### Beam-Spin Asymmetry of Exclusive Pion Production in the KaonLT Experiment

Alicia Postuma

University of Regina KaonLT Experiment, Jefferson Lab Hall C January 18, 2024



#### Introduction



Measurement of beam single-spin asymmetry for two channels of exclusive π<sup>+</sup> production:

#### $p(e,e'\pi^+)n/\Delta^0$

■ Polarized cross-section in Rosenbluth equation:

$$2\pi \frac{d^2\sigma}{dtd\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT'}}{dt} \sin\phi$$

■ BSA provides much cleaner access to  $\sigma_{LT'}$ :

$$BSA = \frac{1}{P} \left( \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \right) = \frac{1}{P} \left( \frac{Y^+ - Y^-}{Y^+ + Y^-} \right) \propto \frac{\sigma_{LT'}}{\sigma_0}$$



The BSA should be equal to:

$$BSA = \frac{\sqrt{2\epsilon(1-\epsilon)}\frac{\sigma_{LT'}}{\sigma_0}\sin\phi}{1+\sqrt{2\epsilon(1+\epsilon)}\frac{\sigma_{LT}}{\sigma_0}\cos\phi + \epsilon\frac{\sigma_{TT}}{\sigma_0}\cos2\phi}$$

Regge (a) and GPD (b) approaches both predict  $\sigma_{LT'}/\sigma_0$ :



**This work:** Extract  $\sigma_{LT'}/\sigma_0$ , compare results to Regge-based **Vrancx-Ryckebush** (VR) model and GPD-based **Goloskokov-Kroll** (GK) model.

S. Basnet et al, Phys. Rev. C **100** 065204 (2019) T. Vrancx, J. Ryckebusch & J. Nys, Phys. Rev C, **89** 065202 (2014). S.V. Goloskokov, P. Kroll, Eur. Phys. J. C **65** 137 (2010).

#### **GPD picture**



GK model provides the expression for  $\sigma_{LT'}$  in terms of the twist-2 longitudinal ( $\tilde{E}, \tilde{H}$ ) and twist-3 transverse ( $E_T, H_T$ ) GPDs:

$$\sigma_{LT'} \sim \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t + t_{min}}}{2m_p} Im \big[ \langle \overline{E}_{T-eff} \rangle^* \langle \widetilde{H}_{eff} + \langle H_{T-eff} \rangle^* \langle \widetilde{E}_{eff} \rangle \big],$$

where  $\overline{E}_T = 2\widetilde{H}_T + E_T$  and the "eff" in the subscript indicates the inclusion of the pion pole term.

- We expect the GPD picture to apply for  $-t/Q^2 \ll 1$  and  $Q^2 \gg 1$  for fixed  $x_B$
- GK predictions generated using PARTONS, which allows for modifications to GPDs

S.V. Goloskokov, P. Kroll, Eur. Phys. J. C **65** 137 (2010). B. Berthou et al, Eur. Phys. J. C **78** 478 (2018). https://partons.cea.fr/



Similar study from Hall B extracts  $\sigma_{LT'}/\sigma_0$  from BSA in  $p(e, e'\pi^+)n$  and compares with **GK** and **JML** (Regge) models.







Similar study from Hall B extracts  $\sigma_{LT'}/\sigma_0$  from BSA in  $p(e, e'\pi^+)n$  and compares with **GK** and **JML** (Regge) models.

The GPD  $H_T$  in the GK model is then scaled by factors of **1.5** and **2**.

"... at low  $Q^2$ , the JML model shows a slightly better agreement than the GK model, while the situation changes for high  $Q^2$  where the GPD-based model provides a better reproduction of the data."

S. Diehl et al, Phys Lett B 839 (2023) 137761



- HMS detecting electrons
- SHMS detecting positive hadrons
- NGC not installed in SHMS
- Full \u03c6 coverage given by taking data at three SHMS angles per setting (left, center, right)
- High  $\epsilon$  data (Autumn 2018)
- Beam energy 10.6 GeV
- **Beam polarization 89^{+1}\_{-3}%**



| $Q^2$ (GeV) | W (GeV) | х <sub>В</sub> | e    |
|-------------|---------|----------------|------|
| 2.115       | 2.95    | 0.21           | 0.79 |
| 3           | 3.14    | 0.25           | 0.67 |
| 3           | 2.32    | 0.40           | 0.88 |
| 4.4         | 2.74    | 0.40           | 0.71 |
| 5.5         | 3.02    | 0.40           | 0.53 |
|             |         |                |      |

### $p(e, e'\pi^+)n$

## Particle Identification $p(e,e'\pi^+)n$





Plots: Q<sup>2</sup>=2.115, W=2.95, SHMS center. Cuts applied: -2.25 < CTime\_ePiCoinTime\_ROC1 < 2.25, 0.8 < MMpi < 1.2.

