π^-/π^+ Separated Response Function Ratios in Forward Pion Electroproduction

Cornel Butuceanu
ccbutu@jlab.org

APS Meeting, St. Louis, MO, 12-15 April 2008
Jefferson Lab F_π Collaboration

Jefferson Lab, Newport News, VA , USA

C. Butuceanu, E.J. Brash, G.M. Huber, V. Kovaltchouk, G.J. Lolos, S. Vidakovíc, C. Xu
University of Regina, Regina, SK, Canada

H. Blok, V. Tvasakis
Vrije Universiteit, Amsterdam, Netherlands

E. Beise, H. Breuer, C.C. Chang, T. Horn, P. King, J. Liu, P.G. Roos
University of Maryland, College Park, MD, USA

W. Boeglin, P. Markowitz, J. Reinhold
Florida International University, FL, USA

Argonne National Laboratory, Argonne, IL, USA

H. Mkrtchyan, V. Tadevosyan
Yerevan Physics Institute, Yerevan, Armenia

S. Jin, W. Kim
Kyungook National University, Taegu, Korea

M.E. Christy, C. Keppel, L.G. Tang
Hampton University, Hampton, VA, USA

J. Volmer
DESY, Hamburg, Germany

A. Matsumura, T. Miyoshi, Y. Okayasu
Tohoku University, Sendai, Japan

B. Barrett, A. Sarty
St. Mary’s University, Halifax, NS, Canada

K. Aniol, D. Margaziotis
California State University, Los Angeles, CA, USA

L. Pentchev, C. Perdrisat
College of William and Mary, Williamsburg, VA, USA

APS Meeting, St. Louis, MO, 12-15 April 2008

ccbutu@jlab.org
Motivation

\[2H(e, e'_\pi^+)nn, \ 2H(e, e'_\pi^-)pp \] reactions

• Testing the t-pole dominance – key factor in the extraction of the pion form factor \(F_\pi \).

• Pion \(\pi^\pm \) electroproduction can proceed via isovector and isoscalar photons.

• The experimental ratio

\[R = \frac{\sigma(\gamma_vp \rightarrow \pi^+n)}{\sigma(\gamma_vn \rightarrow \pi^-p)} = \left| \frac{A_V - A_S}{A_V + A_S} \right|^2 \]

- \(t \) gives a good indication of the presence of isoscalar processes.

• Separated ratios \(R_L \) and \(R_T \) tests the t-pole contribution to \(\sigma_L \).
Previous Studies

Exclusive π^-/π^+ ratio vs $-t$

- $W = 2.19$, $120^\circ \leq \phi \leq 240^\circ$

- $Q^2 = 0.70$
- $Q^2 = 1.35$

- Quark model limit
- Isovector limit

At low $-t$

\[
R \rightarrow R_L = \frac{Q^2_{\pi^-}}{Q^2_{\pi^+}} = 1
\]

At high $-t$

\[
R \rightarrow R_T = \frac{2Q^2_d}{2Q^2_u} = 1/4
\]

Unseparated cross section ratios
Experimental Setup

- **Hall C spectrometers:**
 - Coincidence measurement.
 - SOS detects e⁻.
 - HMS detects π⁺ and π⁻.

- **Targets:**
 - Liquid 4-cm H/D cells.
 - Al (dummy) target for background measurement.
 - \(^{12}\)C solid targets for optics calibration.

| Exp \(F_\pi\) | \(Q^2\) (GeV/c)² | \(W\) (GeV) | \(|t_{\text{min}}|\) (GeV/c)² | \(E_e\) (GeV) |
|------------|-----------------|---------|-----------------|---------|
| \(F_\pi-1\) | 0.6-1.6 | 1.95 | 0.03-0.150 | 2.445-4.045 |
| \(F_\pi-2\) | 1.6, 2.5 | 2.22 | 0.093, 0.189 | 3.779-5.246 |
Event selection

Electron-pion coincidences

Pions detected in HMS - Cerenkov & Coincidence time for PID
Electrons detected in SOS - Cerenkov & Lead Glass Calorimeter

Random coincidences

Exclusivity assured via $0.875 < M_{\text{MM}} < 1.05$ GeV cut

APS Meeting, St. Louis, MO, 12-15 April 2008
ccbutu@jlab.org
Kinematics Coverage

Take data at three angles:
\[\theta_{\pi q} = 0^\circ, +4^\circ, -4^\circ. \]

Diamond cuts define common
\((W, Q^2)\) coverage at both \(\epsilon\).

