Unraveling the mysteries of the proton

Garth Huber

University of Regina:

- Wide range of Undergraduate and Graduate programs and Research, but no Medical School.
- Only Comprehensive University on Prairies.
- 11,886 students, incl. 1,467 Grad Students (2009).
- Physics Dept. offers B.Sc., M.Sc. and Ph.D.
A Historical Perspective

The static properties of the proton are well known: \(m_p, S, \mu_p, e. \)

1933: First measurement of the proton’s magnetic moment.
 Stern measures \(\mu_p \approx 2.79\mu_N \). A point-like Dirac particle would have
 \(\mu_p = q/(2e)\mu_N \) (much smaller!). The proton is not a point particle.
 Nobel Prize 1943 – O. Stern.

1950-1960: What is the size of the proton?
 Early elastic scattering experiments at Stanford (Hofstadter et al.)
 show proton charge radius \(\sim 0.8 \text{fm} \).

1960-1990: What is the internal structure of the proton?
 Deep Inelastic Electron Scattering, discover quarks in “scaling” of
 structure functions, measure spin and momentum distributions.

Today: Quantitative description of the proton’s properties in terms of its
underlying constituents.
The gluons of QCD carry color charge and interact strongly (in contrast to the photons of QED).
QCD’s Dual Nature

Short Distance Interaction:
• Short distance quark-quark interaction is feeble.
 • Quarks inside protons behave as if they are nearly unbound.
 • Asymptotic Freedom.
• perturbative QCD (pQCD).

Long Distance Interaction:
• Quarks strongly bound within hadrons.
 • Color confinement (strong QCD).
• QCD calculations extremely difficult.
• QCD-based models are often used, but experimental data needed to validate approaches used.
Mysteries of Proton Structure

- Where does the proton’s mass come from?
 \[
 u + u + d = \text{proton} \\
 \text{mass: } 0.003 + 0.003 + 0.006 \neq 0.938
 \]

- How are the proton’s electric/magnetic densities related to the quark momentum/spin distributions?

- Where does the proton’s spin \(\frac{1}{2} \) come from?

- Confinement: Why don’t we see free quarks?
Probes used to Investigate Proton Structure

Real Photons (γ):
- Created in hard electron deceleration (Bremsstrahlung).
- Zero Rest Mass: $E=pc$
- Equivalently: $Q^2=p^2c^2-E^2=0$
- Observation Scale: $R\approx\hbar/p$.
- Electric Polarization Transverse to Propagation.

Virtual (Spacelike) Photons (γ^*):
- Created in larger θ electron scattering.
- $E\neq pc$: Heisenberg Principle: $\Delta E\Delta t\geq\hbar/2$
- $Q^2=p^2c^2-E^2>0$
 - If we define $m^2c^4=E^2-p^2c^2$, then $Q^2>0$ implies imaginary virtual photon mass.
- Observation Scale: $R\approx(\hbar c)/Q$.
- Transverse and Longitudinal Electric Polarizations permitted.

Virtual Photon Energy = $E-E'\,$
Virtual Photon Momentum = $\vec{k}-\vec{k}'$
Why Use Electromagnetic Probes?

- **Electromagnetic force well understood.**
 - Use the known properties of EM interaction to investigate proton internal structure.

Technical advancements:
Intense CW electron beams. Polarized targets & beams.

Luminosity:
(SLAC, 1978) \(\sim 8 \times 10^{31} \text{ cm}^{-2}\cdot\text{s}^{-1} \)
(JLab, 2009) \(\sim 4 \times 10^{38} \text{ cm}^{-2}\cdot\text{s}^{-1} \)

\[d = 1 \rightarrow 0.1 \text{ fm} \Leftrightarrow Q^2 = 0.1 - 10 \text{ (GeV/c)}^2 \]

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Probe Proton via Elastic Scattering of Electrons

In an elastic scattering, we have the same kind and number of particles in the initial and final states

\[e^+ p \rightarrow e^+ p \]
Elastic Form Factors

Scattering cross section from a spinless, point-like particle:

\[
\left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} = \alpha^2 \left(\frac{E'}{E} \right)^2 \cot^2 \frac{\theta_e}{2}
\]

General form for scattering cross section from an extended target:

\[
\left(\frac{d\sigma}{d\Omega} \right) = \left(\frac{d\sigma}{d\Omega} \right)_{\text{point object}} \left| F(Q^2) \right|^2
\]

In the case of an infinitely massive target, the form factor is simply the Fourier transform of the charge distribution.

\[
F(Q^2) = \int \rho(\vec{x}) e^{i\vec{q} \cdot \vec{x} / \hbar} \, d^3 x
\]
Proton Elastic Form Factors

- For a spin $\frac{1}{2}$ target, two Form Factors are needed to parameterize our ignorance of the proton’s internal structure.

