Pion and Kaon Form Factors at the EIC

Emergent Dynamics in QCD

Consider the proton, a baryon with uud valence quarks

 $m_p pprox 938 \ MeV/c^2,$ $m_u pprox 3 \ MeV/c^2, m_d pprox 6 \ MeV/c^2,$ $(2 \times 3) + 6 = 938?$

- Where does the mass come from?
- Massless gluons and nearly massless quarks, through their interactions, generate most of the mass
- \sim 99% of the mass of hadrons \rightarrow most of the visible mass in the universe!

Emergent Dynamics in QCD

- Only the portion in red is from the Higgs current!
- Need to account for more than just protons!
- Properties of hadrons are emergent phenomena
- Experimental insight crucial to complete understanding of how hadrons and nuclei emerge from quarks and gluons

Stephen Kay University of Regina

10/06/2021

- Pion and Kaon form factors (F_{π} , F_{K}) are key QCD observables
 - Describe the spatial distribution of partons within a hadron
- F_{π} and F_{K} of special interest in hadron structure studies
 - π Lightest QCD quark system, crucial in understanding dynamic mass generation
 - K Next simplest system, contains strangeness
- Clearest case for studying transition from perturbative to non-perturbative regime
- Existing data are good, but need to push Q^2 reach further

Charged Meson Form Factors

- Simple $q\bar{q}$ valence structure of mesons makes them an excellent testing ground
- Pion form factor , F_{π} , is the overlap integral -

• Meson wave function can be split into $\phi_\pi^{\rm soft}$ $(k < k_0)$ and $\phi_\pi^{\rm hard}$, the hard tail

• Can treat $\phi^{\rm hard}_{\pi}$ in pQCD, cannot with $\phi^{\rm soft}_{\pi}$

• Study of Q^2 dependence of form factor focuses on finding description of hard and soft contributions

• At very large Q^2 , F_π can be calculated using pQCD via -

$$F_{\pi}(Q^2) = \frac{4_F \alpha_s(Q^2)}{Q^2} \Big| \sum_{n=0}^{\infty} a_n \left(\log\left(\frac{Q^2}{\Lambda^2}\right) \right)^{-\gamma_n} \Big|^2 \left[1 + O\left(\alpha_s(Q^2), \frac{m}{Q}\right) \right]$$

10/06/2021

6 /26

The Pion in pQCD (2 of 2)

• At asymptotically high Q^2 ($Q^2 \rightarrow \infty$), the pion distribution amplitude becomes -

$$\phi_{\pi}(x)
ightarrow rac{3t_{\pi}}{\sqrt{n_c}} x(1-x)$$

 $\,\circ\,$ With $f_{\pi}=$ 93 MeV , the $\pi^+ \rightarrow \mu^+ \nu$ decay constant

• F_{π} takes the form -

$$Q^2 F_{\pi}
ightarrow 16 \pi lpha_s (Q^2) f_{\pi}^2$$

- This only relies on asymptotic freedom in QCD, i.e. $(\partial \alpha_s/\partial \mu) < 0$ as $\mu \to \infty$
- $Q^2 F_{\pi}$ should behave as $\alpha_s(Q^2)$, even for moderately large Q^2
- Pion form factor seems to be the best tool for experimental study of the nature of the quark-gluon coupling constant renormalisation

Eqns - G.P. Lepage, S.J. Brodsky, PLB 87, p359, 1979 | Closing Statement - A.V. Efremov, A.V. Radyushkin PLB 94, p245, 1980

10/06/2021

7 /26

Implications for Pion Structure (1 of 2)

- Previous pQCD derivation used normalisation of F_{π} based on the conformal limit of the pion's twist 2-PDA - $\phi_{\pi}^{cl}(x) = 6x(1-x)$
- Gives F_π that are "too small"
- Incorporating the DCSB effects yields Pion PDA -

$$\phi_{\pi}(x) = \frac{8}{\pi} \sqrt{x(1-x)}$$

L. Chang, et al., PRL110(2013) 132001

Stephen Kay

University of Regina

10/06/2021

- Using this $\phi_{\pi}(x)$ in the pQCD expression brings the F_{π} calculation much closer to the data
- Underestimates the full computation by $\sim 15\%$ for $Q^2 \geqslant 8~GeV^2$