Extract \(\sigma_L\) by simultaneous fit of \(L, T, LT, TT\)

\[
2\pi \frac{d\sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi
\]
Data Analysis

- Magnetic Calibrations

 Over-constrained $p(e,e'p)$ and elastic $e + ^{12}C$ reactions were used to calibrate spectrometer acceptances, momenta and angular offsets. SOS & HMS Delta/xpfp correlations were corrected with a linear dependent function of form $\delta' = \delta + C_\delta \cdot x_{fp}'$.

- Corrections to the high rate π^- data set

 π^- data were taken at high rates while π^+ data were taken at low rates. Understanding the rate dependent corrections is very important with respect to the final $\sigma_{\pi^-}/\sigma_{\pi^+}$ ratios.
 - New high rate tracking algorithm.
 - Better high rate tracking efficiencies (2-9%).
 - π^- HMS Cerenkov blocking correction (2-20%).
 - High current (π^+ data set) target boiling correction (2-13%).
EXISTING MODELS (VGG & VGL)

VGL Regge Model

Pion electroproduction in terms of exchange of π and ρ Regge trajectories.

[VGL, PRC 57(1998)1454]

Model parameters fixed from pion photoproduction.

Free parameters: Λ_{π}^2 and Λ_{ρ}^2
(from 2H data).

$$F_{\pi,\rho}(Q^2) = \left[1 + Q^2/\Lambda_{\pi,\rho}^2\right]^{-1}$$

ρ exchange does not significantly influence σ_L at small $-t$.

VGG GPD Model

Pion electroproduction in terms of generalized skewed quark distributions (OFPD).

[VGG, PRD 60(1999)094017]

Include power corrections due to:

- intrinsic transverse momentum of the active quark
- soft overlap type contributions (no gluon exchange)

Free parameters: Λ_{π}^2 and Λ_{ρ}^2
(from 2H data).
Separated Response Functions

$^2\text{H}(e,e'\pi^-)pp$

- Λ_{π}^2, Λ_{ρ}^2 - 0.410, 1.5
- Λ_{π}^2, Λ_{ρ}^2 - 0.503, 1.5
- Λ_{π}^2, Λ_{ρ}^2 - 0.428, 1.5
- Λ_{π}^2, Λ_{ρ}^2 - 0.428, 1.5

$^2\text{H}(e,e'\pi^+)nn$

- Λ_{π}^2, Λ_{ρ}^2 - 0.418, 1.5
- Λ_{π}^2, Λ_{ρ}^2 - 0.494, 1.5
- Λ_{π}^2, Λ_{ρ}^2 - 0.397, 1.5
- Λ_{π}^2, Λ_{ρ}^2 - 0.397, 1.5

APS Meeting, St. Louis, MO, 12-15 April 2008

ccbuntu@jlab.org
Separated Response Functions Ratios

$Q^2 = 0.6 \text{ GeV}^2$
$Q^2 = 1.0 \text{ GeV}^2$
$Q^2 = 1.6 \text{ GeV}^2$

$W = 1.95 \text{ GeV}$

PRELIMINARY

APS Meeting, St. Louis, MO, 12-15 April 2008

ccbuntu@jlab.org
Summary

- Separated σ_L, σ_T, σ_{LT}, σ_{TT} cross sections were extracted using Rosenbluth L/T separation technique.

- Ratios $R = \frac{\sigma_{\pi^-}}{\sigma_{\pi^+}}$ were extracted as a function of $-t$.

- Preliminary results show that R_L is consistent with 1 over the whole range in $-t$ indicating a dominance of isovector processes at low $-t$ in the longitudinal response function σ_L.

- These findings confirm the expectation that σ_L is indeed dominated by the t-pole term.

- In the kinematic region studied here both ratios R_L and R_T present a very slight dependence of Q^2.

- The evolution of R_T with $-t$ shows a rapid fall off which is consistent with earlier theoretical predictions, expected to approach $\frac{1}{4}$, the square of the ratio of the quark charges involved.