## Event Selection $p(e, e'\pi^+)n$



8/26



- Missing mass cut changes for each setting: ± 0.02 GeV of peak position, will change after offsets applied
- Cut dependence on coincidence time and missing mass contribute to systematic error

Plot: Q<sup>2</sup>=2.115, W=2.95, SHMS center. Cuts applied: P\_cal\_etottracknorm > 0.05, P\_aero\_npeSum > 3, H\_cal\_etottracknorm > 0.8, H\_cer\_npeSum > 1.5

# $\underset{p(e,e'\pi^+)n}{\text{Missing Mass}}$



- Peak resolution wider than SIMC, effect dependent on -t
   Same for both helicities → small effect on BSA, consider cut dependence in systematic errors
  - Likely related to  $\delta_{fp}$  study ongoing







- Sum all events at one  $(Q^2, W)$  and separate into -t bins with similar numbers of events
- Some settings have significantly more statistics than others: final results will have different numbers of bins per setting



Plots: Q<sup>2</sup>=2.115, W=2.95 (left), Q<sup>2</sup>=4.4, W=2.74 (right).

# Combining SHMS Settings $p(e,e'\pi^+)n$







Asymmetry is calculated separately for three SHMS angles, then a weighted average is taken where the weight  $W = \delta^{-2}$ :

$$\overline{BSA} = \frac{BSA_L * W_L + BSA_C * W_C + BSA_R * W_R}{W_L + W_C + W_R}$$

$$\delta_{\overline{BSA}} = \sqrt{\frac{1}{W_L + W_C + W_R}}$$

Plots:  $Q^2=3$ , W=2.32, 0.09 < -t < 0.21 (bin 1).



Asymmetry  $_{p(e,e'\pi^+)n}$ 





Plot: Q<sup>2</sup>=3, W=2.32. Errors are purely statistical.

# Systematics: Cut Dependence $_{\rho(e,e'\pi^+)n}$



- Varying values for PID cuts to determine effect on asymmetry
- Use tight, wide cuts to generate BSA estimates *A*′, *A*″, then the error is calculated as:

$$\delta = \frac{|A - A'| + |A - A''|}{2}$$









- No measurements of P were made in Hall C → calculate spin precession to infer polarization in Hall C
- Source polarization (Mott polarimeter at injector):
  90.13% +/- 0.51% (stat) +/- 0.90% (sys) (1.04% tot)

 $dP/P_{source} = 1.15\%$ 

• Beam energy: assumed valid to  $5 \times 10^{-4}$ 

 $dP/P_{ebeam} = +0.51\%/-3.1\%$ 

■ Linac energy imbalance: nominal -5 ± 1.2 MeV

 $dP/P_{imbalance} = +0.39\%/-0.56\%$ 

■ Total uncertainty:

dP/P = +1.32% / -3.35%

**Results**  $p(\underline{e}, e'\pi^+)n$ 





T. Vrancx, J. Ryckebusch & J. Nys, Phys. Rev C, 89 065202 (2014).
 B. Berthou et al, Eur. Phys. J. C 78 478 (2018).
 S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65 137 (2010).

# Comparison with Theory ${}_{\rho(e,e'\pi^+)n}$





#### VR model (Regge)

- Good agreement at low -t
- Poor agreement for higher *t*

T. Vrancx, J. Ryckebusch & J. Nys, Phys. Rev C, **89** 065202 (2014).

B. Berthou et al, Eur. Phys. J. C 78 478 (2018).
 S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65 137 (2010).

### GK model (GPD)

- Good reproduction of −*t* dependence (overall shape)
- Overestimates magnitude of  $\sigma_{LT'}/\sigma_0$
- Increasing value of  $H_T$  in PARTONS will decrease magnitude of  $\sigma_{LT'}/\sigma_0 \longrightarrow$ improve agreement with data





- 2023 paper also uses data with  $E_{beam} = 10.6 \text{ GeV}$  from CLAS12, 2020 paper uses data with  $E_{beam} = 5.5 \text{ GeV}$  from CLAS6
- Plot dependence of  $\sigma_{LT'}/\sigma_0$  on  $Q^2$  at fixed  $(x_B, -t)$
- → Allows GPD factorization to be explored



Plot by Garth Huber.





