Deep Exclusive $p(e,e^{\prime}\pi^+)$ n and p NH 8. 4 *π+)n* and *p(e,e 'K+)Λ*Studies at Jefferson Lab

Garth Huber

Supported by:

On behalf of the PionLT and KaonLT Collaborations

Towards Improved Hadron Femtography with Hard Exclusive Reactions ECT* Workshop, Trento, ItalyAugust 9, 2024

Two Motivations for Studying DEMP

1) Determine the Pion Form Factor at *Q2***>0.3 GeV2:**

- **Indirectly measure** F_{π} **using the "pion cloud" of the proton** \mathbf{F}_{π} via p(e,e'π⁺)n 0 $\left| \begin{array}{c} \ldots \\ \ldots \end{array} \right|$ $=|D\rangle+|n\pi^{+}\rangle+$ $p_i = |p_i + n\pi$
	- **Pion pole process dominates** $σ_1$ **in forward kinematics.**
	- Can a similar method be used to determine the kaon form factor?

2) Study the Hard-Soft Factorization Regime:

Implications for GPD studies, as they can only be extracted from hard exclusive data where hard-soft factorization applies.

■ Investigate if p(e,e' $π^{\ast}$)n and p(e,e'K * sections at fixed *x* behave according to the)Λ cross *Q-n* scaling expectations of hard QCD.

 $\int_T\bigl[n(e,e'\,\pi^-)p\bigr]$

Form $\sigma_r[p(e,e'\pi^+)n]$ ratios where soft contributions may cancel, yielding insight to factorization at modest *Q2* .*T* σ_r [$p(e, e' \pi^+)$ $\frac{\sigma_r[n(e,e]\pi)}{\sigma_r[p(e,e]\pi)}$

Charged Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$
F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp
$$

The meson wave function can be separated into φ_{π} momentum contributions (*k<k_o)* and a hard tail $\varphi_{\pi}^{\;\;hc}$ *soft* with only low While $\varphi_{\pi}^{\ \ \, hard}$ can be treated in pQCD, $\varphi_{\pi}^{\ \ \, i}$ *hard. soft* cannot.

From a theoretical standpoint, the study of the *Q²* **–dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.**

The Pion in perturbative QCD

At very large *Q2*, pion form factor (*^Fπ*) can be calculated using pQCD $\left(2^{2}\right) = \frac{4\pi C_{F}\alpha_{S}(Q^{2})}{2\pi\epsilon_{B}}\left(\log\left(\frac{Q^{2}}{Q}\right)\right)^{-\gamma_{n}}\left|^{2}\right|^{2}=\sqrt{2\pi\epsilon_{B}Q^{2}}$ $Q^2 = \frac{4\pi C_F \alpha_s(Q^2)}{Q^2} \left| \sum_{n=0}^{\infty} a_n \left(\log \left(\frac{Q^2}{\Lambda^2} \right) \right)^n \right| \left| 1 + O \right| \alpha_s(Q^2),$ $\sum_{n=0}^{N-n} \binom{n}{n}$ $\binom{n}{2}$ $\frac{C_F \alpha_s(Q^2)}{Q} \sum_{n=1}^{\infty} a_n \log \left(\frac{Q^n}{Q^n} \right)$ $F_{\pi}(Q^2) = \frac{\pi \pi C_F \alpha_S(Q)}{Q^2} \left| \sum_{n=0}^{\infty} a_n \left(\log \left(\frac{Q}{\Lambda^2} \right) \right) \right| \left[1 + O\left(\alpha_S(Q^2), \frac{m}{Q}\right) \right]$ γ π ^π ^α α∞ / / ⌒∠ / / = $=\frac{4\pi C_F\alpha_S(Q^2)}{Q^2}\left|\sum_{n=0}^{\infty}a_n\left(\log\left(\frac{Q^2}{\Lambda^2}\right)\right)^{-\gamma_n}\right|\left[1+O\left(\alpha_S(Q^2),\frac{m}{Q}\right)\right]$

At asymptotically high *Q*2, only hardest portion , of pion distribution amplitude contributes

$$
\phi_{\pi}(x) \underset{Q^2 \to \infty}{\longrightarrow} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)
$$

and F_π takes the very simple form

$$
Q^2 F_{\pi}(Q^2) \underset{Q^2 \to \infty}{\longrightarrow} 16\pi\alpha_s(Q^2) f_{\pi}^2
$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. **87B**(1979)359.

