks for listening, any questions?

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC) grant SAPPJ-2023-00041

Backup Zone

Stephen JD Kay

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving

Proposal for EIC Science Program in the First Years

Year - 1	Year - 2	Year - 3	Year - 4	Year - 5
Lan with Phase 1 EIC an Capacitation and Capacitation and Capacitation particular and the Capacitation of the description of the Capacitation of the server (in the Capacitation of the Capacitation of the Capacitation of the Capacitation of the server (in the Capacitation of the Capacitation of the Capacitation of the server (in the Capacitation of the Cap	Phase 1EIC + dectron polarization + telectron polarization in parallel 10 Gev polarized electrons on 130 GeV Ub Deuterium Physics: Add your preferred science topic Ren: Last weeks 10 GeV electrons and 130 GeV polarized proton Physics:	Phase 1 EIC + proton polarization + proton polarization New Capability Commission running with hadron sign robators 10 GeV palarized electrons on 10 GeV polarized electrons on Physics: Add your preferred science topic Reni Last weeks switch to longitudinal proton polarization Add your preferred science topic	Phase 1 EIC electron pointration + proton polarization + proton polarization New Capability: Commission hadron accelerator to Commission hadron accelerator to Commission hadron accelerator to CeV polarized electrons on 100 CeV polarized electrons on 100 CeV Au Physica: 10 GeV electrons on 250 GeV transverse and bongludmal polarized protons Add your preferred science topic	Phase 1EIC electron polarization e proton polarization o operation of hadron spin rotators e operation of hadron spin rotators electron polarization electron spin spin spin spin spin spin spin 10 GeV bolarized electrons on 100 GeV Autors Physics Add your preferred science topic Add your preferred science topic Add your preferred science topic

20/03/25

18 / 15

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kav

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

Proposal for EIC Science Program in the First Years

<u>20</u>/03/25

18

15

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kay

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

Proposal for EIC Science Program in the First Years

Year - 5	Year - 6	Year - 7
Phase 1 EIC electron polarization	Phase 1 EIC + electron polarization	Phase 1 EIC + electron polarization
proton polarization operation of hadron spin rotators operation of hadron beams with not centered orbits Run:	+ proton polarization + operation of hadron spin rotators + operation of hadron beams with not	 + proton polarization + operation of hadron spin rotators + operation of hadron beams with not
un: 0 GeV polarized electrons on 100 GeV u hysics: dd your preferred science topic	centered orbits New:Capability: Commission ESR & HSR at max, energy	centered orbits + operation of ESR & HSR at max. energy and beam currents
un: 0 GeV electrons on 166 GeV transverse nd longitudinal polarized He-3	and beam currents Run: 18 GeV polarized electrons on 275 GeV/u	New Capability: Operate HSR with 41 GeV bypass Ruin:
dd your preferred science topic	polarized (longitudinal & transverse) proton beams	5 GeV polarized electrons on 41 GeV transverse polarized proton beams

<u>20</u>/03/25

18 / 15

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kay

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

Proposal for EIC Science Program in the First Years

Year - 5	Year - 6	Year - 7
rear - 3 nase 1 EIC electron polarization	Phase 1 EIC + electron polarization	Phase 1 EIC + electron polarization
peration of hadron spin rotators	+ proton polarization	+ proton polarization
peration of hadron spin rotators	+ operation of hadron spin rotators	+ operation of hadron spin rotators
tered orbits n: GeV polarized electrons on 100 GeV	+ operation of hadron beams with not centered orbits	 + operation of hadron beams with not centered orbits
rsics:	New Capability:	+ operation of ESR & HSR at max. energy
I your preferred science topic	Commission ESR & HSP at max. energy	and beam currents
n:	and beam currents	New Capability:
GeV electrons on 166 GeV transverse	Run:	Operate HSR with 41 GeV bypass
longitudinal polarized He-3	18 GeV polarized electrons on 275 GeV/u	Run:
sics:	polarized (longitudinal & transverse) proton	5 GeV polarized electrons on 41 GeV
your preferred science topic	beams	transverse polarized proton beams

