Deep Exclusive $p(e,e'\pi^+)n$ and $p(e,e'K^+)\Lambda$ Studies at Jefferson Lab

Garth Huber

Supported by:

SAPIN-2021-00026

On behalf of the PionLT and KaonLT Collaborations

Towards Improved Hadron Femtography with Hard Exclusive Reactions ECT* Workshop, Trento, Italy August 9, 2024

Two Motivations for Studying DEMP

1) Determine the Pion Form Factor at $Q^2 > 0.3$ GeV²:

- Indirectly measure F_{π} using the "pion cloud" of the proton via $p(e,e'\pi^+)n$ $|p\rangle = |p\rangle_0 + |n\pi^+\rangle + ...$
 - Pion pole process dominates σ_L in forward kinematics.
 - Can a similar method be used to determine the kaon form factor?

2) Study the Hard-Soft Factorization Regime:

Implications for GPD studies, as they can only be extracted from hard exclusive data where hard-soft factorization applies.

 Investigate if p(e,e'π⁺)n and p(e,e'K⁺)Λ cross sections at fixed x behave according to the Q⁻ⁿ scaling expectations of hard QCD.

 $\underline{\sigma_{T}[n(e,e'\pi^{-})p]}$

Form $\sigma_T[p(e, e' \pi^+)n]$ ratios where soft contributions may cancel, yielding insight to factorization at modest Q^2 .

huberg@uregina

Charged Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} . While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

The Pion in perturbative QCD

At asymptotically high Q^2 , only hardest portion of pion distribution amplitude contributes

$$\phi_{\pi}(x) \xrightarrow{Q^2 \to \infty} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$Q^2 F_{\pi}(Q^2) \underbrace{\longrightarrow}_{Q^2 \to \infty} 16\pi \alpha_s(Q^2) f_{\pi}^2$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

This only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_S / \partial \mu) < 0$ as $\mu \rightarrow \infty$.

$Q^2 F_{\pi}$ should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 . \rightarrow Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

 $\int_{-\infty}^{\infty} F(Q^2) \to 16\pi\alpha(Q^2) f^2$

 f_{π} =93 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant

х

(1-x)

 ϕ_{π}

y

(1-y)

Pion Form Factor at Intermediate Q²

At experimentally–accessible Q², both the "hard" and "soft" components (e.g. transverse momentum effects) contribute.

The interplay of hard and soft contributions is poorly understood.

- → Different theoretical viewpoints on whether higher–twist mechanisms dominate until very large momentum transfer or not.
- The pion elastic and transition form factors experimentally accessible over a wide kinematic range.
 - \rightarrow A laboratory to study the **transition** from the soft to hard regime.

Contrasts in Hadron Mass Budgets

Stark Differences between proton, K⁺, π^+ mass budgets

- Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit).
- Conversely, and yet still due to EHM and DCSB, K and π are massless in chiral limit (i.e. they are Goldstone bosons).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.

6

Synergy: Emergent Mass and π^+ Form Factor

EPJA 55(2019)190

At empirically accessible energy scales, π^+ form factor is sensitive to emergent mass scale in QCD

- Two dressed-quark mass functions distinguished by amount of DCSB
 DCSB emergent mass generation is
 - 20% stronger in system characterized by solid green curve, <u>which is more</u> <u>realistic case</u>
 - $F_{\pi}(Q^2)$ obtained with these mass functions
 - r_{π} =0.66 fm with solid green curve
 - r_{π} =0.73 fm with solid dashed blue curve
- $F_{\pi}(Q^2)$ predictions from QCD hard scattering formula (slide #3), obtained with related, computed pion PDAs
- QCD hard scattering formula, using conformal limit of pion's twist–2 PDA $\phi_{\pi}^{cl}(x) = 6x(1-x)$

The Charged Kaon – a 2nd QCD test case

In the hard scattering limit, pQCD predicts that the π⁺ and K⁺ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow{Q^2 \to \infty} \frac{f_K^2}{f_\pi^2}$$

 It is important to compare the magnitudes and Q²-dependences of both form factors.

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$\left| p \right\rangle = \left| p \right\rangle_{0} + \left| n \pi^{+} \right\rangle + \dots$$

- At small –*t*, the pion pole process dominates the longitudinal cross section, $\sigma_{\!L}$
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique 1.Isolating σ_L experimentally challenging 2.Theoretical uncertainty in form factor extraction.

 K^+ pole is further in the unphysical region, uncertainties will be larger

Experimental Issues

- Deep Exclusive Meson Production (DEMP) cross section is small, can exclusive p(e,e'π⁺)n and p(e,e'K⁺)Λ channels be cleanly identified?
 - High momentum, forward angle (5.5°) meson detection is required, with good Particle ID to separate π^+ , K^+ , p
 - Good momentum resolution required to reconstruct crucial kinematics, such as M_{miss}, Q², W, t
 - Need to measure the longitudinal cross section $d\sigma_L/dt$ needed for form factor extraction

Hall C of Jefferson Lab has been optimized for specifically such studies

Prompt

SHMS+HMS

coincidences

10

1.05

 $e+p\rightarrow e'+\pi^++n$

20 30e π Coin Time (ns)

1.1 MM_π (GeV/c^2)

 2π threshold

Coincidence measurement between charged pions in SHMS and electrons in HMS

Electron-Pion CTime Distribution Easy to isolate $\times 10^3$ Events 160 exclusive channel Accidental 140 coincidences 120 Excellent particle 100 80 identification 60 40 CW beam minimizes 20 "accidental" coincidences -20 Missing Mass Distribution Missing mass resolution 14000 Events easily excludes 2-pion 12000 10000 contributions 8000 6000 PionLT experiment E12–19–006 Data 4000 Q²=1.60, *W*=3.08, *x*= 0.157, ε=0.685 2000 E_{beam}=9.177 GeV, P_{SHMS}=+5.422 GeV/c, θ_{SHMS}= 10.26° (left) 0.9 0.95 Plots by Muhammad Junaid