This only relies on asymptotic freedom in QCD, *i.e.* (*∂α^S/∂µ*)<0 as *µ*→∞.

 f_{π} =93 MeV is the π^+

Q2 Fπ **should behave like** *αs(Q2* \rightarrow Pion form factor seems to be best tool for experimental study
of nature of the surget slugg equaling experient reparationism 2) even for moderately large \mathcal{Q}^2 *.*of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep–ph/0410276]

Garth Huber, huberg@uregina.ca

Garth Huber,

huberg@uregina.ca

ν decay constant

 $^+\!\!\rightarrow\!\!\mu^+$

Pion Form Factor at Intermediate *Q2*

At experimentally–accessible *Q2*, both the "hard" and "soft"rancyarea moma components (e.g. transverse momentum effects) contribute.

The interplay of hard and soft contributions is poorly understood.

- → Different theoretical viewpoints on whether higher–twist
mechanisms dominate until very large momentum transt mechanisms dominate until very large momentum transfer or not.
- **The pion elastic and transition form factors experimentally accessible over a wide kinematic range.**
	- \rightarrow A laboratory to study the **transition** from the soft to hard regime.

Contrasts in Hadron Mass Budgets

Stark Differences between proton, K⁺, π⁺ mass budgets

- Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit).
- Conversely, and yet still due to EHM and DCSB, *^K* and ^π are massless in chiral limit (i.e. they are Goldstone bosons).
- The mass budgets of these crucially important particles demand interpretation.
- **Equations of QCD stress that any explanation of the proton's mass is** incomplete, unless it simultaneously explains the light masses of QCD'sGoldstone bosons, the π and κ .

Synergy: Emergent Mass andπ+ Form Factor

Conformal limit pQCD

8

6

 Q^2 / GeV²

10

At empirically accessible energy scales, π+ form factor is sensitive to emergent mass scale in QCD

- **Two dressed–quark mass functions distinguished by amount of DCSB**
	- \blacksquare DCSB emergent mass generation is 20% stronger in system characterized by solid green curve, which is more realistic case
- *^Fπ(Q²)* **obtained with these mass functions**
	- r_{π} =0.66 fm with solid green curve
	- r_{π} =0.73 fm with solid dashed blue curve
- П *^Fπ(Q²)* **predictions from QCD hard scattering formula (slide #3), obtained with related, computed pion PDAs**
- **QCD hard scattering formula, using conformal limit of pion's twist–2 PDA** $x_i = 6x_i - x$ $\phi_{\pi}^{cl}(x) = 6x(1-x)$

 Ω^+

O

 $\overline{2}$

7

The Charged Kaon – a 2nd QCD test case

П In the hard scattering limit, pQCD predicts that the π^+ and K^+ form factors will behave similarly

$$
\frac{F_K(Q^2)}{F_\pi(Q^2)} \underset{Q^2 \to \infty}{\longrightarrow} \frac{f_K^2}{f_\pi^2}
$$

 \blacksquare It is important to compare the magnitudes and Q^2 -dependences of both form factors.

At larger *Q²*, *^Fπ* the proton via pion electroproduction *p(e,e'^π +)n* $\frac{1}{n}$ must be measured indirectly using the "pion cloud" of $\frac{1}{n}$

$$
|p\rangle = |p\rangle_0 + |n\pi^+\rangle + ...
$$

- At small *–t*, the pion pole process dominates the longitudinal cross section, $\sigma_{\!L}$
- **In Born term model,** F_{π}^2 **appears as,**

$$
\left|\frac{d\sigma_L}{dt}\propto \frac{-tQ^2}{(t-m_\pi^2)}g_{\pi NN}^2(t)F_\pi^2(Q^2,t)\right|
$$

Drawbacks of this technique1.Isolating *o*_L experimentally challenging 2.Theoretical uncertainty in form factor extraction.

