DEMPgen: Physics event generator for Deep Exclusive Meson Production at Jefferson Lab and the EIC

https://arxiv.org/abs/2403.06000

Love Preet

July 19, 2024

University of Regina

JLab EIC Weekly Meeting

Motivation

• Emergence of hadronic mass generation is directly linked to the internal structure of the constituents (π^{\pm}, K^{\pm}) .

- Can examine this internal structure by looking at quantities like the form factor.
- Form factor describes the spatial distribution of partons within a hadron.
- Comparing pion (π^{\pm}) and kaon (K^{\pm}) form factors (F_{π}, F_{K}) provides unique information on mass generation mechanisms.
- One of the ways to measure the form factor is through Deep Exclusive Meson Production (DEMP) reactions.

DEMP reactions

• For π^+ , K⁺ electroproduction reactions:

 $e + p
ightarrow e^{'} + \pi^{+} + n \
ightarrow e^{'} + K^{+} + \Lambda/\Sigma^{0}$

- At Jlab, we detect e', π^+ or K⁺, and reconstruct n or Λ/Σ^0 .
- At EIC (triple coincidence experiment), we need to track all the three final state particles.
 - Missing momentum resolution is insufficient to uniquely reconstruct recoil.
- Need an event generator!

Kinematic variables

• Basic kinematic invariants can be written as

 $e+p
ightarrow e^{'}+\pi^{+}+n\
ightarrow e^{'}+K^{+}+\Lambda/\Sigma^{0}$

 $Ejectile:\pi^{\scriptscriptstyle +},\,K^{\scriptscriptstyle +}$

Recoil : n, Λ , Σ^0

• ep squared CM energy

 $s = (e+p)^2$

• $\gamma^* p$ squared CM energy

 $W^2 = (\gamma^* + p)^2$

• Photon virtuality

 $Q^{2} = -q^{2} = (e - e^{'})^{2}$

• Squared 4-momentum transfer to the nucleon

 $t = (p - Recoil)^2 = (\gamma^* - Ejectile)^2$

Feasibility studies at EIC

- Focus on feasibility studies of **DEMP** reactions through ePIC simulations at EIC.
- The first step will be to generate an event sample.

- Focuses on two key modules:
 - Colliding beam kinematics mode for the Electron-Ion Collider.
 - Fixed target kinematics mode for the SoLID experiment.
- For the EIC, it currently incorporates three reactions:
 - $p(e,e' \pi^+n) \longrightarrow \pi^+$ electroproduction
 - p(e,e' K⁺Λ)
 p(e,e' K⁺Σ⁰)
 K⁺ electroproduction

- Consider the head-on collision between the electrons & protons at different beam energies, including, $5(e) \times 41(p)$, $5(e) \times 100(p)$, $10(e) \times 100(p)$, and $18(e) \times 275(p)$.
- It is a weighted event generator.

https://github.com/JeffersonLab/DEMPgen

• How does the generator work?

Described based on the upcoming release, <u>DEMPgen - v1.2.0</u>

• How does the generator work?

Initialization & PSF check

• Start initialization by reading an input .json file containing several input parameters, such as beam energies, requested events, output file type, electron energies, electron and ejectile angles, etc.

Consider $5(e) \times 100(p)$ beam energy combination for π^+ reaction:

User-defined limits:

e_En_Low	e_En_High	e_Theta_Low	e_Theta_High	Ejectile_Theta_Low	Ejectile_Theta_High	
2.5	12.5	60.0	175.0	0.0	50.0	

• Phase Space Factor (PSF) module constrain the user-defined electron and ejectile energy/angle ranges based on the kinematic variable cuts $(Q^2, W, \text{ and } -t)$.

Allowed phase space limits:

e_En_Low	e_En_High	$e_{Theta_{Low}}$	e_Theta_High	Ejectile_Theta_Low	Ejectile_Theta_High	
2.5	12.5	60.0	175.0	0.0	50.0	
4.9	6.62	116.925	158.785	1.5	50.0	

- Calculate the PSF, which is the fraction of the total kinematically accessible phase space that is covered by the event generator, using constrained ranges.
 - Critical for calculating event weights.

