Heavy Gas Cherenkov Mirror Reflectivity Measurement

Wenliang Li, Garth Huber, Keith Blackburn, Chris Gould, Joe Gubeli, Brian Kross, Michelle Shinn, Brad Sawatzky, Drew Weisenberger, Carl Zorn

Outline Page

- Motivation
- Introduction
- Methodology
 - Different Measurement Modes
- Mirror reflectivity
 - Flipper Mirror reflectivity
 - Mirror #8 reflectivity
 - Difference between our and ECI measurement
- Conclusion
- Some Future Remarks

Project Motivation

- HGC Mirrors must be aluminized to reflect UV Cherenkov photons
- @ Cern
 - High delivery and alumunization cost
 - Uncertain leadtime and delivery time
 - Aluminization quality is certified
- @ Evaporated Coating Inc (ECI), PA
 - Much cheaper cost
 - Very short leadtime
 - Aluminization quality is unknown
- Reflectivity Measurement is needed on ECI aluminizated mirrors to make the final decision

Introduction

- November, 2011. HGC Mirrors #2 & 8 were sent to ECI for aluminization test
- Hall C, Detector Group and FEL constructed a permanent facility to measure the reflectivity of larger size optics
 - Measure any point on the mirror
 - Lower Wavelength limitation: 165nm
 - Mirror dimension limitation: 60cm x 55cm, radius of curvature: 110 cm)
- HGC and NGC mirrors
 - HGC: 200-400 nm
 - Reflectivity around 70% @ 200 nm
 - NGC: 165-400 nm (Purged N2 environment)
 - Air absorb UV below 190 nm
- Hall A & B are also interested

Setup (@ FEL, User Lab 3)

- Measurement Equipment:
 - A: 3 Watt Hamamatsu Deuterium Lamp
 - B: MacPherson VUV 218Monochromator
 - C: PCX 50.8 X 200mm Focusing Lens
 - D: Melles Griot DUV Flipper Mirror
 - E: AXUV-100 Photo-diode
 - F: Alignment Laser Stage
 - G: HGC Mirror #8
 - H: Thorlab MC100 Optical Chopper
- Black hutch will be installed

Measurement Modes

- Wavelength Scan
 - 190-400 nm at 5 nm steps
- 3 Measurement Modes:
 - No Reflection (NR) Mode
 - Light Path: Source → Detector
 - 1 Measurement
 - Flipper Mirror Reflection (FMR)
 Mode
 - Light Path: Source → Flipper → Detector
 - 8 Measurements
 - Mirror #8 Reflection (M8R) Mode
 - Light Path: Source → Flipper → Mirror #8 → Detector
 - 6 Measurements

Flipper Mirror Reflectivity

NR Mode:

- Source → Detector
- 1 Measurement
- FMR Mode:
 - Light Path: Source → Flipper→ Detector
 - 8 Measurements (2 After NR, 6 Before M8R)
- Reflectivity:

Flipper Mirror Reflectivi
$$ty = \frac{Signal (FMR)}{Signal (NR)}$$

- Uncertainty: Standard deviation of the reflectivity
- Baseline: 5 x 10⁻⁵V

Mirror #8 Reflectivity

- FMR Mode:
 - Light Path: Source → Flipper→ Detector
 - 6 Measurements
- M8R Mode
 - Light Path: Source → Flipper
 → Mirror #8 → Detector
 - 6 Measurements
- Mirror #8 Reflectivity:

Mirror #8 Reflectivity =
$$\frac{\text{Signal (M8R)}}{\text{Signal (FMR)}}$$

- Uncertainty is taken as the same as for FMR
- Baseline: 5 x 10⁻⁵V

Measurement – ECI Reflectivity Curve

210

200

- Measurement ECI
 - Corner Witness Sample 7
 - Center Witness Sample 5
 - Left Witness Sample 4
- ECI Uncertainty Estimation:
 - < 230 nm: δ (ECI) = \pm 1%
 - > 230 nm: δ (ECI) = $\pm 0.5\%$
- Uncertainty Estimation:

 δ (difference) = $\sqrt{\delta}$ (measurement)² + δ (ECI)²

Wavelength (nm)

230

240

250

Conclusion & Status

- ECI aluminization quality meets our performance specification
- The reflectivity facility at JLab was successful
- Remaining 6 HGC mirrors were aluminized by ECI, and have arrived at JLab in Mid August. Their reflectivities will be measured in Dec, 2012

Some Future Remarks

- Different Lamp is required to measurement reflectivity down to 165nm
- Alignment cameras are needed for the optical alignment under N2 condition.
- Automation (Coding), but not urgent

Thank you

- Special thanks go to Wesley Moore and Jim Coleman for setting up the control system. Advice from Bob Legg, Mike Klopf and Tom Powers were absolutely vital for project development.
- Project construction fund and equipment were provided by Hall C, Detector Group and FEL of Jefferson Lab.

Backups

Flipper Mirror Reflectivity:

Flipper Mirror Reflectivi ty =
$$\frac{\text{Signal (FMR)}}{\text{Signal (NR)}}$$

Mirror #8 Reflectivity:

Mirror #8 Reflectivity =
$$\frac{\text{Signal (FMR)}}{\text{Signal (M8R)}}$$

Our Measurement and ECI:

Measurement locations

DUV Flipper Mirror Typical Reflectivity Curve

Reflectivity vs wavelength of 193 nm deep UV aluminum coating at 45°

Thermal Test

IRD AXUV-100 Photo-diode Response

ECI Theoretical Curve

2365 Maryland Road Willow Grove, PA 19090 USA (215) 659.3080 (215) 659.1275 fax evapsales@evapcoat.com www.evaporatedcoatings.com

Coating Spectral Performance

Customer: Jefferson Laboratory Date:

11/22/2011

Angle 8°

Analyst: KH

P.O. #: 12-M0245

Run #: 1-65

Polarization:

Remarks: HGC Mirror

ECI Witness Sample Reflectivity: 200-600 nm

ECI Witness Sample Reflectivity: 200-600 nm

Evaporated Coatings, Inc. 2365 Maryland Road, Willow Grove, PA 19090, USA Tel: (215) 659 -3080 / Fax: (215) 659 -1275

Quality Control: Mirror Reflectivity Measurement

- Permanent Reflectivity Setup at FEL of JLab
- Wavelength: 200-400nm
- 0-3% difference to the vendor's measurement
- Confirms the vender's coating quality

Aluminized Mirror Quality

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

Lock-in Technique

The lock-in technique is used to measure very small AC signals in large background at narrow bandwidth.

- MC 100 Optical Chopper:
 - Chop the light signal at 14 Hz
 - Generated the gate for SR 530
- AXUV-100 Photo-diode
 - Two signal output: + and -, no bias voltage.
- SR530 Lock-in amplifier:
 - Output: signal magnitude (A-B) and synchronization.

- Advantages:
 - No PMT
 - Wavelength Scan: 200-400 nm dark box is not require
 - Requires a constant background