B0 neutrons reconstruction at the EIC

Love Preet¹, G. M. Huber¹, S. J. D. Kay^{1,2}

¹University of Regina, ²University of York

ePIC simulations for exclusive reactions

- Feasibility studies of exclusive pion electroproduction reaction through ePIC simulations.
- For π^+ electroproduction reaction:

$$e + p \rightarrow e' + \pi^{+} + n$$

- Indirectly use the "pion cloud" of the proton via the p(e,e' π^+ n) process.
- Identification involves reconstructing all final state particles.
- Reconstruct e'/ π ⁺ tracks from the central detector.

- Reconstructed neutrons from ZDC HCAL allow access to small -t.
- B0 EMCAL enables achieving higher values of -t.

B0 clusters & $\boldsymbol{\theta}^*$, * distributions

• Considered clusters = 1 & $8.0 < \theta^*$ (mRad) < 11.0 events.

m B0 -t $_{ m truth}$ vs -t $_{ m rec~corr}$ distribution

B0 energy distribution for two blobs

• Considered E > 2.0 events.

$B0 \Delta \theta$, Δ distribution for two blobs

• Considered - $0.15 < \Delta\theta < 0.15$ & - $20 < \Delta\phi < 20$ events.

$\overline{ m B0}$ -t $_{ m truth}$ vs -t $_{ m rec_corr}$ distribution

• Cuts: -t, E, $\Delta\theta$, $\Delta\phi$, W & -t_{truth} = no afterburner

B0 -t rec_corr vs -t truth Distribution w/ 5 < Q^2 < 35, E, θ_{diff} , ϕ_{uu} , W cuts

$\overline{\mathrm{B0}}$ -t_{truth} vs -t_{rec_corr} distribution

zero.

• Cuts: -t, E, $\Delta\theta$, $\Delta\phi$, W & -t_{truth} = no afterburner

Detection efficiency per (Q², t) bin

• Cuts: -t, E, $\Delta\theta$, $\Delta\phi$, W & -t_{truth} = no afterburner

-t distributions from different methods

• Cuts: -t, E, $\Delta\theta$, $\Delta\phi$, W & -t_{truth} = no afterburner

-t distribution over wide Q² range

Removed SIDIS background with W cut

Summary

- Results so far look promising, and included the physics analysis plots in the pre(TDR) for the 10on100 beam energy combination using B0 & ZDC information.
- Accessing -t distribution over a wide range by combining information from both detectors.
- B0 -t_{truth} vs -t_{rec corr} distribution intercept is not at zero.
- B0 - t_{truth} - $t_{rec corr}$ distribution is not centred at zero.

Thank you!

EIC-Canada

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2023-00041

& UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1

Email: navisaharan3@gmail.com