Expression in terms of Electric (G_E) and Magnetic (G_M) form factors.

$$
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma_{\text{Mott}}}{d\Omega} \right) \frac{1}{1 + \tau} \left[G_E^2 + \frac{\tau}{\epsilon} G_M^2 \right]
$$

where τ, ϵ are kinematic factors.

Alternately, in terms of spin non-flip (F_1) and spin flip (F_2) form factors.

$$
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma_{\text{Mott}}}{d\Omega} \right) \left\{ F_1^2 + \tau \left[F_2^2 + 2(F_1 + F_2)^2 \tan^2 \frac{\theta}{2} \right] \right\}
$$

Measurements allow us to test our understanding of proton structure by comparison to QCD based predictions.
An early pQCD Prediction:
- Dimensional Scaling at Large Momentum

At infinite momentum, quarks are asymptotically free.
- Equivalent to turning off the strong interaction.
- The hadron becomes a collection of free quarks with equal longitudinal momenta.

Dimensional analysis of the hadron scattering amplitude in terms of the participating fields yields

\[F(Q^2) \propto \frac{1}{(Q^2)^{n-1}} \]

Proton Electromagnetic Form Factors

pQCD Dimensional Scaling Rule:

- $F_1(Q^2) \sim 1/Q^4$ (n=3).
- $F_2(Q^2) \sim 1/Q^6$ (n=3 with spin flip).
 - $Q^2F_2/F_1 \sim \text{constant}$.

- Data indicate onset of pQCD scaling at only $Q^2 \approx 2 \text{ GeV}^2$.
 - Seems low, given that the argument is made for infinite momentum.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
“Rosenbluth” Separation:
• Challenging technique that requires delicate comparison of data at two different electron beam energies.

\[\varepsilon = \left(1 + 2 \frac{(E_e - E_e')^2 + Q^2}{Q^2 \tan^2 \theta_e'} \right)^{-1} \]

\[\frac{d\sigma^{el}}{dQ^2} \rightarrow \varepsilon G_E(Q^2) + \tau G_M(Q^2) \]

Magnetic contribution dominates cross section at high \(Q^2 \):
 – \(F_1 \) data of fairly good quality.

Electric contribution at few % level:
 – \(F_2 \) difficult to measure.
Polarization transfer technique

Technique based on recent technological advances:
• requires an intense electron beam with high polarization.
• need to measure the polarization of the recoil nucleon.

\[
\frac{G_E}{G_M} = \frac{-p_l}{p_l} \frac{E + E'}{2m} \tan\left(\frac{\theta_e}{2}\right)
\]

Simultaneous measurement of transverse and longitudinal polarization components provides an accurate measurement of the form factor ratio.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Two 1.5 GHz Superconducting Linear Accelerators provide intense electron beam optimized for Nucleon & Nuclear structure studies.

- **Beam energy** $E \rightarrow 6$ GeV.
- **Beam current** >100 μA.
- **Up to 85% beam polarization.**
- Experiments in all 3 Halls can receive beam simultaneously.
Crisis: Data Sets Disagree Violently

Dashed = fit to Rosenbluth results
Solid = fit to Recoil-Polarization results

Current Understanding:
- Difference is due to breakdown of Born single photon exchange approximation.
- 2γ contributions have much larger influence on Rosenbluth (compared to Polarization) method.

(P. Blunden et al, PRL 91(03)142304).

WHAT THIS MEANS: Elastic cross sections are accurate, but the polarization transfer measurements better represent G_E^p.
Jefferson Lab Proton F_2/F_1 Data

- JLab data show that Q^2 scaling was “premature”.
- The data instead show a remarkable scaling with Q, which was not anticipated.
- Data are dominated by soft QCD contributions which give rise to Q-like scaling (Belitsky, Ji, Yuan, PRL 91(03) 092003).
Physical Interpretation of G_E, G_M Data

Because of nucleon recoil and Lorentz contraction (Relativity!) effects:
→ G_E, G_M not directly related to nucleon’s ρ_{ch}, ρ_{M} distributions.
→ Gain intuition via model to perform global analysis of p and n form factors.