- BSA calculated for five  $(Q^2, W)$  settings
- Plotted  $\sigma_{LT'}/\sigma_0$  as a function of -t at fixed ( $Q^2, W$ )
- Will plot  $\sigma_{LT'}/\sigma_0$  as a function of  $Q^2$  at fixed  $(x_B, -t)$
- Results compared to VR model (Regge) and GK model (GPD)
- Offsets just finalized: data to be re-analyzed with corrected kinematics

Paper in progress, to be submitted to PRL this winter.

## $p(e,e'\pi^+)\Delta^0$

## Event Selection $_{p(e,e'\pi^+)\Delta^0}$



Particle identification similar, added cut on heavy gas CerenkovMissing mass much more complicated: shape study required



Plot by Ali Usman. Plot: Q<sup>2</sup>=2.115, W=2.95, SHMS center **Thanks to Peter for SIMC SIDIS model!** 

Shape Study  $_{p(e,e'\pi^+)\Delta^0}$ 





- Fit missing mass with sum of delta, neutron, and SIDIS SIMC
- Yield is integral of delta SIMC.

Initial work by Portia Switzer, plots by Ali Usman. Plots: Q<sup>2</sup>=2.115, W=2.95, SHMS center

Asymmetry  $_{p(e,e'\pi^+)\Delta^0}$ 







Center only  $\rightarrow$  after adding left and right SHMS settings, statistics should improve by 2-3x. Plot by Ali Usman. Plots: Q<sup>2</sup>=2.115, W=2.95, SHMS center. Errors are purely statistical. <sup>21/26</sup>

# Background Asymmetry $_{\rho(e,e'\pi^+)\Delta^0}$





Plots by Ali Usman. Plots: Q<sup>2</sup>=2.115, W=2.95, SHMS center. Errors are purely statistical.



- Yields calculated from SIMC shape study on missing mass spectrum
- BSA can be calculated for a single -t bin at each ( $Q^2$ , W) point (statistics not high enough for multiple bins)
- BSA similar for  $\Delta^0$  exclusive and for background
- Systematic errors still need to be determined
- Will compare  $\sigma_{LT'}/\sigma_0$  for  $\Delta^0$  vs *n*



- BSA provides access to polarized cross-section  $\sigma_{LT'}/\sigma_0$
- Extraction of BSA for  $p(e, e'\pi^+)n$  over a range of kinematics to be published shortly
- **BSA** in  $p(e, e'\pi^+)\Delta^0$  also being analyzed
- Similar analyses possible: exclusive *K*<sup>+</sup> or *u*-channel exclusive meson BSA, **PionLT data**



A.C. Postuma, G.M. Huber,\* D. Gaskell, N. Heinrich, T. Horn,\* M. Junaid, S.J.D. Kay, V. Kumar, P. Markowitz,\* J. Roche, R. Trotta, A. Usman, S. Ali, R. Ambrose, D. Androic, W. Armstrong, A. Bandari, V. Berdnikov, H. Bhatt, D. Bhetuwal, D. Biswas, M. Boer, P. Bosted, E. Brash, A. Camsonne, J.P. Chen, J. Chen, M. Chen, M.E. Christy, S. Covrig, W. Deconinck, M. Diefenthaler, B. Duran, D. Dutta, M. Elaasar, R. Ent, H. Fenker, E. Fuchey, D. Hamilton, J.O. Hansen, F. Hauenstein, S. Jia, M.K. Jones, S. Joosten, M.L. Kabir, A. Karki, C. Keppel, E. Kinney, N. Lashley-Colthirst, W.B. Li, D. Mack, S. Malace, M. McCaughan, Z.E. Meziani, R. Michaels, R. Montgomery, M. Muhoza, C. Munoz Camacho, G. Niculescu, I. Niculescu, Z. Papandreou, S. Park, E. Pooser, M. Rehfuss, B. Sawatzky, G.R. Smith, H. Szumila-Vance, A. Teymurazyan, H. Voskanyan, B. Wojtsekhowski, S.A. Wood, C. Yero, J. Zhang, and X. Zheng

Working group, spokesperson\*

### THANK YOU!



- Portia Switzer (undergraduate summer student) for beginning  $p(e, e'\pi^+)\Delta^0$  analysis
- Ali Usman for continuing  $p(e, e'\pi^+)\Delta^0$  analysis



This research is funded by Natural Sciences and Engineering Research Council of Canada (NSERC) FRN: SAPIN-2021-00026 and the National Science Foundation of USA (NSF), PHY2012430 and PHY2309976.

### BACKUP

**Both Fits** 



