<u>20</u>/03/25

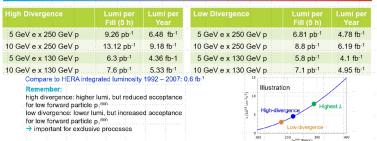

18 / 15

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kav

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

ep Luminosity for Phase-1

- Modest $\int {\cal L}$, \sim 5 \textit{fb}^{-1} , in first few years
- New configurations to check for F_{π} studies

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

University of York

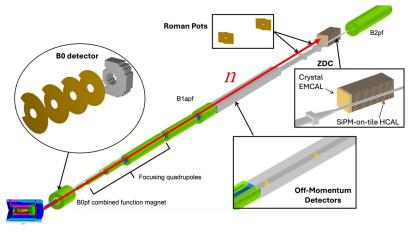
20/03/25

18 / <u>15</u>

DEMP Kinematics - Visualising with ePIC

• e' and π^+ hit the central detector

University of York


20/03/25

19 / 15

Stephen JD Kay

DEMP Kinematics - Visualising with ePIC

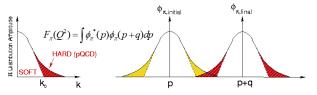
- e' and π^+ hit the central detector
- n very forward focused, ZDC or B0

University of York

20/03/25

19 / 15

Stephen JD Kay


Stephen JD Kay

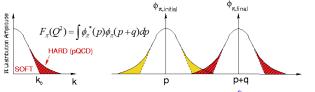
- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

20/03/25

20 / 15

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

<u>20/03/25</u>

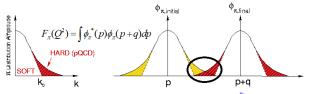

20 / 15

University of York

Stephen JD Kay

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

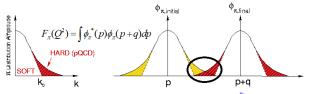

• Meson wave function can be split into $\phi_\pi^{
m soft}$ $(k < k_0)$ and $\phi_\pi^{
m hard}$, the hard tail

20/03/25

20 / 15

Stephen JD Kay

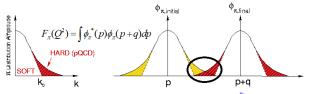
- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons


- Meson wave function can be split into $\phi_\pi^{
 m soft}$ $(k < k_0)$ and $\phi_\pi^{
 m hard}$, the hard tail
 - Can treat $\phi_{\pi}^{\mathrm{hard}}$ in pQCD, cannot with $\phi_{\pi}^{\mathrm{soft}}$

University of York

• Form factor is the overlap between the two tails (right figure)

20/03/25


- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_\pi^{
 m soft}$ $(k < k_0)$ and $\phi_\pi^{
 m hard}$, the hard tail
 - Can treat $\phi^{\rm hard}_{\pi}$ in pQCD, cannot with $\phi^{\rm soft}_{\pi}$
 - Form factor is the overlap between the two tails (right figure)
- F_{π} and $F_{\mathcal{K}}$ of special interest in hadron structure studies

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_{\pi}^{\rm soft}$ $(k < k_0)$ and $\phi_{\pi}^{\rm hard}$, the hard tail
 - Can treat $\phi^{\rm hard}_{\pi}$ in pQCD, cannot with $\phi^{\rm soft}_{\pi}$
 - Form factor is the overlap between the two tails (right figure)

20/03/25

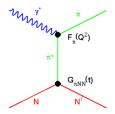
20 / 15

- \bullet F_{π} and $\mathit{F}_{\mathcal{K}}$ of special interest in hadron structure studies
 - π Lightest QCD quark system, simple
 - K Another simple system, contains strange quark

Measurement of F_{π} at High Q^2

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$


20/03/25

Stephen JD Kay

- To access F_{π} at high Q^2 , must measure F_{π} indirectly
 - Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$
- At small -t, the pion pole process dominates σ_L

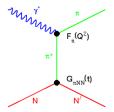
University of York

21 / 15

<u>20/03/25</u>

Stephen JD Kay

• To access F_{π} at high Q^2 , must measure F_{π} indirectly


• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

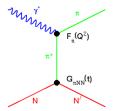
$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