Stephen Kay

L. Chang, et al., PRL111(2013) 141802

10/06/2021

9 /26

University of Regina

Measurement of F_{π} - Low Q^2

- $\, \bullet \,$ At low $Q^2,$ F_{π} can be measured model independently
- High energy elastic π⁻ scattering from atomic electrons in H
 CERN SPS used 300 GeV pions to measure F_π up to Q² = 0.25 GeV²
- Used data to extract pion charge radius $r_{\pi} = 0.657 \pm 0.012$ fm
- Maximum accessible Q² approximately proportional to pion beam energy
 - $Q^2 = 1 \ GeV^2$ requires 1 TeVpion beam (!)

Amendolia, et al., NPB 277(1986) p168, P. Brauel, et al., ZPhysC (1979), p101, H. Ackermann, et al., NPB137 (1978), p294

Stephen Kay

University of Regina

10/06/2021

Measurement of F_{π} at Higher Q^2

- To access higher Q^2 , must measure F_{π} indirectly
 - Use the "pion cloud" of the proton via pion electroproduction $p(e, e'\pi^+)n$
- At small -t, the pion pole process dominates the longitudinal cross section, σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)}g^2(t) F_\pi^2(Q^2,t)$$

- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction
 - \rightarrow Model dependent

Stephen Kay

11/26

10/06/2021

University of Regina

- $\,\circ\,$ JLab measurements push the Q^2 reach of data considerably
- Still can't answer some key questions regarding the emergence of hadronic mass however
- Can we get quantitative guidance on the emergent pion mass mechanism?

ightarrow Need F_{π} data for $Q^2=10-40~GeV^2$

- What is the size and range of interference between emergent mass and the Higgs-mass mechanism?
 → Need F_K data for Q² = 10 - 20 GeV²
- ${\scriptstyle \circ}$ Beyond what is possible at JLab in the 12 GeV era
 - Need a different machine → The Electron-Ion Collider (EIC)

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC have the potential to extend the Q^2 reach of F_{π} measurements even further
- A challenging measurement however
 - Need good identification of $p(e, e'\pi^+n)$ triple coincidences
 - $\,\circ\,$ Conventional L-T separation not possible \to would need lower than feasible proton energies to access low ϵ
- Utilise new EIC software framework to assess the feasibility of the study with updated design parameters
 - Feed in events generated from a DEMP event generator

DEMP Event Generator

Stephen Kay

- Want to examine exclusive reactions
 - $p(e, e'\pi^+ n)$ exclusive reaction is reaction of interest $\rightarrow p(e, e'\pi^+)X$ SIDIS events are background
- Generator uses Regge-based p(e, e'π⁺)n model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) - arXiv 1508.00969
 - MC event generator created by parametrising CKY σ_L , σ_T for $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2

10/06/2021

14/26

University of Regina

DEMP Event Generator

Stephen Kay

- Want to examine exclusive reactions
 - $p(e, e'\pi^+ n)$ exclusive reaction is reaction of interest $\rightarrow p(e, e'\pi^+)X$ SIDIS events are background
- Generator uses Regge-based p(e, e'π⁺)n model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) - arXiv 1508.00969
 - MC event generator created by parametrising CKY σ_L , σ_T for $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2

10/06/2021

15/26

University of Regina

Isolating σ_L from σ_T in an e-p Collider

• For a collider -

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta\epsilon > 0.2$

- To access $\epsilon < 0.8$ with a collider, need y > 0.5
 - Only accessible at small stot
 - Requires low proton energies (\sim 10 GeV), luminosity too low

10/06/2021

16/26

• Conventional L-T separation not practical, need another way to determine σ_L

$\sigma_{\rm L}$ Isolation with a Model

- QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and Waccessible at the EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t
- Can attempt to extract σ_L by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$
- Critical to confirm the validity of the model used!

