PR12-11-002

Proton Recoil Polarization in the ⁴He(e,e'p)³H, ²H(e,e'p)n, and ¹H(e,e'p) Reactions

D. Anez, E. Brash, D. Day, C. Djalali, R. Ent, D. Gaskell, S. Gilad, R. Gilman, D. Higinbotham, G.M. Huber, Y. Ilieva, X. Jiang, M. Jones, C.E. Keppel, M. Kohl, W. Li, G.J. Lolos, S. Malace, P.E.C. Markowitz, M. Paolone,
Z. Papandreou, C. Perdrisat, E. Piasetzky, I. Pomerantz, A. Puckett, V. Punjabi, R. Ransome, G. Rosner, A.J. Sarty, A. Semenov, S. Strauch, J.M. Udias, L.B. Weinstein, F.R. Wesselmann, and X. Zhan

Jefferson Lab PAC 37, January 12, 2011

Purpose of Proposal PR12-11-002

• Investigation of the role of nuclear medium modifications.

⁴He, ²H, ¹H(
$$\vec{e}, e'\vec{p}$$
)

• Proton recoil polarization in quasielastic (e,e'p) is the observable of choice.

	Key features	Impact
1	Wide coverage of proton virtualities at Q ² = 1.0 (GeV/c) ²	 Study the momentum (virtuality) dependence of nucleon medium effects
2	⁴ He, ² H, and ¹ H targets	 Study the density dependence of nucleon medium effects State of the art RDWIA and microscopic calculations are available and will be constrained
3	High-precision data point of the proton recoil polarization in ⁴ He(e,e'p) ³ H at Q ² = 1.8 (GeV/c) ²	Compare free and bound proton recoil polarization where model calculations predict largest sensitivity to effect of in- medium form factors

Nucleons are Modified in the Nuclear Medium

- Conventional Nuclear Physics:
 - Nuclei are effectively and well described as point-like nucleons (+ form factor) and interaction through effective forces (meson exchange).
 - Medium effects arise through nonnucleonic degrees of freedom.
 - Are free nucleons and mesons, under every circumstance, the best quasiparticle to chose?
- Nucleon Medium Modifications:
 - Nucleons and mesons are not the fundamental entities in QCD.
 - Medium effects arise through changes of fundamental properties of the nucleon.
 - Do nucleons change their quark-gluon structure in the nuclear medium? Yes!

Neutron bound in ⁴He does not decay, $\tau_n = \infty$

In-Medium Structure Functions

- EMC Effect: observation of a depletion of the nuclear structure function *F*₂ in the valence-quark regime.
- EMC Effect is **not** due to conventional nuclear physics.
- Relativistic, quark-level models of nuclear structure, predict fundamental changes in the internal structure of bound hadrons due the mean scalar and vector fields in the medium.
- Where else do these changes emerge?

J.R. Smith and G.A. Miller, Phys. Rev. Lett. **91**, 212301 (2003); SLAC E139 data for iron and gold I. C. Cloët, W. Bentz, and A. W. Thomas, Phys. Rev. Lett. **102**, 252301 (2009)

In-Medium Form Factors

CQS: J.R. Smith and G.A. Miller, Phys. Rev. C **70**, 065205 (2004) **QMC**: D.H. Lu et al., Phys. Lett. B 417, 217 (1998) **NJL**: I.C. Cloet, W. Bentz, and A.W. Thomas (to be published)

- Changes in the internal structure of bound nucleons result also in bound nucleon form factors.
- Observable effects predicted:

Chiral Quark Soliton (CQS), Quark Meson Coupling (QMC), Skyrme, Nambu-Jona-Lasinio (NJL), GPD Models.

- Model Predictions:
 - are density and Q² dependent,
 - show similar behavior,
 - consistent with experimental data (within large uncertainties).

Polarization-Transfer Observable

One of the most intuitive methods to investigate the properties of nucleons inside nuclei is quasi-elastic scattering off nuclei.