21 / 15

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L


University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

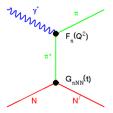
We do not use the Born term model

Stephen JD Kay

21 / 15

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$


- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

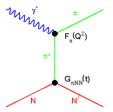
- We do not use the Born term model
- Drawbacks of this technique -

Stephen JD Kay

- Isolating σ_L experimentally challenging
- Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)

21 / 15

University of York


• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)
 - Measure Deep Exclusive Meson Production (DEMP)



21 / 15

20/03/25

Stephen JD Kay

Hadron Mass Budgets

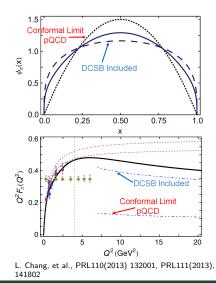
- Only the portion in red is directly from the Higgs current
- Multiple mechanisms at play to give hadrons their mass
 - Mass generation mechanisms intricately connected to structure

20/03/25

22 / 15

- The simple $q\bar{q}$ valence structure of mesons makes them an excellent testing ground
- What can we examine to look at their structure?

University of York


Image - G. Huber, modified figure from paper listed.

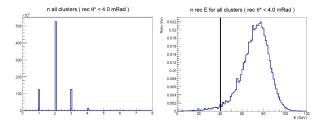
Connecting Pion Structure and Mass Generation

University of York

- Calculating the pion PDA, ϕ_{π} , without incorporating DCSB produces a broad, concave shape
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA
- Pion structure and hadron mass generation are interlinked

Stephen JD Kay

20/03/25

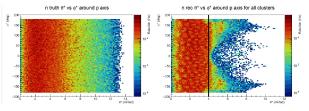

23 / 15

ZDC Neutron Reconstruction

ePIC ZDC design updated significantly recently

University of York

• Most events in ZDC have more than 1 cluster, select large energy deposition events


20/03/25

24 / 15

Plot from L. Preet, University of Regina

ZDC Neutron Reconstruction

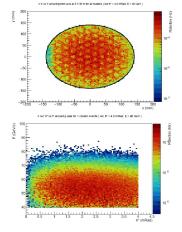
- ePIC ZDC design updated significantly recently
- Most events in ZDC have more than 1 cluster, select large energy deposition events
- New "ReconstructedFarForwardZDCNeutrons" branch
 - Reconstructed events combine clusters already
- Select region of uniform acceptance ($heta^* <$ 4 mRad) to analyse

20/03/25

24

15

Plot from L. Preet, University of Regina


Stephen JD Kay

 $heta^*$ and * are after a rotation of 25 mRad around the proton axis to remove the crossing angle.

ZDC Neutron Reconstruction - Does it make sense?

University of York

- Selected reconstructed neutrons should actually hit the ZDC
 - Quick to check!
- Events all fall on face of ZDC
- Hexagonal pattern seen, consequence of ZDC reconstruction algorithm
- Next step, reconstruct -t and apply further cuts
- Not straightforward!

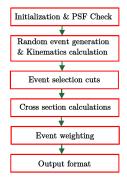
25 / 15

20/03/25

Plots from L. Preet, University of Regina

DEMPgen

- DEMPgen Deep Exclusive Meson Production event generator
- Fixed target (JLab) and colliding beams (EIC) modes
- Feed in an input .json file
 - Specify conditions
 - Beam energies, number of events etc
- Several reactions available


• ...