Kelly interprets JLab polarization data in terms of charge depletion in interior of proton.
The Trek Upward in Q^2:
Probing the Proton at Shorter Distance Scales

2007 JLab Hall C experiment with Improved Detectors

New Lead Glass Calorimeter
Used for Electron Detection

New Proton Polarimeter
(inside HMS shield hut)

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
The Trek UPWARD in Q^2:
A Brief Snapshot of What can be learned by extending UP

Preliminary Results Courtesy of Andrew Puckett

Range of “plausible theories” for proton structure diverge as $Q^2 \uparrow$
(meaning: as $r \downarrow$!!)

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Jefferson Lab 12 GeV Upgrade

Add new hall
Add 5 cryomodules
Upgrade magnets and power supplies

20 cryomodules
CHL-2

Add arc

Enhance equipment in existing halls

Construction approval: Sept/08
Project Budget: $310M
First 12 GeV beam: mid-2013
Upgrade of JLab Hall C

New Super-High Momentum Spectrometer (SHMS):
 - Momentum: 2-11 GeV/c
 - Scattering Angle: 5.5°<θ<40°
 - Acceptance: 5msr, -11%<δp/p<+22%

- **Upgrade will allow upper limit of** G_E^p/G_M^p **data to be extended from** $Q^2=8.5$ **to 14 GeV2.**

- **Canadians are playing a significant role in shaping the physics program of the new facility.**

- **UofR Responsible for Heavy Gas (C$_4$F$_8$O) Čerenkov needed for good π/K separation.**
"New" particles created in the final state. e.g. $e^- p \rightarrow e^- p \pi^0$, $e^- p \rightarrow e^- p K^+ K^-$
Since there are many inelastic states, it is common to average over them: $e^- p \rightarrow e^- X^+$

Of particular importance is the *scaling* variable: $x = Q^2 / 2pq$.
Corresponds to the momentum fraction carried by struck parton (quark) in the infinite momentum limit.
Valence Quarks vs. Sea Quarks

Write cross section in terms of Structure Functions F_1, F_2.

\Rightarrow functions of Q^2 and x (not just Q^2 as for Form Factors).

$$\frac{d\sigma}{dE'd\Omega} = \left(\frac{\alpha\hbar}{2E\sin^2(\theta/2)} \right)^2 \left[\frac{2F_1(x,Q^2)}{M} \sin^2(\theta/2) + \frac{2MF_2(x,Q^2)}{Q^2} \cos^2(\theta/2) \right]$$

VALENCE QUARKS: qqq required for correct nucleon quantum numbers.

SEA QUARKS: virtual q:anti-\bar{q} pairs allowed by uncertainty principle.

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Deep Inelastic Scattering Experiments - Kinematics Coverage of the 12 GeV Upgrade

overlap with other experiments ↔ unique to JLab

High x_B only reachable with high luminosity

JLab Upgrade

Upgraded JLab has complementary & unique capabilities

small x: SEA q

$x > 1/3$: VALENCE q

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
In over 35 years of study of Deep Inelastic Scattering, no one has had the facilities to map out the crucial region where proton structure is dominated by valence quarks.

- **Large x: sea quarks are effectively “stripped away”**.

- Region is fundamental to our understanding of proton structure: i.e. how nonperturbative QCD works!
 - Role of di-quark correlations?
 - Role of hard scattering: pQCD / Lattice QCD guidance?
 - Breaking of $SU(6)\ [u,\bar{u},d,\bar{d},s,\bar{s}]$ symmetry?
Large $x F_{2n}/F_{2p}$ measurements to greatly improve our knowledge of Valence d-Quark Momentum Distributions

There are many testable relationships between Structure Functions!

Quark momentum distribution $f(x) = dP/dx$. Structure function for inelastic scattering off quark with momentum x and charge e_i:

$$F_1 = \frac{e_i^2 f(x)}{2} \text{ and } F_2 = e_i^2 x f(x)$$

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
Probe Proton via Compton Scattering of Real Photons

\[\gamma (\varepsilon, k) \rightarrow N, N^*, \Delta, \rightarrow \gamma' (\varepsilon', k') \]

p \rightarrow N, N^*, \Delta, \rightarrow p'
Proton Polarizabilities

\[H^{(2)}_{\text{eff}} = \frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2 \]

- Proton’s Internal Structure enters Hamiltonian at 2\text{nd} order as Electric & Magnetic Polarizabilities.
- Determine \(\alpha_{E1}, \beta_{M1} \) from angular distribution.

Proton’s Electric & Magnetic polarizabilities well understood.
- Response of proton’s internal degrees of freedom to static Electric and Magnetic fields in real Compton scattering.