 $PSF = (E_{e'Max} - E_{e'Min})d\Omega_{e'}(\theta, \phi) d\Omega_{Ejectile}(\theta, \phi)$

• Time-efficient, with more recorded events per file, and without wasting CPU resources.

• How does the generator work?

Random event generation & Kinematics calculation

- Relevant differential cross section is 5-fold $(\theta_{e'}, \phi_{e'}, E_{e'}, \theta_{Ej}, \phi_{Ej})$.
- Randomly generate scattered electron & ejectile energy/angles with in the phase space limits.
- Calculate the scattered electron's four momentum (P).
- Calculate the virtual photon.
- Solve for the ejectile's energy (E) using four-momentum conservation at the photon-ejectile vertex.
- Calculate the recoil's direction and four momentum (P) using energy and momentum conservation at the physics reaction vertex.

 $e + p \rightarrow e^{'} + Ejectile + Recoil$

• Determine the kinematic variables Q^2 , W, and -t as soon as relevant information is obtained.

• How does the generator work?

Event selection cuts

- Cut on ejectile's energy being a NaN value.
- Energy and momentum conservation cut at the physics reaction vertex.

- $W^2 > 0$ cut.
- Q² cut
 W cut
 -t cut

 Depends on the requested reaction & limits come from the theoretical model's parametrization.

• How does the generator work?

Cross section calculations

• Exclusive reaction cross-section in the collider frame is:

$$\frac{d^{5}\sigma}{dE_{e'}^{Col}d\Omega_{e'}^{Col}d\Omega_{Ej}^{Col}} = (\Gamma_{\nu}^{Col}) \begin{pmatrix} \frac{d\Omega_{Ej}^{CM}}{d\Omega_{Ej}^{Col}} \end{pmatrix} \begin{pmatrix} \frac{d^{2}\sigma}{d\Omega_{Ej}^{CM}} \end{pmatrix}$$
Virtual photon flux factor Jacobian for the conversion from CM to Col frame
$$\frac{d^{2}\sigma}{d\Omega_{Ej}^{CM}} = J \begin{pmatrix} \frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \end{pmatrix}$$
Jacobian Parametrized theoretical models

Parametrization of theoretical model for π^+ module

- Begin with $p(e,e' \pi^+n)$ reaction.
- Use the Regge-based $p(e,e' \pi^+n)$ model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) arXiv 1508.00969
 - MC event generator created by parametrizing CKY σ_L , σ_T for 3<Q²<35, 2<W<10.2, 0<-t<1.3.
 - Parametrize in step sizes of 0.2 GeV in W and 1 GeV² in Q^2 .
 - Parametrize σ_L with a landau, exponential, and exponential.

T. K. Choi, K. J. Kong and B. G. Yu, Journal of the Korean Physical Society 67, 1089 (2015).

Parametrization of theoretical model for π^+ module

- Begin with $p(e,e' \pi^+n)$ reaction.
- Use the Regge-based $p(e,e' \pi^+n)$ model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) arXiv 1508.00969
 - MC event generator created by parametrizing CKY σ_L , σ_T for 3.5<Q²<35, 2<W<10.2, 0<-t<1.3.
 - Parametrize in step sizes of 0.2 GeV in W and 1 GeV² in Q^2 .
 - Parametrize $\sigma_{\rm T}$ with a polynomial and exponential.

 σ_{T}

T. K. Choi, K. J. Kong and B. G. Yu, Journal of the Korean Physical Society 67, 1089 (2015).

Parametrization of theoretical model for Λ Channel

- Two channels for the kaon module.
- Begin with $p(e,e' K^+\Lambda)$ reaction.
- Use the Regge-based $p(e,e' K^+\Lambda)$ model from M. Vanderhaeghen, M. Guidal and J.-M. Laget (VGL).
 - MC event generator created by parametrizing VGL σ_L , σ_T for 1<Q²<35, 2<W<10, 0<-t<2.
 - Parametrize in step sizes of 1 GeV in W and 1 GeV² in Q^2 .
 - Parametrize σ_L with a polynomial, exponential, and exponential.