Stephen JD Kay

• Further details in recent paper

https://doi.org/10.1016/j.cpc.2024.109444

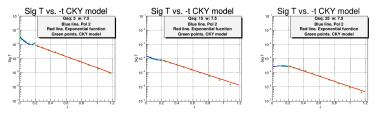
University of York

26 / 15

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 - For $p(e, e'\pi^+ n)$, use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

20/03/25


27 / 15

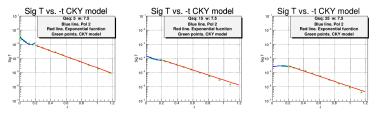
Authors of model are - T.K. Choi, K.J. Kong and B.G. Yu - CKY

University of York

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 For p(e, e'π⁺n), use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

20/03/25


27 / 15

Authors of model are - T.K. Choi, K.J. Kong and B.G. Yu - CKY

University of York

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 For p(e, e'π⁺n), use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

20/03/25

27 / 15

• Kaon reactions \rightarrow Use VGL model

Stephen JD Kay

Authors of model are - M.Vanderhaeghen, M. Guidal and J.-M.Laget - VGL

Isolating σ_L from σ_T in an e-p Collider

• For a collider -

Stephen JD Kay

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

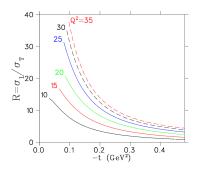
• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta\epsilon > 0.2$

- To access $\epsilon < 0.8$ with a collider, need y > 0.5
 - Only accessible at small s_{tot}
 - Requires low proton energies ($\sim 10~GeV$)

University of York

• Conventional L-T separation not practical, need another way to determine σ_L

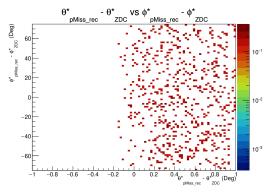

20/03/25

28 / 15

σ_L Isolation with a Model at the EIC

- QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and Waccessible at the EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t
- Can attempt to extract σ_L by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$
- Examine π^+/π^- ratios as a test of the model

Stephen JD Kay


Predictions are assuming $\epsilon > 0.9995$ with the kinematic ranges seen earlier T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

29 / 15

20/03/25

Background Events

- Main source of background is SIDIS, $p(e, e'\pi^+)X$, events
- Compare SIDIS events for same beam energy
- Very few fall in comparable $\Delta \theta$ and $\Delta \phi$ range

Plot from L. Preet, University of Regina

University of York

20/03/25

30 / 15

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

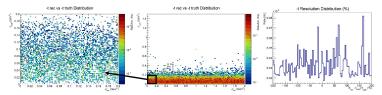
$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2$$

Stephen JD Kay

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2 \quad -t_{rec} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

20/03/25


31 / 15

• Ok, easy then, same thing for the reconstructed info!

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2$$

• Ok, easy then, same thing for the reconstructed info!

20/03/25

31 / 15

University of York

Plots from L. Preet, University of Regina

Stephen JD Kay

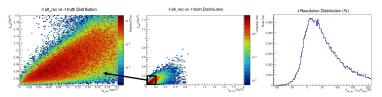
• Need data at lowest possible -t for form factor extraction

• Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

20/03/25

31 / 15


• So, maybe a different approach?

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

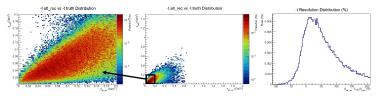
$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = (ec{p} - ec{n})^2$$

- So, maybe a different approach?
- Use the proton beam and detected neutron

University of York

20/03/25

31 / 15


Plots from L. Preet, University of Regina

• Need data at lowest possible -t for form factor extraction

• Can calculate -t via -

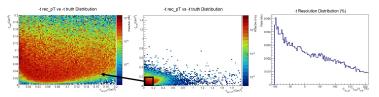
$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = (ec{p} - ec{n})^2$$

• Not great, not terrible. Try again

University of York

20/03/25

31 / 15


Plots from L. Preet, University of Regina

• Need data at lowest possible -t for form factor extraction

• Can calculate -t via -

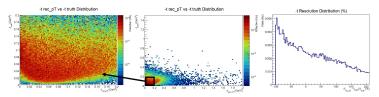
$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(P_{\mathcal{T},\gamma^*} - P_{\mathcal{T},\pi^+}
ight)^2$$

• Use P_T approach

University of York

20/03/25

31 / 15


Plots from L. Preet, University of Regina

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(P_{\mathcal{T},\gamma^*} - P_{\mathcal{T},\pi^+}
ight)^2$$