Polarizabilities are fundamental nucleon structure observables.
- Ideal for constraining QCD-based models of nucleon structure.
Proton Spin Polarizabilities

If include spin, next term in Hamiltonian:

\[
H_{\text{eff}}^{(3)} = -\frac{1}{2} \left[\gamma_{E1E1} \vec{\sigma} \cdot \vec{E} \times \dot{\vec{E}} + \gamma_{M1M1} \vec{\sigma} \cdot \vec{H} \times \dot{\vec{H}}
+ 2\gamma_{E1M2} H_{ij} \sigma_i E_j - 2\gamma_{M1E2} E_{ij} \sigma_i H_j \right]
\]

involves one field derivative wrt either time or space \(\dot{\vec{E}} = \partial_t \vec{E}, \quad E_{ij} = \frac{1}{2} \left(\nabla_i E_j + \nabla_j E_i \right)\)

- e.g. \(\gamma_{M1E2}\) excited by electric quadrupole (E2) radiation and decays by magnetic dipole (M1) radiation

- **Proton’s spin polarizabilities nearly unknown.**
 - “Stiffness” of proton spin against EM-induced deformations relative to the spin axis.
 - Fundamentally connected to the proton’s spin structure.
- Requires asymmetry measurements using linearly and circularly polarized photon beams and polarized proton target.
How to Measure Spin Polarizabilities

• Linearly polarized photons, parallel and perpendicular to the scattering plane, unpolarized target.
 \[\sum_3 = \frac{\sigma|| - \sigma\perp}{\sigma|| + \sigma\perp} \]

• Circularly polarized photons (left-handed (L) and right-handed (R)), longitudinally polarized target.
 \[\sum_{2z} = \frac{\sigma^R_{+z} - \sigma^L_{+z}}{\sigma^R_{+z} + \sigma^L_{+z}} = \frac{\sigma^R_{+z} - \sigma^-_{-z}}{\sigma^R_{+z} + \sigma^-_{-z}} \]

• Circularly polarized photons (left-handed (L) and right-handed (R)), transversely polarized target.
 \[\sum_{2x} = \frac{\sigma^R_{+x} - \sigma^L_{+x}}{\sigma^R_{+x} + \sigma^L_{+x}} = \frac{\sigma^R_{+x} - \sigma^-_{-x}}{\sigma^R_{+x} + \sigma^-_{-x}} \]
Mainz Microtron MAMI

Major facility upgrade:
- Upgraded accelerator.
- Upgraded detectors.
- New frozen spin target.

“Ultimate” polarized observables laboratory:
- polarized beam.
- polarized target.
- recoil polarization.

Nearly 4π Detector Coverage.
Mainz Microtron MAMI Accelerator Complex

- 1604 MeV achieved October 13, 2009.
- Current ≤ 100 μA.
- Electron Polarization ~ 85%.
Nearly 4π Solid Angle Detector Coverage

- 672 NaI(Tl) in CB
- 384 BaF2 in TAPS
- 24 plastics in PID
- 384 plastics in TAPS veto
- 320 strips in MWPC
- 480 wires in MWPC

- Gives:
 - Energy
 - Time
 - Position
 - Particle Type
Crystal Ball Detector Arrival at Frankfurt Airport

- Accurate separation of final states \rightarrow good detector resolution.
- Sensitivity to small σ processes \rightarrow 4π detector acceptance, large γ flux.
- Access to polarization observables \rightarrow polarized beam, target, recoil.
New Frozen Spin Target

3He/4Helium Dilution cryostat [JINR Dubna]
with 4Helium-evaporator as precooler:
T<30mK; Pp=90%; Pd=70%.

- Uses DNP to achieve ~ 90 % proton, 80 % deuteron, 50% neutron pol.
- Needs: Horiz. Dilution cryostat, polarizing magnet, microwave, NMR
- Two holding coils: solenoid → longitudinal, saddle coil → transverse
Predicted Spin Polarizability Sensitivity

\[\sum_3 = \frac{\sigma \parallel - \sigma \perp}{\sigma \parallel + \sigma \perp} \]

- Linearly polarized photons, parallel and perpendicular to the scattering plane, unpolarized target.
- 100 hr. measurement.
- To run in phases over next ~2 yrs.

- Curves from:
Summary

The past decade has seen good progress in developing a quantitative understanding of the electromagnetic structure of the proton.

Much credit goes to technical advances in:

→ Intense polarized electron beam delivery.
→ Improved detectors, recoil polarimetry techniques.
→ Frozen spin polarized targets.

QCD has shown itself to be a much richer field than originally expected as a result of the improved level of precision of the data.

In the next few years, we look forward to a much more detailed understanding of the proton’s electromagnetic and spin structure.