Stephen Kay

Predictions are assuming $\epsilon > 0.9995$ with the kinematic ranges seen earlier T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

17/26

University of Regina

10/06/2021

Model Validation via π^-/π^+ ratios

- Measure exclusive ²H(e, e'π⁺n)n and ²H(e, e'π⁻p)p in same kinematics as p(e, e'π⁺n)
- π *t*-channel diagram is purely isovector \rightarrow G-Parity conserved $R = \frac{\sigma [n(e, e'\pi^- p)]}{\sigma [p(e, e'\pi^+ n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}$
- R will be diluted if σ_T not small or if there are significant non-pole contributions to σ_L
- Compare R to model expectations

10/06/2021

18 /26

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

Generator Updates

- Latest version at
 - https://github.com/sjdkay/DEMPgen/tree/bill
- Some quality of life updates
 - Beam energies not hard coded
 - Random number generation improved
 - Can now handle larger number of events thrown per run
- Modified calculation of event weight in output
 - Needed to switch to a "unit" weight
 - Cross checking integrated yield with old determination
- Format of LUND output changed to be read in by EIC smear
- Currently, EIC Smear and Fun4All cannot deal with the weight, it is not retained
 - We require the weight to be retained to get <u>absolute rates</u>
 - We need absolute rates to get realistic FF projections with error bars

Generator Updates - New Output Format

file Edi	File Edit Options Buffers Tools Help																					
3 9369	105.644 -0.000686567										SIMPLE	Event FI										
10.3637											I, ieve	nt, rPar	ticles									
5.1506											0			0			1					-
89.5501																						
3 9775	64.3069 -0.00819372									0.99\												
										<u>۱</u>												
12.9196										1												
5.19875																						
86.8391									36.8245	· ·												
3										0.99\												
8501	1 -0.00019941										°,	211				-3.88605	1.75425	10.2647	11,4687	0.13957		
5.62893																	/					
5 12472																						
94.2598																						
3 9281	-6.7T327e-05									0.99(
														- (\frown		iont	DOW				
9.18/09																10000	VOIL	11044				
5.26011																						
90.5572 3										0.991												
9551																						
47 6414											e 											
6.19295																						
55.1701																						
3																						
7782																						
22.9923																						
6.31092																						
75.7115																						

Stephen Kay University of Regina

10/06/2021

Stephen Kay

- With change to output, files read in fine by EIC smear
- Focusing on lower beam energy combinations

University of Regina

- Files processed through EIC smear and on the JLab iFarm
 - o /lustre19/expphy/volatile/eic/sjdkay/EIC_Smear/

Beam Energy	#Thrown ∕File	#Events /File	Total #Events	Comments			
5on100	10 ⁹	17000	$1.7 imes10^{6}$				
5on41	10 ⁹	178500	1.785×10^{7}	$Q^2 < 5 { m cut}$			
5on41	10 ⁹	200000	$2 imes 10^7$	$Q^2 < 4 { m cut}$			
5on41	10 ⁹	220000	$2.21 imes 10^7$	$Q^2 < 3 { m cut}$			

10/06/2021

Event Rejection

Stephen Kay

- Various cuts to remove vents outside of model validity in DEMPGen, e.g. Q^2 too low
- End up with small fraction of thrown events in resulting file
 - Fraction of retained events varies with beam energy combination

lark> more data/LundFiles/eic_DEMPGen_5on100_10000000000_50.txt	
Total events tried	1000000000
Total events recorded	
Max weight value	2.396e+07
Number of events with w more than 10.6	535523240
Number of events with wsq negative	
Number of events with qsq less than 5	51239604
Number of events with -t more than threshold	30596434
Number of events with unit weight outside of 0 to 1	
Number of events with unit weight greater than random number	
Number of events with w less than threshold	
Number of events with mom not conserve	
Number of events with Sigma negative	5784
Number of lund events	
Seed used for the Random Number Generator	6194580

10/06/2021

22 /26

University of Regina

Exclusive K^+ at EIC

- K⁺ has two exclusive electroproduction channels
 p(e, e'K⁺Λ) and p(e, e'K⁺Σ⁰)
- σ_L is dominant in t-channel process
- If the pole process dominates, ratio of the Λ/Σ^0 should behave like the ratio $g_{KN\Lambda}/g_{KN\Sigma^0}$
- Limited kinematics range $(Q^2, W, -t)$
- Charged final states $(\Lambda \rightarrow \pi^- + p)$ are difficult.