K+ **pole is further in the unphysical region, uncertainties will be larger**

Experimental Issues

- F Deep Exclusive Meson Production (DEMP) cross section is small, can exclusive *p(e,e'π+)n* and *p(e,e'K⁺)*^Λ channels be cleanly identified?
	- High momentum, forward angle (5.5°) meson detection is required, with good Particle ID to separate $\pi^{\scriptscriptstyle +}$, *K*⁺, p
	- Good momentum resolution required to reconstruct crucial kinematics, such as *Mmiss*, *Q2, W, t*
	- Need to measure the longitudinal cross section *d^σL/dt* needed for form factor extraction

Hall C of Jefferson Lab has been optimized for specifically

Coincidence measurement between charged pions in SHMS and electrons in HMS

Easy to isolate exclusive channel

- Excellent particle identification
- CW beam minimizes "accidental" coincidences
- Missing mass resolution easily excludes 2–pion contributions

- \blacksquare **L-T** separation required to separate $\sigma_{\rm L}$ **from σ T**
- **Need to take data at smallest available** $-t$ **, so** σ_1 $-t$, so $\sigma_{\rm L}$ has **maximum contribution from the** π**+ pole**
- **Participate Control** \blacksquare Need to measure *t*–dependence of $\sigma_{\rm L}$ **at fixed Q2,W**

The different pion arm (SHMS) settings are combined to yield φ-distributions for each *t***-bin**

 ϕ (deg)

13

Garth Huber, huberg@uregina.ca

Garth

huberg@uregina

$\bm{\mathsf{Extract}}$ $F_{\pi}(\mathcal{Q}^{2})$ 2) from JLab $\sigma_{\!L}$ **data**

Model incorporates π^* production mechanism and spectator neutron effects:

П **Example 1** Feynman propagator $\frac{1}{t-m^2}$ 1 $\left(\frac{1}{t-m_{\pi}^{2}}\right)^{2}$

replaced by π and ρ Regge propagators.

- Represents the exchange of a series of particles, compared to a single particle.
- **Firm Free parameters:** Λ_{π} , Λ_{ρ} (trajectory cutoff).

[Vanderhaeghen, Guidal, Laget, PRC **57**(1998)1454]

ш ■ At small $-t$, $\sigma_$ only sensitive to F_{π}

$$
F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}
$$

Fit to $\sigma_{\!L}$ to model gives *Fπ* at each *Q2*

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 Λ_{π}^2 =0.513, 0.491 GeV², Λ_{ρ}^2 =1.7 GeV².

Current and Projected *Fπ* **Data**

SHMS+HMS will allow measurement of *Fπ* to much higher *Q2*

No other facility worldwide can perform this measurement

Data taking completed September 2022 (E12–19–006: G. Huber, D. Gaskell and T. Horn, spokespersons)

y–positions of projected points are arbitrary

Error bars are calculated from obtained statistics and projected systematic uncertainties

The ~10% measurement of *Fπ* at *Q2*=8.5 GeV2 is at higher *–tmin*=0.45 GeV2

The pion form factor is the clearest test case for studies of QCD's transition from non–perturbative to perturbative regions

*p***(***e,e'K***⁺)Λ(Σ0) Experiment**

Isolate Exclusive Final States via Missing Mass

$$
M_{X} = \sqrt{(E_{\text{det}} - E_{\text{init}})^{2} - (p_{\text{det}} - p_{\text{init}})^{2}}
$$

- Spectrometer coincidence acceptance allows for simultaneous studies of Λ and
_Necknocals Σ° channels.
- Kaon-pole dominance test through

$$
\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda^0)}
$$

• Should be similar to ratio of $\rm{g^2}$ t-channel exchange dominates. 2 _{pKΛ}/g² pKΣ $\frac{1}{2}$ coupling constants if

Kaon Form Factor Experiment Goals

- F **Measure the –t dependence of the** *p(e,e'K⁺)Λ,Σ°* **cross section at fixed Q2 and W>2.5 GeV to search for evidence of K+ pole dominance in σL**
	- Separate the cross section components: L, T, LT, TT
	- First L/T measurement above the resonance region in K⁺ production
- **If warranted by the data, extract the Q2 dependence of the kaon form factor to shed new light on QCD's transition to quark-gluon degrees of freedom.**

<u>Even if we cannot extract the kaon form factor, the </u> measurements are important.