- Use P_T approach
- Even worse! Back to the proton and neutron

University of York

20/03/25

31 / 15

Plots from L. Preet, University of Regina

Stephen JD Kay

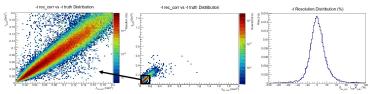
- Need data at lowest possible -t for form factor extraction
- Can calculate −t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

• Exploit what we know, ZDC hit angles, P_{Miss} from π^+ , e' and the mass of the remaining particle

20/03/25

31 / 15


 $P_{miss} = |\vec{p_e} + \vec{p_p} - \vec{p_{e'}} - \vec{p_{\pi^+}}|$, see previous paper for more details

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}
ight)^2 \quad -t_{rec} = \left(\vec{p} - \vec{n_{Corr}}
ight)^2$$

- Exploit what we know, ZDC hit angles, P_{Miss} from π^+ , e' and the mass of the remaining particle
- Correct neutron 4 vector using this info n_{corr}

University of York

20/03/25

31 / 15

Plots from L. Preet, University of Regina

Stephen JD Kay

 $P_{miss} = |\vec{p_e} + \vec{p_p} - \vec{p_{e'}} - \vec{p_{\pi^+}}|$, see previous paper for more details

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e}t_{Rec} + \vec{\pi}_{Rec})$
 - $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass

20/03/25

32 / 15

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e}t_{Rec} + \vec{\pi}_{Rec})$
 - $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass

20/03/25

32 / 15

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e}t_{Rec} + \vec{\pi}_{Rec})$
 - $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass

20/03/25

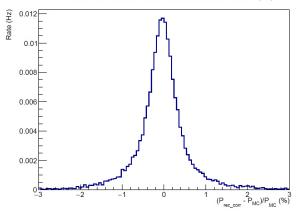
32 / 15

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

• Utilise position info from ZDC and that reaction is exclusive

- $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$
- $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass • $P_x \rightarrow |\vec{P}_{Miss}| \times \sin(\theta_{nRec}) \times \cos(\phi_{nRec})...$

20/03/25


32 / 15

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

Simulation Results - Neutron Reconstruction

- \vec{n}_{Corr} resolution very good
- Few % resolution

n Track Momentum Resolution Distribution (%)

20/03/25

33 / 15

Stephen JD Kay

- ${\ensuremath{\,\circ\,}}$ Exciting new study on the arXiv just before Christmas
 - o https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.

Stephen JD Kay

• Λ^0 and Σ^0 detection in the ZDC looks promising!

University of York


20/03/25

<u> 34</u> / 15

- Exciting new study on the arXiv just before Christmas
 - https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- Λ^0 and Σ^0 detection in the ZDC looks promising!

University of York

- Position and angular resolution far exceed YR requirements for neutrons
- Performance very similar to neutron detection

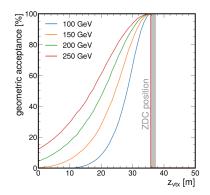

34 / 15

Figure from - https://arxiv.org/abs/2412.12346

- Exciting new study on the arXiv just before Christmas
 - https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- ${}_{\circ}$ Λ^0 and Σ^0 detection in the ZDC looks promising!

University of York

- Acceptance for neutral decay improves with Λ^0 energy
- Depends strongly upon decay z_{vtx}

<u>20/03</u>/25

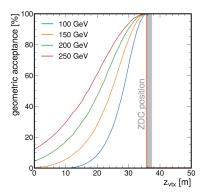

34 / 15

Figure from - https://arxiv.org/abs/2412.12346

- ${\ensuremath{\,\circ\,}}$ Exciting new study on the arXiv just before Christmas
 - https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- Λ^0 and Σ^0 detection in the ZDC looks promising!
- Acceptance for neutral decay improves with Λ^0 energy
- Depends strongly upon decay z_{vtx}
- Smear MC truth and apply acceptance in line with paper

Stephen JD Kay

- Potential for rapid F_K projections
- Need updated projections to lower Λ^0 energies for 10x100 or 5x41

20/03/25

34 / 15