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, Physical Review C 61 (2000) 025204.

σι

Parametrization of theoretical model for Λ Channel

- Two channels for the kaon module.
- Begin with $p(e,e' K^+\Lambda)$ reaction.
- Use the Regge-based $p(e,e' K^+\Lambda)$ model from M. Vanderhaeghen, M. Guidal and J.-M. Laget (VGL).
 - MC event generator created by parametrizing VGL σ_L , σ_T for 1<Q²<35, 2<W<10, 0<-t<2.
 - Parametrize in step sizes of 1 GeV in W and 1 GeV² in Q^2 .
 - Parametrize σ_T with a polynomial, polynomial, and exponential.

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, Physical Review C 61 (2000) 025204.

σт

Parametrization of theoretical model for Σ^0 Channel

- For the $p(e,e' K^+\Sigma^0)$ module, the generator uses the Regge-based $p(e,e' K^+\Sigma^0)$ model M. Vanderhaeghen, M. Guidal and J.-M. Laget (VGL) in a similar way to the lambda channel.
 - MC event generator created by parametrizing VGL σ_L , σ_T for 1<Q²<35, 2<W<10, 0<-t<2.
 - Parametrize in step sizes of 1 GeV in W and 1 GeV² in Q^2 .
 - Parametrize σ_L with a polynomial, exponential, and exponential.

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, Physical Review C 61 (2000) 025204.

ΟΤ,

Parametrization of theoretical model for Σ^0 Channel

- For the $p(e,e' K^+\Sigma^0)$ module, the generator uses the Regge-based $p(e,e' K^+\Sigma^0)$ model M. Vanderhaeghen, M. Guidal and J.-M. Laget (VGL) in a similar way to the lambda channel.
 - MC event generator created by parametrizing VGL σ_L , σ_T for 1<Q²<35, 2<W<10, 0<-t<2.
 - Parametrize in step sizes of 1 GeV in W and 1 GeV² in Q^2 .
 - Parametrize σ_T with a polynomial, polynomial, and exponential.

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, Physical Review C 61 (2000) 025204.

σт

DEMPgen improvements for the K⁺ module

- π^+ module was written first.
- K^+ module includes some additional improvements in the algorithm.
 - Removed discontinuities between the parametrizing functions by finding the intersection points between them.

DEMPgen improvements for the K⁺ module

• Because of the finite step size in W and Q^2 , implemented a new method to interpolate the parametrization.

 $f(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

- For now, interpolation is only in the kaon module.
- Plan to incorporate it in the pion module soon.

• How does the generator work?

Event weighting

• Event weight is calculated for the generated events using the following equation:

Weight = $\frac{\sigma \times PSF \times CF \times \mathcal{L}}{N_{Requested}}$

Where,

 σ is the 5-fold cross section in the collider frame.

PSF is the phase space factor.

CF is a unit conversion factor.

 \mathcal{L} is the luminosity, and

 $N_{\mbox{\tiny Requested}}$ is the number of events that the DEMPgen tried to produce.

- Resulting weight value is the expected reaction rate at the given luminosity, expressed in units of Hz.
- Event weights must be retained throughout the analysis framework.

 $rac{d^5\sigma}{dE^{Col}_{e^{\prime}}d\Omega^{Col}_{e^{\prime}}d\Omega^{Col}_{Ej}}$

• How does the generator work?

Output format

• Produce output in one of these three options: LUND, Pythia6, or HEPMC3, with an optional ROOT output format.

Colliding beams

1

• Generate a txt file, regardless of the choice, that contains additional information about events, including requested, generated, and those failed due to various cuts, etc.