- K⁺Λ and K⁺Σ° reaction mechanisms provide valuable information
in eur etudy of bedrep etrusture in our study of hadron structure
- –Flavor degrees of freedom provide important information for QCD model building and understanding of basic coupling constants

•

•

Projected Uncertainties for *K+* **Form Factor**

- **First measurement of** F_K
above the resonance rec above the resonance region.
- •Measure form factor to Q^2 =3 GeV²
with good overlap with elastic with good overlap with elastic scattering data.
	- • Limited by –*t*<0.2 GeV2 requirement to minimize non–pole contributions.
- • Data will provide an important second $q\overline{q}$ system for theoretical models, this time involving a strange quark.
	- *Partially completed as an early SHMS commissioning experiment: LT–separation*
		- *(E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons)*
	- *Data under analysis, expecting final results next year*
		- *—***R. Trotta (CUA/Virginia)**

Extraction of F_K from Q²>4 GeV² data is

more uncertain, due to higher – $t_{\sf min}$

Verification of GPD Accessibility

At sufficiently high *Q2***, the Hard–Soft Factorization Theorem separates the reaction amplitude into two parts:**

- Hard scattering process, where perturbative QCD can be used
- A non–perturbative (soft) part, where the response of the target nucleon to the virtual photon probe is encoded in GPDs

Collins, Frankfurt, Strikman PRD 56(1997)2982

- F **To access physics contained in GPDs, one is limitedto the kinematic regime where hard–soft factorization applies**
- × No single criterion for applicability, but tests of necessary conditions can provide evidence that Q $^{\rm 2}$ scaling regime reached

Testing Factorization: *p(e,e'π+)n*

- One of most stringent tests of factorization is Q² **dependence of π/K electroproduction cross sections**
	- \blacksquare σ_{L} scales to leading order as *Q-6*
	- As Q² becomes large: σ_L » σ_T
- ■ If we show factorization regime is not reached, it will have major **implications for meson production GPD experiments in this** *Q2***regime** (Some of these experiments are already taking data!)

Important 2nd Test: *p(e,e'K⁺)Λ*

•**Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results**

•Is onset of scaling different for kaons than pions ?•*K+* and π+ together provide quasi model-independent study

*p***(***e,e'K⁺* **)Λ** *Existing ■ and Projected ♦♦■Data*

- E12-09-011 data taking partially completed in 2019
- Data for x_B =0.40 scan in hand. Data for x_B =0.25 scan only partly acquired.
	- Spokespersons: T. Horn, P. Markowitz, GMH \mathbb{Z}

Summary

- Higher Q^2 data on $π^+$ and K^+ form factors are vital to our better understanding of hadronic physics
	- \blacksquare Pion LT (E12–19–006) has for the first time, since the pioneering measurements at Cornell in 1970's, acquired the high quality data needed to test these theoretical developments with authority
	- KaonLT (E12–09–011) partially completed. First results
— hanefully out next vear hopefully out next year
- Factorization studies are crucial if the field is to fully utilize the information encoded in GPDs, as GPDs are only accessible experimentally in the hard–soft factorization regime
	- PionLT (E12 –19–006) has acquired data for LT–separated *p(e,e'π+)nQ-*⁻″ scans at x_B=0.31, 0.39, 0.55
	- KaonLT (E12–09–011) has acquired $p(e,eiK^+$ \blacksquare alah \blacksquare ay analah ta *)Λ* data for Q⁻ⁿ scan at x_e=0.40, eventual extension to x_e: ⁻ⁿ scan at x_B=0.40, eventual extension to x_B=0.25