11

- **L**-T separation required to separate σ_L from σ_T
- Need to take data at smallest available –*t*, so σ_L has maximum contribution from the π^+ pole
- Need to measure *t*-dependence of σ_L at fixed Q²,W

The different pion arm (SHMS) settings are combined to yield φ -distributions for each *t*-bin

(deg)

huberg@uregina

キセ

Ga

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

• Feynman propagator $\left(\frac{1}{t - m_{\pi}^{2}}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_π, Λ_ρ (trajectory cutoff).

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small –*t*, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2.$

Current and Projected F_{π} **Data**

SHMS+HMS will allow measurement of F_{π} to much higher Q^2

No other facility worldwide can perform this measurement

Data taking completed September 2022 (E12–19–006: G. Huber, D. Gaskell and T. Horn, spokespersons)

y–positions of projected points are arbitrary

Error bars are calculated from obtained statistics and projected systematic uncertainties

The ~10% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

The pion form factor is the clearest test case for studies of QCD's transition from non-perturbative to perturbative regions

$p(e,e'K^+)\Lambda(\Sigma^0)$ Experiment

Isolate Exclusive Final States via Missing Mass

$$M_{X} = \sqrt{(E_{det} - E_{init})^{2} - (p_{det} - p_{init})^{2}}$$

- Spectrometer coincidence acceptance allows for simultaneous studies of Λ and Σ° channels.
- Kaon-pole dominance test through

$$\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda^0)}$$

• Should be similar to ratio of $g_{pK\Lambda}^2/g_{pK\Sigma}^2$ coupling constants if t-channel exchange dominates.

Kaon Form Factor Experiment Goals

- Measure the –t dependence of the p(e,e'K⁺)Λ,Σ° cross section at fixed Q² and W>2.5 GeV to search for evidence of K⁺ pole dominance in σ_L
 - Separate the cross section components: L, T, LT, TT
 - First L/T measurement above the resonance region in K⁺ production
- If warranted by the data, extract the Q² dependence of the kaon form factor to shed new light on QCD's transition to quark-gluon degrees of freedom.
- Even if we cannot extract the kaon form factor, the measurements are important.
 - K⁺Λ and K⁺Σ[°] reaction mechanisms provide valuable information in our study of hadron structure
 - Flavor degrees of freedom provide important information for QCD model building and understanding of basic coupling constants

Projected Uncertainties for K⁺ Form Factor

- First measurement of F_K well above the resonance region.
- Measure form factor to Q²=3 GeV²
 with good overlap with elastic
 scattering data.
 - Limited by *-t*<0.2 GeV² requirement to minimize non–pole contributions.
- Data will provide an important second qq system for theoretical models, this time involving a strange quark.
 - Partially completed as an early SHMS commissioning experiment: LT–separation
 - (E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons)
 - Data under analysis, expecting final results next year
 - R. Trotta (CUA/Virginia)

Extraction of F_K from Q²>4 GeV² data is more uncertain, due to higher $-t_{min}$

Verification of GPD Accessibility

At sufficiently high Q², the Hard–Soft Factorization Theorem separates the reaction amplitude into two parts:

- Hard scattering process, where perturbative QCD can be used
- A non-perturbative (soft) part, where the response of the target nucleon to the virtual photon probe is encoded in GPDs

Collins, Frankfurt, Strikman PRD <u>56(1997)2982</u>

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
- No single criterion for applicability, but tests of necessary conditions can provide evidence that Q² scaling regime reached

Testing Factorization: $p(e,e'\pi^+)n$

- One of most stringent tests of factorization is Q² dependence of π/K electroproduction cross sections
 - σ_L scales to leading order as Q⁻⁶
 - As Q² becomes large: σ_L » σ_T
- If we show factorization regime is not reached, it will have major implications for meson production GPD experiments in this Q² regime (Some of these experiments are already taking data!)

Important 2nd Test: $p(e,e'K^+)\Lambda$

- Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results
- Is onset of scaling different for kaons than pions? • K^+ and π^+ together provide quasi model-independent study

p(e,e'K⁺)∧ *Existing* ■ *and Projected* ◆◆■ *Data*

- E12-09-011 data taking partially completed in 2019
- Data for $x_B = 0.40$ scan in hand. Data for $x_B = 0.25$ scan only partly acquired.
 - Spokespersons: T. Horn, P. Markowitz, GMH

Summary

- Higher Q² data on π⁺ and K⁺ form factors are vital to our better understanding of hadronic physics
 - PionLT (E12–19–006) has for the first time, since the pioneering measurements at Cornell in 1970's, acquired the high quality data needed to test these theoretical developments with authority
 - KaonLT (E12–09–011) partially completed. First results hopefully out next year
- Factorization studies are crucial if the field is to fully utilize the information encoded in GPDs, as GPDs are only accessible experimentally in the hard–soft factorization regime
 - PionLT (E12–19–006) has acquired data for LT–separated p(e,e'π⁺)n Q⁻ⁿ scans at x_B=0.31, 0.39, 0.55
 - KaonLT (E12–09–011) has acquired p(e,e'K⁺)/ data for Q⁻ⁿ scan at x_B=0.40, eventual extension to x_B=0.25