APS Meeting, St. Louis, MO, 12-15 April 2008

ccb butu@jlab.org
HMS Q3 Corrections

Old Q3/Dipole ratio

\[\delta_{\text{HMS}} = \delta_{\text{HMS}} + C_\delta \times f_p \]

\[\bar{\delta}_{\text{HMS}} = \frac{P - P_{\text{HMS}}}{P_{\text{HMS}}} \times 100 \]

APS Meeting, St. Louis, MO, 12-15 April 2008 ccbutu@jlab.org
SOS Optics Calibration

For low momentum (<1.6 GeV/c) we used the Fpi1 (1999) optics matrix & delta/xpfp correction.

For high momentum (>1.6 GeV/c) we used the Fpi2 (2003) new optics matrix & delta/xpfp correction.
HMS Cerenkov Blocking

- Used data taken with open trigger (el. & pions) to fit the effective time window.

- The TDC time window in Fpi1 is 23% larger than in Fpi2.

- Used the Fpi2 data to fit the effective TDC gate (for the same CC cut).

- For a CC cut of npe<1.5 the effective TDC gate for Fpi1 set is ~184 ns.

- Implies a larger correction for Fpi1 data (18-20 % at 1MHz).

- Significant impact in pi- (high rate) data.

\[\varepsilon_{CC} = 1 - R_e \cdot \tau_{CC} \]

\[\tau_{CC} = 184 \pm 5 \text{ ns} \]

- Uncertainties associated with this correction are of the order of 1.6% at 1MHz.
Corrected Tracking Efficiencies

A \sim 8\% correction to the tracking efficiencies at 1.4MHz was applied to the high rate data (pi-).

APS Meeting, St. Louis, MO, 12-15 April 2008

ccbuto@jlab.org
Simulations vs Experimental data

LD$_2$, $Q^2=1.6$, $E=0.27$, $\phi_p=-0^\circ$, π^+

2H, $Q^2=1.6$ GeV2, $E=0.27$, $\phi_p=-0^\circ$, π^+

Simulated Missing Mass spectrum was improved by implementing pions that were penetrating the collimator.

Pion Punchthrough Implementation resulted in an overall improved simulated kinematic variables ($W, Q^2, -t$).

APS Meeting, St. Louis, MO, 12-15 April 2008

ccbutu@jlab.org
HMS Q3 corrections

Using central HMS kinematics and detected proton momentum we reconstruct the invariant mass W (electron mass).

The W vs X' distribution was fitted with 1 degree polynomial.

DNP Meeting, NN, Virginia, 13 October 2007
SOS Q3 Corrections

2003 SOS optics matrix

APS Meeting, St. Louis, MO, 12-15 April 2008 ccbutu@jlab.org
Tracking efficiency

Two issues:

1. The Fpi1 version of the Trk. Eff. algorithm used a "cleaner" data sample by removing the multiple hits events resulting in overevaluated trk. eff.

2. The Fpi2 version used a "dirty" data sample by including the multiple hits events resulting in subevaluated trk. eff.

- The high rate data (pi-) is the most sensitive to the tracking efficiency correction (~10% at 1.4 MHz).
- A linear correction dependent of event rate was applied to the tracking efficiencies of pi- data.
SOS Q3 Corrections

Low momentum (<1.6 GeV/c) - old settings & corrections works fine.

High momentum (>1.6 GeV/c) - use of new SOS optic matrix & new delta/xpfp correction.
Tracking Efficiency

\[\varepsilon_{\text{tracking}} = P_1 \cdot \varepsilon_1 + P_2 \cdot \varepsilon_2 \]

\[P_2 \approx R \cdot T_{\text{DC}} \]

\[P_1 = 1 - P_2 \]

\[\varepsilon_1 = 0.984 \]

\[\varepsilon_2 = 0.71 \]

\[T_{\text{DC}} \] - DC gate width

\[R \] - DC rate

\[P_1 \] - single hit probability

\[P_2 \] - multiple hits probability

APS Meeting, St. Louis, MO, 12-15 April 2008
cbputu@jlab.org
Using data taken with open trigger (el. & pions).