Free proton

$$\frac{G_{Ep}}{G_{Mp}} = -\frac{P'_x}{P'_z} \frac{(E_i + E_f)}{2m} \tan \frac{\theta_e}{2}$$

- The ratio G_{Ep}/G_{Mp} is obtained from a single measurement
- Small systematic uncertainties (beam helicity, A_c, ... cancel)
- Minimally affected by radiative corrections

A.I. Akhiezer and M.P. Rekalo, Sov. J. Part. Nucl. **3**, 277 (1974) R. Arnold, C. Carlson, and F. Gross, Phys. Rev. C **23**, 363 (1981)

Bound proton

- Compare quasi-elastic and free-proton scattering to study possible medium effects
- Bound nucleon data need evaluation within model
- Reaction-mechanism effects predicted to be small and minimal for quasi-elastic scattering at small missing momentum

$$R = \left(\frac{P'_x}{P'_z}\right)_A / \left(\frac{P'_x}{P'_z}\right)_H$$

⁴He, ²H, ¹H Polarization-Transfer Double Ratios

- ²H and ¹H polarization-transfer data are similar
- ⁴He data are significantly different than ²H, ¹H data
- What generates the large medium effect?
 - the nuclear density or
 - the larger proton virtuality probed in the ⁴He experiments?

7

²H: B. Hu *et al.*, PRC 73, 064004 (2006). ⁴He: S. Dieterich et al., PLB 500, 47 (2001); Strauch, et al., PRL. 91, 052301 (2003); M. Paolone, et al., PRL. 105, 0722001 (2010); S. Malace et al., PRL (accepted for publication), arXiv:1011.4483v1 [nucl-ex]

Madrid RDWIA

- Relativistic calculation in distortedwave impulse approximation (RDWIA) overestimates R
- Density-dependent in-medium form factors were evaluated at the local density ρ(r)

$$G(Q^{2},\rho) = G(Q^{2}) \frac{G^{*}(Q^{2},\rho)}{G^{*}(Q^{2},0)}$$

- Both, the QMC and CQS models give reduction in R by about 6% and are in very good agreement with data
- Induced polarization, P_y, is almost exclusively sensitive to FSI
- RLF optical potential along with cc1 current operator results in excellent description of P_y within the Madrid model

Schiavilla (2010)

- Variational wave functions for the bound three- and four-nucleon systems + nonrelativistic MEC
- Optical potentials include additional charge-exchange terms which are not all well constrained.
- The charge-exchange independent spin-orbit component of the optical potential was reduced to describe the *P*_y data (2010).
- Very good agreement with the data after fitting FSI parameters to the induced polarization of E03-104.

R. Schiavilla, O. Benhar, A. Kievsky, L.E. Marcucci, and M. Viviani, Phys. Rev. Lett. **94**, 072303 (2005)

Within the **Madrid model** P_y seems unaffected by charge exchange to a large degree.

Proton Virtuality: E03-104 Data

Free proton

⁴He(e,e'p)³H Polarization-transfer double-ratio data and calculations show dependence on proton virtuality

$$v = p^2 - m_p^2$$

with the trend of $R \approx 1$ for $p^2 = m_{\rm P}^2$; as it should be.

- Good description of E03-104 data with the RDWIA + QMC (inmedium form factors) model.
- Measuring at low p_m minimizes medium effect.
- Increase of medium effects at large proton virtualities (momenta); 4% to 10% over the range covered.

Momentum Dependence of the EMC Effect

Figure from: L.B, Weinstein et al.,arXiv:1009.5666 [hep-ph] C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari, M.I. Strikman, Phys. Rev. C **76**, 055206 (2007)

- Ciofi degli Atti *et al.* argue that the EMC effect is due to the virtuality of the nucleons and is approximately proportional to their kinetic energy.
- The observed EMC-SRC linear correlation supports the hypothesis that the EMC effect is mainly associated with the nucleons at high virtuality.
- PR12-11-002 will test with ⁴He(e,e'p) and ²H(e,e'p) data at high proton virtuality if medium effects in previous polarizationtransfer measurements depend on:
 - nucleon momentum, off-shellness (virtuality), or
 - mean nuclear density.

PR12-11-002: Kinematics

- Quasielastic scattering
- Parallel kinematics
- x > 1, spectator forward to reduce inelastic channels and probe the genuine quasielastic channel*
- The off-shellness can be quantified as nucleon virtuality:

 $v = p^{2} - m_{p}^{2}$ $= \left(M_{A} - \sqrt{M_{A-1}^{2} + \vec{p}_{m}^{2}}\right)^{2} - \vec{p}_{m}^{2} - m_{p}^{2}$

Nucleon virtuality is a function of the nucleon momentum only.