E 1 1 5 U GEV MM A 0 weight 5.1	2317314746863	Event weig	ht						
P 1 0 11 6.123233963758798e-16 0.00000000000000000e+00 -4.999999973888007e+00 5.00000000000000e+00 5.109989488070365e-04 4 P 2 0 2212 -0.000000000000000e+00 -0.000000000000000e+00 4.100000000000e+01 4.101073462535657e+01 9.382720881600054e-01 4									
V -1 0 [1,2] P 3 -1 11 -4.765207341187158e+00 -3.732537034594943e-01 -2.925841675750566e+00 5.604201022833585e+00 5.109989383783055e-04 1 P 4 -1 211 3.968428136943284e+00 -1.531575588721116e-01 4.701276523050274e+00 6.155758271509020e+00 1.395701800000037e-01 1 P 5 -1 2112 7.967792042438746e-01 5.264112623316060e-01 3.422456517881229e+01 3.425077533101398e+01 9.395654205001728e-01 1									
particle_line	part_id	parent_vertex_id	pdg_id	px	ру	pz	energy	particle_mass	status
	Example of HEPMC3 format					Scattered particles			

Simulation studies at EIC

• Incoming beams collide at a crossing angle of 25 mrad.

• Monte Carlo afterburner includes crossing angle, beam energy spread, angular beam divergence, bunch length, etc.

- DEMPgen has the capability to generate events directly with the correct crossing angles.
 - Turned it off to maintain compatibility with EIC simulations framework.

Spatial topology of π^+ module at ePIC detector

- 5(e⁻) on 41(p) GeV, 5(e⁻) on 100(p) GeV, 10(e⁻) on 100(p) GeV Collisions.
- For $5 < Q^2 < 35$, 2 < W < 10.2, and 0 < -t < 1.3.
- Events weighted by cross-section.
- 25 mrad crossing angle.

Spatial topology of Λ Channel at ePIC detector

- 5(e⁻) on 41(p) GeV, 5(e⁻) on 100(p) GeV, 10(e⁻) on 100(p) GeV Collisions.
- For $5 < Q^2 < 35$, 2 < W < 10, and 0 < -t < 2.
- Events weighted by cross-section.
- 25 mrad crossing angle.

Spatial topology of Σ^0 Channel at ePIC detector

- 5(e⁻) on 41(p) GeV, 5(e⁻) on 100(p) GeV, 10(e⁻) on 100(p) GeV Collisions.
- For $5 < Q^2 < 35$, 2 < W < 10, and 0 < -t < 2.
- Events weighted by cross-section.
- 25 mrad crossing angle.

DEMPgen modularity

- Structured modularly, enabling the addition of new exclusive reactions over time.
- To add a new reaction:
 - Find the appropriate theoretical model for the given reaction.
 - Parametrize the cross-section components over wide kinematic ranges.
 - Input the parametrized values into the txt file, similar to the K^+ module.
 - Set up the masses for the ejectile, & recoil in the main DEMPgen routine.
- Contact us at *Garth.Huber@uregina.ca*, *stephen.kay@york.ac.uk*, & *Love.Preet@uregina.ca* if you encounter any issues.

ECCE simulation studies using DEMPgen

- Used DEMPgen v1.0.0 π^+ module to generate events & passed through ECCE simulations.
 - Measured $e' \pi^+ n$ triple coincidence to generate kinematic distribution plots.
- Utilizing the upcoming version of DEMPgen to generate plots for the EIC TDR.

https://www.sciencedirect.com/science/article/pii/S0168900223002280

DEMPgen used in the community

- Zhoudunming Tu utilized DEMPgen v1.0.0 to generate kinematic distribution plots for exclusive Λ hyperon polarization studies.
 - Calculate the runtime of the experiment to achieve desired event yield.

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.109.055205

Summary

- Works fine for both pion and kaon electroproduction reactions.
- Will extend parametrization ranges & employ interpolation techniques in the pion module too.
- Will include electron radiation effects & the measurements with deuteron or other beams.
- Modular in form, allowing additional reactions to be addded over time.
- Next step is to process the generated events through the EIC ePIC simulations.
 - Will give us an indication of the feasibility of DEMP measurements at EIC.
- If the measurement is possible, we can measure the form factor of mesons over the wide kinematic range at EIC.
 - Will give us an insight into the mass generation mechanism of hadrons.

Thank you !

Z. Ahmed, R. S. Evans, I. Goel, G. M. Huber, S. J. D. Kay, W. B. Li, L. Preet, A. Usman

EIC-Canada

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2023-00041

& UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1

Email : navisaharan3@gmail.com