10/06/2021

23 /26

University of Regina

Stephen Kay

K⁺ Studies Plan

- K^+ DEMP Generator
 - Modifying the existing π^+ DEMP generator
 - Need to include both Λ and Σ^0 channels
 - Modification of K⁺ kinematics (Q², W, -t)
 - Work being led by UoR PhD student Ali Usman
- Four step iterative process
- Need to accurately detect γ in far-forward detectors
 - Only distinction between Λ and $\Sigma^0, \, \Sigma^0$ decays to $\Lambda\gamma$

Stephen Kay University of Regina

10/06/2021

- June Goals
 - Generate $K^+\Lambda$ Events
 - on 41 energy
 - Perform phase space studies
- July/August Goals
 - $\circ~\Lambda/\Sigma^0$ ratios
 - Compare both IRs and different beam energy combinations
 - Detector optimisations (resolution and positioning)

- Need to develop analysis plugin for our studies
- Process large numbers of events through the simulation
- Simulate $K\Lambda$ and $K\Sigma^0$ events
 - PhD student Ali Usman is working on adding in a module to the event generator
- Will focus on generating events at 5on41 for $K\Lambda$ studies
- Once $K\Lambda$ module is working, need a $K\Sigma$ module too
- Need event weighting to be retained by Fun4All

Thanks for listening, any questions?

S.J.D. Kay, G.M. Huber, Z. Ahmed, Ali Usman, Daniele Binosi, Huey-Wen Lin, Timothy Hobbs, Arun Tadepalli, Rachel Montgomery, Paul Reimer, David Richards, Rik Yoshida, Craig Roberts, Thia Keppel, John Arrington, Lei Chang, Ian L. Pegg, Jorge Segovia, Carlos Ayerbe Gayoso, Wenliang Li, Yulia Furletova, Dmitry Romanov, Markus Diefenthaler, Richard Trotta, Tanja Horn, Rolf Ent, Tobias Frederico

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPIN-2021-00026

EIC Kinematic Reach for F_{π}

Assumptions

- o 5(e[−]) on 100(p)
- $\int \mathcal{L} = 20 \ \textit{fb}^{-1}\textit{yr}^{-1}$
- Clean identification of p(e, e'π⁺n)
- Syst.Unc: 2.5% pt-pt, 12% scale
- $R = \sigma_L / \sigma_T = 0.013 0.14$ at lowest -t from VR model
- $\delta R = R$ Syst.Unc in model subtraction to isolate σ_L
- π pole dominance at small
 - -t confirmed in ^{2}H π^{+}/π^{-}

kermann p(e,e'π⁺)n cauel et al. (Reanalyzed) JLab (6 GeV) JLab (projected 12 GeV errors 0.5 0.4 Projected FIC x 100(p) ي بي 0.3 0.2 Har 0.1 Hutauruk Cloet & Thomas BSE+NJI Nesterenko & Radyushkin QSF Roberts et al Dyson-Schwinger J.P.B.C. de Melo et al Light Front 0.0 10 20 30 0 $\Omega^2 (\tilde{GeV}^2)$

• Results look promising, but need further studies and further energy combinations

J Arrington et al 2021 J. Phys. G: Nucl. Part. Phys. 48 075106

28 / 26

Stephen Kay

ratios

University of Regina

10/06/2021

F_K Measurement at JLab

- Similar to F_π, elastic K⁺ scattering from e⁻ used to determine F_K at low Q²
- Can "kaon cloud" of the proton be used in the same way as the pion to extract *F_k* from electroproduction?
- Kaon pole further from kinematically allowed region

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_K^2)}g_K^2(T)F_K^2(Q^2,t)$$

• Issues are being explored and tested in JLab E12-09-011

Amendolia, et al., PLB178(1986)435

Stephen Kay University of Regina

10/06/2021