Q² (GeV/c)²	p _m (MeV/c)	Targets		
1.0	0, +140, +220	⁴ He, ² H, ¹ H		
1.8	0	⁴He, ¹H		

р

*M. Sargsian, private communication

C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari, M.I. Strikman, Phys. Rev. C 76, 055206 (2007)

1st Feature of the Proposal

- PR12-11-002: Q² = 1.0 (GeV/c)² p_m = 0, 140, 220 MeV/c
- Significantly improved proton-virtuality coverage
- Study the expected strong dependence of medium effects on the **momentum** of the bound nucleon.
- Previous ²H data (△) follow suggestively close the virtuality dependence of the ⁴He data (○).

2nd Feature of this Proposal

• PR12-11-002:

Compare proton knock-out from dense and thin nuclei: ⁴He(e,e'p)³H and ²H(e,e'p)n

- Modern, rigorous ²H(e,e'p)n calculations including rescattering effects available.
 - SAID parameterization for of the full NN scattering amplitude
 - Reaction-dynamics effects and FSI will change the ratio up to 5% (maximum 8%) in this kinematics
- Any larger effects (35%?) should be attributed to something else ...

3rd Feature of the Proposal

- Polarization-transfer data effectively described by inmedium electromagnetic form factors or charge-exchange FSI.
- For Q² ≥ 1.3 (GeV/c)² Madrid RDWIA and Schiavilla (2010) results seem to agree.
- Additional data needed
- PR12-11-002: We propose to measure one new highprecision data point of the ⁴He polarization-transfer double ratio at Q² = 1.8 (GeV/c)².
 - Will it be reduced by 7% with respect to Madrid RDWIA/Schiavilla?

Experimental Setup in Hall C

 1
 meter
 fp1
 fp2

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0

FPP for 01-109 in Hall C

- This is a standard-equipment experiment
- Polarized electron beam: E₀ = 2.25, 4.40 GeV
- Hall C Focal Plane Polarimeter
 - ▶ FPP wire-chamber upgrade to increase overall tracking efficiency
 - Segmented analyzer system to optimize analyzer for proton momenta
 - Active scintillator segment to provide second trigger layer

Relative Systematic Uncertainties

Source of Error	∆ P'	∆P' _x /P'z	۵R	Mitigation
Luminosity	0	0	0	_
Beam Polarization	3%	0	0	_
Analyzing Power	3%	0	0	Determine <i>A</i> ^c from our own <i>ep</i> data
Background	≈ 0	≈ 0	≈ 0	(e,e'p) coincidence requirement, vertex cuts, and missing-mass technique effectively removes background; can be studied with MC & dummy-target data; has been no issue in E03-104
Kinematics	≈ 0	≈ 0	≈ 0	Previous experiments and MC simulations show that we will attain sufficient resolution to reconstruct the missing mass of the final state; overdetermined <i>ep</i> kinematics allow for careful checks
Radiative corrections	?	< 0.5%	« 0.5%	Theory input needed
Spin transport	1% - 3%	1% - 2%	< 1%	Extraction of G_E/G_M from <i>ep</i> for various proton trajectories allows careful check of spin precession; COSY model well confirmed in previous experiments

Beam Request

Q ²	⁴ H	² H	¹ H	Dummy	Overhead	Total	
(GeV/c) ²	(h)	(h)	(h)	(h)	(h)	(h)	(d)
1.0	346	172	21	35	20	594	25
1.8	225	-	42	23	8	298	12

- Total beam request of **37 days**.
- Overhead for beam-polarization measurements, possibly one additional day for helium/deuterium target change.
- The proposed experiment is standard and it is flexible as to different beam energies in order to optimize scheduling.

PR12-11-002: Proton Recoil Polarization

Investigation of the role of nuclear medium modifications

Strategy

- Choose an observable with high sensitivity to nucleon structure while being at the same time least sensitive to conventional medium effects.
 ⇒ polarization-transfer, quasi-elastic scattering, parallel kinematics, x > 1
- Chose simple nuclear targets, which allow for microscopic calculations. \Rightarrow ⁴He, ²H
- Study bound-proton momentum and density dependence of recoilpolarization observable.
 ⇒ ⁴He and ²H data over a large range of proton virtuality
- Provide high-precision data to put Nuclear Physics models to rigorous test.