The TDC time window in Fpi1 is 23% larger than in Fpi2.

Use the Fpi2 data to fit the effective gate (same CC cut).

For npe<2.0 gate width – 190 ns.

Implies a larger correction in Fpi1 (18–20 % at 1MHz).

Significant impact in π- (high rate) data.

\[\varepsilon = 1 - R_e \cdot T_{CC} \]

HMS Cerenkov TDC spectrum for e as identified by the HMS CC ADC

APS Meeting, St. Louis, MO, 12-15 April 2008 ccbutu@jlab.org
Kinematic Variables

\[t \equiv (\gamma_v - \pi)^2 = -Q^2 + m_{\pi}^2 - 2\nu E_{\pi} + 2\nu p_{\pi} \cos \theta_{q\pi} \]

\[\frac{d\sigma}{dt} = \sigma_T + \epsilon \sigma_L + \epsilon \cos 2\phi \sigma_{TT} + \sqrt{2\epsilon(1 + \epsilon)} \cos \phi \sigma_{LT} \]

\[\sigma_L \propto \frac{-2tQ^2}{(t - m_{\pi}^2)^2} \cdot g_{\pi NN}^2(t) \cdot F_{\pi}^2 \]

\[R \simeq \frac{2Q_d^2}{2Q_u^2} = \frac{(-1/3)^2}{(+2/3)^2} = 1/4 \]

\[R_L \simeq \frac{Q_{\pi^-}^2}{Q_{\pi^+}^2} = 1 \]
Separated Response Functions
Separated Response Functions

\[\frac{d\sigma}{dt} (\text{ubarn/GeV}^2) \]

\[\begin{align*}
\Delta_\pi^2, & \quad \Lambda_\pi^2 - 0.410, 1.5 \\
\Delta_p^2, & \quad \Lambda_p^2 - 0.503, 1.5 \\
\Delta_\rho^2, & \quad \Lambda_\rho^2 - 0.428, 1.5 \\
Q^2 = & \ 0.5 \ \text{GeV}^2 \\
Q^2 = & \ 1.0 \ \text{GeV}^2 \\
Q^2 = & \ 1.6 \ \text{GeV}^2
\end{align*} \]

PRELIMINARY

\[\begin{align*}
\Delta_\pi^2, & \quad \Lambda_\pi^2 - 0.418, 1.5 \\
\Delta_p^2, & \quad \Lambda_p^2 - 0.494, 1.5 \\
\Delta_\rho^2, & \quad \Lambda_\rho^2 - 0.397, 1.5 \\
\sigma_L & \ \bullet \ \sigma_T
\end{align*} \]

PRELIMINARY

\[\begin{align*}
\Delta_\pi^2, & \quad \Lambda_\pi^2 - 0.410, 1.5 \\
\Delta_p^2, & \quad \Lambda_p^2 - 0.503, 1.5 \\
\Delta_\rho^2, & \quad \Lambda_\rho^2 - 0.428, 1.5 \\
Q^2 = & \ 0.5 \ \text{GeV}^2 \\
Q^2 = & \ 1.0 \ \text{GeV}^2 \\
Q^2 = & \ 1.6 \ \text{GeV}^2
\end{align*} \]

\[\begin{align*}
\Delta_\pi^2, & \quad \Lambda_\pi^2 - 0.418, 1.5 \\
\Delta_p^2, & \quad \Lambda_p^2 - 0.494, 1.5 \\
\Delta_\rho^2, & \quad \Lambda_\rho^2 - 0.397, 1.5 \\
\sigma_L & \ \bullet \ \sigma_T
\end{align*} \]

APS Meeting, St. Louis, MO, 12-15 April 2008 ccbutu@jlab.org
Separated Response Functions Ratios

$Q^2 = 0.6 \text{ GeV}^2$
$Q^2 = 1.0 \text{ GeV}^2$
$Q^2 = 1.6 \text{ GeV}^2$

$R_L = \frac{\sigma_L(\pi^+)}{\sigma_L(\pi^-)}$
$R_T = \frac{\sigma_T(\pi^+)}{\sigma_T(\pi^-)}$

Preliminary

APS Meeting, St. Louis, MO, 12-15 April 2008
ccbutu@jlab.org